US3197746A - Memory core assembly - Google Patents
Memory core assembly Download PDFInfo
- Publication number
- US3197746A US3197746A US51688A US5168860A US3197746A US 3197746 A US3197746 A US 3197746A US 51688 A US51688 A US 51688A US 5168860 A US5168860 A US 5168860A US 3197746 A US3197746 A US 3197746A
- Authority
- US
- United States
- Prior art keywords
- cores
- cards
- sheets
- adjacent
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/02—Disposition of storage elements, e.g. in the form of a matrix array
- G11C5/04—Supports for storage elements, e.g. memory modules; Mounting or fixing of storage elements on such supports
- G11C5/05—Supporting of cores in matrix
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/06—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using single-aperture storage elements, e.g. ring core; using multi-aperture plates in which each individual aperture forms a storage element
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/02—Disposition of storage elements, e.g. in the form of a matrix array
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/4902—Electromagnet, transformer or inductor
- Y10T29/49069—Data storage inductor or core
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49204—Contact or terminal manufacturing
Definitions
- FIG' 6 INVENTORS Rudolph 0. Stoehr /dohn Liston Atty.v
- FIG. IA FIG. 7B SENSE SENSE /V A/ N A/ INVENTOR. Rudolph O. Stoehr BY John W. iston u AHy.
- This invention relates to memorydevices and, more particularly, to memory core devices employing wiring for the threading of the cores.
- the primary object of the invention is to provide a memory core device which can be easily produced and at minimum cost.
- Another object of the invention is to provide a novel technique of threading the magnetic cores with a printed electrical conductor.
- Another object of the invention is to provide a memory core device which doesI not require an external support to secure the cores to the insulating sheets, on which the printed wiring is formed, and vice versa.
- Another object of the invention is to provide an arrangement for a magnetic memory core device which lends itself to be made into miniature size.
- the invention in general features a plurality of sheets made of insulating material with printed electrical yconductors disposed thereon. These sheets are formed with appropriate cutouts so that theyV may be placed over a prepositioned array of cores, at right angles to the planes of the cores. A lip in each cutout is inserted through apertures of the uprightly positioned cores by simple lateral translation motion of the sheets. The printed conductors extend to the edge of the lip and to the edge of the cutout, thereby leaving a gap between the two edges at each cutout. The gap thusly formed is bridged by a suitably posi- I tioned printed conductor on the next adjacent sheet. These adjacent conductors, in combination, form continuous electrical paths through an array of ring cores. These paths may constitute the vertical winding, the horizontal winding, the sense winding, the inhibit winding or any other desired winding of the memory device.
- FIGURE l is a schematic view showing the electrical winding arrangement for the memory core device.
- FIGURE 2 is a plan View showing a magnetic ring core assembled to a sheet by means of a lip which extends at a cutout.
- FIGURE 3 is a plan view of a sheet having printed conductors disposed thereon and extending lips formed at a plurality of cutouts.
- FIGURE 4 is an exploded cross sectional view of the featured assembly including the core support and the posts used to press the sheets together.
- FIGURE 5 is a plan view of a sheet adapted to accommodate two mutually perpendicular groups of cores. This sheet has in addition to the printed conductors and cutouts with extending lips a set of rectangular cutouts.
- FIGURE 6 is a perspective view showing the sheets before they are moved transversely with respect to each other, that is, before the lips thereof are inserted into the cores.
- FIGURE 7 is a plan View of the conductor patterns which comprise the electrical winding arrangement of the I memory core device.
- the sheets 10 which are made of an appropriate insulating material are cut or blanked out to a desired size determined by theparticular application of the memory core device Patented July 27, 1965 ICC itself. These sheets 10 serve as the support for the printed conductors 11 and the support for the magnetic ring cores 12.
- the conductors 11 are printed on the sheets by means of etching or other means that are commonly employed in the art of printedcircuitry.
- the conductors 11 conform to a particular pattern as shown in FIGURE 7.
- the conductors are, at least partially, solder coated to facilitate the soldering operation described below.
- pattern 7A of sheet 10A shows printed conductors 11 which when laid on pattern 7B of sheet 10 form the sense winding 14 of the memory device.
- patterns 7C and 7D rof sheets 10B and 10C respectively are laid adjacent to each other they form the vertical winding 15.
- the lips 13 extend completely through the core permitting the ends of the conductor 11 to overlap the edge 13A of the lip'13 and the edge 21 of the cutout 20 on the outside of the core.
- the cutouts 20 of each sheet are disposed so that they correspond with the arrangement of the cores. They are substantially square with a lip 13 extending from one edge thereof. Lip 13 is Vthe means used to hold the cores 12 in position and also to support the insulating sheets and carry the conductors 11 through the cores. This is accomplished after the sheets 10A, 1GB, 10C and 10D with their cutouts aligned with the cores, have been placed over an array of cores 12 and then moved transversely with respect therewith at which time the lip extend through the cores. The cores 12 are locked into position within the sheets 10 after this transverse movement by virtue of the lips 13 of one sheet extending through the cores from one direction Vand the lips of a sheet lying adjacent therewith extending through the cores from the opposite direction.
- FIG. 3 is the preferred embodiment of the invention an alternative method may be as shown in FIG- URE 5.
- the sheets 10 have in addition to the cutouts 20, rectangular cutout 22. These cutouts 22 permit a first group of cores to be arranged at an angle with a second groupV of cores. However, only one group of cores are threaded by a corresponding group of sheets at a time.
- the sheets for each group of cores have nevertheless the appropriate cutous 22 for the cores ofthe other group so that the sheets can lie flat and adjacent to each other regardless of whether they are used to carry a conductor through the particular group of cores or not. Accordingly the length of the cutout 22 is such as to allow for the necessary transverse movement of the sheets to move the lips 13 through the apertures of the other group of cores.
- the cores 12 Prior to being assembled the cores 12 are set into an 10 at the end of the assembly operation are subjected to heat and pressure. After the sheets have been finally positioned in the cores the assembly is self-supporting and requires no further mechanical support, for the cores 12 keep the entire assembly together.
- FIGURE 6 which shows two adjacent sheets 10 before' they have been moved relatively to each other the sheet 10 are placed over the cores 12, which set in the aforementioned depressions. Subsequently' the sheets are moved towards each other in a transverse direction with respect to the cores until the lips of each sheet extend through the aperture of the' cores 12 and the conductors 11 are properly positioned 'over each other as shown in FIGS. 2 and 4'.
- the assembly is simultaneously subjected to high frequency dielectric heating and pressure by means of the posts 24 which are' actuated' by some external means, for example a' press', and may have' radio frequency windings, not shown, embedded therein.
- the posts 24 are positioned alongside the upright cores 12 and with the aid of the jig 23 squeeze the outer sheets 10A and 10D together until all the adjacent conductors are soldered together, thusv forming continuous electrical paths through thev cores.
- insulating cards having substantially uniformly flat top and bottom surfaces and positioned in planes parallel and ⁇ adjacent to each other, said cores being disposed perpendicularly to the planes of said cards and at least one of s'aid cards having portions extending in the corresponding planes through said cores to support the' cores;
- a magnetic memory device having a plurality of magnetic ring cores
- insulating cards having substantially uniformly at top andbottom surfaces and spaced apertures with a peripheral edge, said cards being positioned in planes parallel and adjacent to ⁇ each other, at least one of said cards having lips projecting from one of said peripheral edges and lying in the plane of said flat surfaces, said lips extending through and supporting said cores perpendicular to said insulating cards within said apertures, and
- the depressions 25 support the cores 12 in an upright position and remain supported until after the sheets an array of solder-coated printed conductor segments disposed on said surfaces of said cards and extending over said lips, said conductor segments on said top surface of one of said cards being contacted by corresponding conductor segments on said being surface of an adjacent card to form continuous electrical conducting pathsr between and through said ring cores upon fusing the solder coating.
- a magnetic memory device as claimed in claim 2 wherein the lips of adjacent ones of said cards extend through said ring cores from opposite directions to restrict 15 the movement of said ring cores within said apertures.
- a magnetic memory device having a plurality of magnetic ring cores
- insulating cards having substantially uniformly fiat top and bottom surfaces and spaced apertures with peripheral edges receiving said cores, said cards being positioned in planes parallel and adjacent to each other,
- a irst array of solder-coated printed conductor segments disposed on said top surface of at least said one card and extending over said lips andv between said apertures thereof thereby leaving a gap at each of said apertures defined by said lip and as opposite peripheral edge of said cutout, and a second array of solder-coated conductor segments disposed and arranged on a bottom surface of an adjacent card to bridge said gaps and form a continuous electrical conducting path between and through said ring cores upon fusing the solder coating.
- a magnetic memory device as claimed in claim 4 wherein said ring cores are arranged into a rst group and a second group, and wherein said apertures are arranged in a corresponding rst and secondrgroup, said first group of said ring cores being perpendicular to said second group, and said ring cores of said first group being supported by lips of certain cards and said ring cores of said second group being supported by lips of certain others of sad cards.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Coils Or Transformers For Communication (AREA)
- Electromagnets (AREA)
- Credit Cards Or The Like (AREA)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL268251D NL268251A (fr) | 1960-08-24 | ||
US51688A US3197746A (en) | 1960-08-24 | 1960-08-24 | Memory core assembly |
US51746A US3133270A (en) | 1960-08-24 | 1960-08-24 | Printed circuitry for magnetic core matrix |
US65462A US3492665A (en) | 1960-08-24 | 1960-10-27 | Magnetic device using printed circuits |
US81185A US3196522A (en) | 1960-08-24 | 1961-01-06 | Memory core matrix with printed windings |
GB25666/61A GB918000A (en) | 1960-08-24 | 1961-07-14 | Improvements in magnetic memory devices |
BE606130A BE606130A (fr) | 1960-08-24 | 1961-07-14 | Dispositif de mémoire magnétique |
DEA38061A DE1257847B (de) | 1960-08-24 | 1961-08-04 | Magnetkernspeicher |
US428365A US3413620A (en) | 1960-08-24 | 1965-01-27 | Memory core matrix with printed windings |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US51688A US3197746A (en) | 1960-08-24 | 1960-08-24 | Memory core assembly |
US51746A US3133270A (en) | 1960-08-24 | 1960-08-24 | Printed circuitry for magnetic core matrix |
US6546260A | 1960-10-27 | 1960-10-27 | |
US81185A US3196522A (en) | 1960-08-24 | 1961-01-06 | Memory core matrix with printed windings |
Publications (1)
Publication Number | Publication Date |
---|---|
US3197746A true US3197746A (en) | 1965-07-27 |
Family
ID=27489426
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US51688A Expired - Lifetime US3197746A (en) | 1960-08-24 | 1960-08-24 | Memory core assembly |
US51746A Expired - Lifetime US3133270A (en) | 1960-08-24 | 1960-08-24 | Printed circuitry for magnetic core matrix |
US65462A Expired - Lifetime US3492665A (en) | 1960-08-24 | 1960-10-27 | Magnetic device using printed circuits |
US81185A Expired - Lifetime US3196522A (en) | 1960-08-24 | 1961-01-06 | Memory core matrix with printed windings |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US51746A Expired - Lifetime US3133270A (en) | 1960-08-24 | 1960-08-24 | Printed circuitry for magnetic core matrix |
US65462A Expired - Lifetime US3492665A (en) | 1960-08-24 | 1960-10-27 | Magnetic device using printed circuits |
US81185A Expired - Lifetime US3196522A (en) | 1960-08-24 | 1961-01-06 | Memory core matrix with printed windings |
Country Status (5)
Country | Link |
---|---|
US (4) | US3197746A (fr) |
BE (1) | BE606130A (fr) |
DE (1) | DE1257847B (fr) |
GB (1) | GB918000A (fr) |
NL (1) | NL268251A (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3328782A (en) * | 1965-05-03 | 1967-06-27 | Bell Telephone Labor Inc | Magnetic memory assembly |
US3543397A (en) * | 1965-05-03 | 1970-12-01 | Bell Telephone Labor Inc | Magnetic memory assembly method |
US3573762A (en) * | 1969-01-28 | 1971-04-06 | Us Navy | 3-wire coincident current core memory |
US3680209A (en) * | 1969-05-07 | 1972-08-01 | Siemens Ag | Method of forming stacked circuit boards |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL283807A (fr) * | 1961-09-29 | |||
NL298507A (fr) * | 1962-09-28 | |||
NL6400600A (fr) * | 1964-01-27 | 1965-07-28 | ||
US3377699A (en) * | 1965-05-03 | 1968-04-16 | Western Electric Co | Fluidized bed coating a core containing metal board, including circuit forming, core wiring and connecting steps |
DE1295653B (de) * | 1965-07-17 | 1969-05-22 | Telefunken Patent | Anordnung fuer die magnetische Speicherung, Durchschaltung oder logische Verknuepfung von Informationen und Verfahren zum Betreiben der Anordnung, zur Erzeugung der Anisotropie und zu ihrer Herstellung |
US3391464A (en) * | 1966-02-25 | 1968-07-09 | Bunker Ramo | Assembly tool |
US3427715A (en) * | 1966-06-13 | 1969-02-18 | Motorola Inc | Printed circuit fabrication |
DE1764812A1 (de) * | 1968-08-09 | 1971-11-11 | Vickers Zimmer Ag | Verfahren zur Herstellung eines magnetischen Speicherelements |
US3591922A (en) * | 1968-12-05 | 1971-07-13 | Sperry Rand Corp | Fabrication of electrical solder joints using electrodeposited solder |
US3765082A (en) * | 1972-09-20 | 1973-10-16 | San Fernando Electric Mfg | Method of making an inductor chip |
US3893189A (en) * | 1974-01-14 | 1975-07-01 | Spin Physics Inc | Magnetic record/reproduce head and manufacturing method therefor |
TWI399139B (zh) * | 2007-09-19 | 2013-06-11 | Ind Tech Res Inst | 彎繞線狀電感器及具有此彎繞線狀電感器的基板結構 |
US20220399149A1 (en) * | 2019-12-18 | 2022-12-15 | Permanent Magnets Limited | Magnetic Core Assembly And Manufacturing Process Thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2877540A (en) * | 1956-03-22 | 1959-03-17 | Ncr Co | Method of making magnetic data storage devices |
US2901736A (en) * | 1955-08-23 | 1959-08-25 | Steatite Res Corp | Printed circuit for array of toroidal cores |
US2961745A (en) * | 1955-12-29 | 1960-11-29 | Ibm | Device for assembling magnetic core array |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2988668A (en) * | 1954-10-05 | 1961-06-13 | Burroughs Corp | High speed memory |
US2897409A (en) * | 1954-10-06 | 1959-07-28 | Sprague Electric Co | Plating process |
US2985948A (en) * | 1955-01-14 | 1961-05-30 | Rca Corp | Method of assembling a matrix of magnetic cores |
US2970296A (en) * | 1955-05-10 | 1961-01-31 | Ibm | Printed circuit ferrite core memory assembly |
US2937351A (en) * | 1956-02-13 | 1960-05-17 | Palmer H Craig | Magnetic amplifier |
BE561278A (fr) * | 1956-10-03 | |||
US3027548A (en) * | 1956-12-17 | 1962-03-27 | Bell Telephone Labor Inc | Electromagnetic coupling arrangements |
US2910675A (en) * | 1957-01-09 | 1959-10-27 | Ibm | Core array using coaxially spaced conductors |
US2934748A (en) * | 1957-01-31 | 1960-04-26 | United Shoe Machinery Corp | Core mounting means |
NL234583A (fr) * | 1957-12-31 | |||
US3025502A (en) * | 1959-01-19 | 1962-03-13 | Burroughs Corp | Magnetic core memory construction |
NL130691C (fr) * | 1959-05-21 |
-
0
- NL NL268251D patent/NL268251A/xx unknown
-
1960
- 1960-08-24 US US51688A patent/US3197746A/en not_active Expired - Lifetime
- 1960-08-24 US US51746A patent/US3133270A/en not_active Expired - Lifetime
- 1960-10-27 US US65462A patent/US3492665A/en not_active Expired - Lifetime
-
1961
- 1961-01-06 US US81185A patent/US3196522A/en not_active Expired - Lifetime
- 1961-07-14 BE BE606130A patent/BE606130A/fr unknown
- 1961-07-14 GB GB25666/61A patent/GB918000A/en not_active Expired
- 1961-08-04 DE DEA38061A patent/DE1257847B/de active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2901736A (en) * | 1955-08-23 | 1959-08-25 | Steatite Res Corp | Printed circuit for array of toroidal cores |
US2961745A (en) * | 1955-12-29 | 1960-11-29 | Ibm | Device for assembling magnetic core array |
US2877540A (en) * | 1956-03-22 | 1959-03-17 | Ncr Co | Method of making magnetic data storage devices |
US2878463A (en) * | 1956-03-22 | 1959-03-17 | Ncr Co | Magnetic data storage devices |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3328782A (en) * | 1965-05-03 | 1967-06-27 | Bell Telephone Labor Inc | Magnetic memory assembly |
US3543397A (en) * | 1965-05-03 | 1970-12-01 | Bell Telephone Labor Inc | Magnetic memory assembly method |
US3573762A (en) * | 1969-01-28 | 1971-04-06 | Us Navy | 3-wire coincident current core memory |
US3680209A (en) * | 1969-05-07 | 1972-08-01 | Siemens Ag | Method of forming stacked circuit boards |
Also Published As
Publication number | Publication date |
---|---|
NL268251A (fr) | |
US3196522A (en) | 1965-07-27 |
US3133270A (en) | 1964-05-12 |
US3492665A (en) | 1970-01-27 |
DE1257847B (de) | 1968-01-04 |
BE606130A (fr) | 1961-11-03 |
GB918000A (en) | 1963-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3197746A (en) | Memory core assembly | |
US3848210A (en) | Miniature inductor | |
KR950006469A (ko) | 프로브 및 전기부품/회로검사 장치 및 전기부품/회로검사 방법 | |
KR100279954B1 (ko) | 초대규모 집적 회로를 위한 도전체 트랙 구조 | |
US3602635A (en) | Micro-circuit device | |
JPH08227820A (ja) | 電子厚肉フィルム素子の多端子及びその製造方法 | |
US3439109A (en) | Thin film magnetic stores using printed electric circuits | |
US3316618A (en) | Method of making connection to stacked printed circuit boards | |
US3193731A (en) | Printed matrix board assembly | |
WO2016070441A1 (fr) | Carte à circuits imprimés | |
RU2019129470A (ru) | Ориентационно-независимый способ взаимодействия с этикеткой xerox printed memory | |
US3716846A (en) | Connector sheet with contacts on opposite sides | |
US3313986A (en) | Interconnecting miniature circuit modules | |
US20150349440A1 (en) | Semiconductor module socket and connection structure of the same | |
US3184650A (en) | Circuit supporting apparatus | |
US2803788A (en) | Electronic module | |
US3266126A (en) | Magnetic core assembly method | |
US2835962A (en) | Apparatus for assembling modules | |
US3161859A (en) | Modular memory structures | |
US3538599A (en) | Method of manufacturing a plated wire memory system | |
JPH0332050A (ja) | Icパッケージ | |
US3347703A (en) | Method for fabricating an electrical memory module | |
US3253267A (en) | Converter for converting semi-permanent memories into electrical signals | |
US3017082A (en) | Devices for sensing punched cards, tapes or other members | |
US3210745A (en) | Magnetic core memories |