US3195294A - Fluid separator - Google Patents

Fluid separator Download PDF

Info

Publication number
US3195294A
US3195294A US96962A US9696261A US3195294A US 3195294 A US3195294 A US 3195294A US 96962 A US96962 A US 96962A US 9696261 A US9696261 A US 9696261A US 3195294 A US3195294 A US 3195294A
Authority
US
United States
Prior art keywords
conduit
reservoir
liquid
gas
upwardly facing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US96962A
Inventor
Verdura Anthony
Theodore Z White
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Motor Co Ltd
Ford Motor Co
Original Assignee
Ford Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Motor Co filed Critical Ford Motor Co
Priority to US96962A priority Critical patent/US3195294A/en
Application granted granted Critical
Publication of US3195294A publication Critical patent/US3195294A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/028Deaeration devices

Definitions

  • This invention is concerned with means for separating or purging gas or air bubbles from a ilowing liquid. More particularly it is concerned with a separating device for removing gas bubbles from an automotive cooling system.
  • Cooling systems having entrained gas bubbles are ineiiicient. Water pump cavitation, increase in rust formation and corrosion, overheating, foaming of the coolant and overflow loss of the coolant are a few of the most common problems encountered as a result of air contamination.
  • Present cooling systems generally embody a reservoir and surge tank either as a part of the radiator or as a member separate from theV radiator.
  • the reservoir and surge tank provides not only expansion room for the coolant but also acts as a reservoir for the coolant, as a means for filling the cooling system, and for separating entrained air in the coolant.
  • the reservoir portion of the reservoir and surge tank is normally located above a ba'iiie provided in the tank. Air may be drawn into the cooling system when the coolant has reached the level of the am. Air may also be drawn into the cooling system by virture of leaks in the system. Even exhaust gas leakage into the cooling system is possibie and does occur adding to the contamination of the coolant.
  • the present systems require considerable time to purge themselves of gas bubbles.
  • the invention is directed to a iiuid separating means for automatically and effectively purging gas bubbles from the coolant.
  • the iiuid Separating means furthermore, incorporate a reservoir for surplus coolant as well as a place for the entrained gases to collect and separate from coolant.
  • the invention may be used between the internal combustion engine and the radiator inlet, or between the radiator outlet and the internal combustion engine.
  • a venturi section is provided in the top of the liuid separating means.
  • An opening is provided in the venturi section downstream of the most restricted part of the venturi which communicates with a liquid containing reservoir.
  • Another embodiment of the invention provides for the upwardly facing opening to be located in the top of a conduit which does not have a venturi section.
  • An object of this invention therefore is to provide an eiiective fluid separating means.
  • Another object of this invention is to provide a means for automatically deaerating a cooling system.
  • Still another object of this invention is to provide fluid separating means which has means for separating gas bubbles from a flowing liquid combined with a reservoir of liquid, and means for filling said reservoir.
  • Still another object is to provide a iiuid separating means in combination with a reservoir of liquid which is simple in construction, easy to manufacture, dependable in operation and relatively low in cost.
  • FIGURE 1 is a fragmentary schematic side elevational view of a cooling system incorporating an embodiment of this invention between the mechanism to be cooled and the inlet of the radiator, and
  • FIGURE 2 is a sectional view taken on the plane indicated as 2 2 of FlGURE l, and
  • FGURE 3 is a cross sectional view of an alternate embodiment of the huid separating means shown in Elf- URE 1, and
  • FIGURE 4 is a fragmentary schematic side elevational View of another embodiment of this invention in which the iiuid separating means is located between the radiator outlet and the inlet of the mechanism to be cooled, and
  • FIGURE 5 is an alternate construction of the fluid separating means used in FGURE 4.
  • a radiator is indicated generally at 19 having an inlet 11 and an outiet 12.
  • Outlet 12 is adapted to be connected by a conduit 13 shown in part to the Water pump inlet, for example, of an internal combustion engine.
  • a combined fluid separator and liquid containing reservoir and surge tank is shown at 14 and includes a kconduit 16 having an inlet 17 and an outlet 1S.
  • inlet 17 is connected to conduit 19 shown in part, which is adapted to be connected to the water pump outlet of an internal combustion engine.
  • Outlet 13 is connected by conduit 21 to the radiator inlet 11.
  • the fluid separating means is provided in the conduit 16.
  • a venturi section 22 is provided in the top portion of conduit 16 intermediate of the inlet 17 and outlet 18.
  • An upwardly facing opening 23 is located in the venturi section 22 and extends transversely across the conduit 15 so that itcovers a distance which is substantially equal to the widest portion of the conduit 16 at the site of the opening. This insures that ⁇ all of the liquid indicated at 27 flowing through conduit 1d will pass under the upwardly facing opening 23.
  • the upwardly facing opening 23 is located at a location downstream from the most restricted portion of the venturi 22.
  • a combined liquid containing reservoir and surge tank 24 is integrally connected to the top of the conduit 16 so that the upwardly facing opening 23 communicates with the inside of the combined liquid containing reservoir and surge tank 24.
  • a filler cap 26 is located in the top of the combined liquid containing reservoir and surge tank 24 for the purpose of filling the system with coolant.
  • the combined liquid containing reservoir and surge tank 24 extends upwardly a distance suiiicient to make it the highest part of the cooling system.
  • the liquid 27 containing entrained gas or air bubbles 28 is pumped downstream from the water pump outlet of the internal cornbustion engine through conduit 19, inlet 17 and into the conduit 15. Once inside conduit 15 it comes in contact with the venturi section 22. All of this time gas bubbles 28 having a density less than the liquid 27 will be rising in the liquid 27.
  • the venturi section 22 permits an accumulation and combining of a number of the gas bubbles 28 adjacent to the surface of the venturi section 22.
  • the gas bubbles 28 will quickly rise through the upwardly facing opening 23 as the liquid 27 flows past the upwardly facing opening 23. Gas bubbles 28 continue to rise and separate gravitationally from the quiescent liquid in the combined liquid containing reservoir and surge tank 24 until they are expelled into the air space above the liquid in the combined liquid containing reservoir and surge tank 24.
  • an alternate conduit 29 which has an inlet 117 and an outlet 118 connected to conduits 19 and 21.
  • Conduit 29, however, does not have the venturi section. It does, however, have the upwardly facing opening 123 in the top of the conduit 29 which communicates in the same manner with the liquid 27 in the combined liquid containing reservoir and surge 3 tank 124.
  • the gas bubbles 2S simply rise to the top of the conduit 29 and when reachnig the opening 123 separate themselves from the liquid in the conduit 29 and are received in the combined liquid containing reservoir andfsurge tank 124.
  • Conduit 31 is located between kthe .conduit 13 connected to the outlet 12 of the radiator 10 and the conduit 32 shown in part.
  • Conduit 32 is connected to the water pump inlet of the internal combustion engine.
  • Conduit 31 is also provided with an inlet 33 and an outlet 34.
  • Conduit 31 may be formed with a box-like cross section with the top portion of the conduit 31 including a venturi section v36.
  • VAn upwardly facing opening 37 is also provided in the venturi section 36 downstream of the most restricted portion of the venturi section 35.
  • opening 37 is positioned in a portion of conduit 31 where the cross sectional area of conduit 31 varies directly with the distance from the most restricted portion of the conduit.
  • a liquid containing reservoir conduit 38 is secured to the top of the venturi section 36 so that the upwardlyV facing opening 37 communicates with the interior of the liquid containing reservoir conduit 3S.y
  • the liquid containing reservoir conduit 38 may have its axis substantially perpendicular to the axis of the conduit 31.
  • the liquid containing reservoir conduit 38 may be arranged however at any convenient vertical anglerto conduit 31 as long as it rises higher than the other portions of the cooling system, and furthermore that the gas bubbles 28 be permitted to rise to the surface of liquid 27.
  • Aller cap 39 isdisposed on top of the liquid containing reservoir conduit 3S so that the liquid 27 may be added as needed by the system.
  • Liquid containing reservoir conduit 38 also acts as an expansion chamber for the liquid 27. The operation of this embodiment is similar to the embodiment of FIGURES 1 and 2.
  • FIGURE discloses an alternate'embodiment to the fluid separating means shown .in FIGURE 4.
  • the conduit indicated at 41 has an inlet 133, and outlet 134 and a substantially constant cross section.
  • Conduit 41 does not have a venturi section. Gas bubbles 2S simply rise gravitationally to the top of the conduit 41 and when reaching the upwardly facing opening 137 pass into the connes of the quiescent liquid 27 of the liquid containing reservoir conduit 138,
  • This embodiment is similar in operation to the embodiment of FIGURE 3.
  • the aforementioned described cooling systems are automatically self-purging of gas bubbles as long as there is a full liquid flow through any of the described conduits 16, 29, 31 or 41.
  • a liquid expansion chamber as well as a reservoir of coolant also is provided.
  • the liquid coolant level may drop substantially without detriment to the cooling system operation as long as it does not drop below the level of the corresponding upwardly facing opening 23 123, 37 or 137.
  • a device for the separationV of a gas from a flowing liquid in which the gas is relatively insoluble compriisng a reservoir means and a conduit having an inlet means,
  • 1A device for the separation of a gas from a flowing liquid in which the gas is relatively insoluble comprising a reservoir means and a conduit having an inlet means, an outlet means, a portion of reduced cross sectional area between said inlet means and said outlet means, and an upwardly facing opening located between the most restricted part of said conduit and said outlet means and positioned in a portion of said conduit where the cross sectional area of said conduit varies directly with the Adistance, from said most restricted part, said reservoir means being integrally connected to the topV of said conduit and communicating with said conduit through said upwardly facing opening so as to admit vof uninterrupted ascending flow Vof gas from said conduitthrough said opening into said reservoir.
  • a device for the separation of a gas from a owing liquid in which the gas is relatively insoluble comprising areservoir means and a conduit having an inlet means, an outlet means, a portion of reduced cross sectional area between said inlet means and and said outlet means, and an upwardly facing opening located between the most restricted part of said conduit and said outlet means and positioned ina portion of said conduit where the cross sectional area of said conduit varies directly with the distance from said most restricted part, said reservoir means communicating with said conduit through said upwardly facing opening and being integrally yconnected to the top of said conduit in a manner such that the resulting connection encompasses said upwardly facing opening and admits of ⁇ uninterrupted ascending ow of gas from said conduit through said opening into said reservoir.
  • a device for the separation of a gas from a flowing liquid in which the gas is relatively insoluble comprising a reservoir means and a conduit having an inlet means, an outlet means, and an upwardly facing openinglocated between the most restricted part of said conduit and said ⁇ outlet means and positioned in a portion of said conduit where the cross sectional area of said conduit varies directly with the distance from said most restricted part and the downstream extremity of said opening is above the upstream extremity of the same, said reservoirl means communicating with said conduit through said upwardly facing opening, having at least a portion thereof situated above said conduit and said upwardly facing opening and being positioned to .admit of gravitational separation of a gas into said portion from a liquid in said conduit, the area encompassed by said opening being small compared to the average cross sectional area of said reservoir means.
  • a device for the separation of a gas fromV a owing liquid in which the gas is. relatively insoluble comprising a reservoir means and a conduit having a irst end section of predetermined cross sectional area, anrintermediate section of lesser cross sectional area, ya second end section of greater cross sectional area than said intermediate section having a tapered portion adjacent said intermediate section the cross sectional area of which varies directly with the distance from said intermediate section, inlet means associated with said irst end section adapted 'to admit liquid to flow into said conduit, outlet means associated with said second end section adapted to admit liquid to flow from said conduit, and an upwardly facing opening positioned within said tapered portion, said reservoir means communicating with said conduit through said upwadly facing opening, having a portion thereof situated above said conduit and said upwardly facing opening and being positioned to admit of gravitational separation of a gas into said portion from a liquid in said conduit.
  • a device for the separation of a gas from a ilowing liquid in which the gas is ⁇ relatively insoluble comprising a conduit and a reservoir above and connected to the top of said conduit, said conduit having an inlet and an outlet and a venturi section intermediate of said inlet and outlet, said venturi section being provided with at least one upwardly facing opening which communicates with said reservoir and is located downstream from the most restricted portion thereof, said reservoir being positioned in relation to said conduit so as to admit of uninterrupted ascending ilow of gas from said conduit through said opening into said reservoir.
  • a device for the separation of air bubbles from a flowing stream of water comprising a conduit and a combined reservoir and surge tank connected to the top of said conduit, said conduit having an inlet and an outlet and a venturi section intermediate of said inlet and outlet, said venturi section being provided with at least one upwardly facing opening which communicates with said reservoir and is located downstream from the most restricted portion thereof, said opening extending transversely across said conduit for a major portion of the distance across the widest portion of said conduit at the position of said opening, said reservoir being positioned in relation to said conduit so as to admit of uninterrupted ascending flow of air from said conduit through said opening into said reservolr.
  • a device for the separation of air bubbles from a owing stream of water comprising a conduit and a cornbined reservoir and surge tank directly above and integrally connected to the top of said conduit, said conduit having an inlet and an outlet and a venturi section intermediate of said inlet and outlet, said venturi section being provided with at least one upwardly facing opening which communicates with said reservoir and is located downstream from the most restricted portion thereof, said opening extending transversely across said conduit for a distance substantially equal to the widest portion of said conduit at the position of said opening, said reservoir being positioned in relation to said conduit so as to admit of uninterrupted ascending flow of air from said conduit through said opening into said reservoir.
  • a radiator inlet a conduit having outlet means connected to and communicating with said radiator inlet, an inlet means adapted to admit a flow of liquid and gas into said conduit, a section of reduced cross sectional area between said inlet means and said outlet means and an upwardly facing opening between the most restricted part of said conduit and said outlet means and positioned in a portion of said conduit where the cross sectional area of said conduit varies directly with the distance from said most restricted part so that the downstream extremity of said opening is above the upstream extremity of the same; and a combined reservoir and surge tank communicating with said conduit through said upwardly facing opening and positioned in relation to said conduit so as to admit of uninterrupted ascending ow of gas from said conduit through said opening into said reservoir, said combined liquid containing reservoir and surge tank having a removable filler cap remote from the upwardly facing opening.
  • a radiator outlet a conduit having an inlet means adapted to admit a tlow of liquid and gas into said conduit and communicating with said radiator outlet, an outlet means, a section of reduced cross sectional area between said inlet means and said outlet means and an upwardly facing opening between the most restricted part of said conduit and said outlet means and positioned in a portion of said conduit where the cross sectional area of said conduit varies directly with the distance from said most restricted part so that the downstream extremity of said opening is above the upstream extremity of the same; and a combined reservoir and surge tank communicating with said conduit through said upwardly facing opening and positioned in relation to said conduit so as to admit of uninterrupted ascending i'low of gas from said conduit through said opening into said reservoir.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

July 20, 1935 A. VERDURA ETAL 3,195,294
FLUID SEPARATOR 2 Sheets-Sheet l Filed March 20, 1961 WA TER PUMP INVENTORJ` July 20, 1955 I A. VERDURA ETAL 3,195,294
FLUID SEPARATOR Filed March 20, 1961 2 Sheets-Sheet 2 A/vr//o/vy yfApr/AA wfooO/Pf z. nov/74s' INVENTORS BY 04. 1.5M@
United States Patent O 3,195,294 FLUD SEPARATR Anthony Verdura, Detroit, and Theodore Z. White, Dearborn Township, Mich., assignors to Ford Motor Company, Dearborn, Mich., a corporation of Belaware Filed Mar. 20, 1961, Ser. No. 96,962 10 Claims. (Cl. 55--159) This invention is concerned with means for separating or purging gas or air bubbles from a ilowing liquid. More particularly it is concerned with a separating device for removing gas bubbles from an automotive cooling system.
Cooling systems having entrained gas bubbles are ineiiicient. Water pump cavitation, increase in rust formation and corrosion, overheating, foaming of the coolant and overflow loss of the coolant are a few of the most common problems encountered as a result of air contamination.
Present cooling systems generally embody a reservoir and surge tank either as a part of the radiator or as a member separate from theV radiator. The reservoir and surge tank provides not only expansion room for the coolant but also acts as a reservoir for the coolant, as a means for filling the cooling system, and for separating entrained air in the coolant. The reservoir portion of the reservoir and surge tank is normally located above a ba'iiie provided in the tank. Air may be drawn into the cooling system when the coolant has reached the level of the baie. Air may also be drawn into the cooling system by virture of leaks in the system. Even exhaust gas leakage into the cooling system is possibie and does occur adding to the contamination of the coolant. The present systems require considerable time to purge themselves of gas bubbles.
The invention is directed to a iiuid separating means for automatically and effectively purging gas bubbles from the coolant. The iiuid Separating means, furthermore, incorporate a reservoir for surplus coolant as well as a place for the entrained gases to collect and separate from coolant. The invention may be used between the internal combustion engine and the radiator inlet, or between the radiator outlet and the internal combustion engine.
In the preferred embodiment a venturi section is provided in the top of the liuid separating means. An opening is provided in the venturi section downstream of the most restricted part of the venturi which communicates with a liquid containing reservoir.
Another embodiment of the invention provides for the upwardly facing opening to be located in the top of a conduit which does not have a venturi section.
An object of this invention therefore is to provide an eiiective fluid separating means.
Another object of this invention is to provide a means for automatically deaerating a cooling system.
Still another object of this invention is to provide fluid separating means which has means for separating gas bubbles from a flowing liquid combined with a reservoir of liquid, and means for filling said reservoir.
Still another object is to provide a iiuid separating means in combination with a reservoir of liquid which is simple in construction, easy to manufacture, dependable in operation and relatively low in cost.
Gther objects and advantages of this invention will become more apparent when considered in connection with lthe accompanying drawings, wherein: v
FIGURE 1 is a fragmentary schematic side elevational view of a cooling system incorporating an embodiment of this invention between the mechanism to be cooled and the inlet of the radiator, and
Mice
FIGURE 2 is a sectional view taken on the plane indicated as 2 2 of FlGURE l, and
FGURE 3 is a cross sectional view of an alternate embodiment of the huid separating means shown in Elf- URE 1, and
FIGURE 4 is a fragmentary schematic side elevational View of another embodiment of this invention in which the iiuid separating means is located between the radiator outlet and the inlet of the mechanism to be cooled, and
FIGURE 5 is an alternate construction of the fluid separating means used in FGURE 4.
Referring now to the drawings and in particular FG- URES 1 and 2, a radiator is indicated generally at 19 having an inlet 11 and an outiet 12. Outlet 12 is adapted to be connected by a conduit 13 shown in part to the Water pump inlet, for example, of an internal combustion engine.
A combined fluid separator and liquid containing reservoir and surge tank is shown at 14 and includes a kconduit 16 having an inlet 17 and an outlet 1S. inlet 17 is connected to conduit 19 shown in part, which is adapted to be connected to the water pump outlet of an internal combustion engine. Outlet 13 is connected by conduit 21 to the radiator inlet 11.
The fluid separating means is provided in the conduit 16. A venturi section 22 is provided in the top portion of conduit 16 intermediate of the inlet 17 and outlet 18. An upwardly facing opening 23 is located in the venturi section 22 and extends transversely across the conduit 15 so that itcovers a distance which is substantially equal to the widest portion of the conduit 16 at the site of the opening. This insures that `all of the liquid indicated at 27 flowing through conduit 1d will pass under the upwardly facing opening 23. The upwardly facing opening 23 is located at a location downstream from the most restricted portion of the venturi 22.
A combined liquid containing reservoir and surge tank 24 is integrally connected to the top of the conduit 16 so that the upwardly facing opening 23 communicates with the inside of the combined liquid containing reservoir and surge tank 24. A filler cap 26 is located in the top of the combined liquid containing reservoir and surge tank 24 for the purpose of filling the system with coolant. The combined liquid containing reservoir and surge tank 24 extends upwardly a distance suiiicient to make it the highest part of the cooling system.
In the operation of the device, the liquid 27 containing entrained gas or air bubbles 28 is pumped downstream from the water pump outlet of the internal cornbustion engine through conduit 19, inlet 17 and into the conduit 15. Once inside conduit 15 it comes in contact with the venturi section 22. All of this time gas bubbles 28 having a density less than the liquid 27 will be rising in the liquid 27. The venturi section 22 permits an accumulation and combining of a number of the gas bubbles 28 adjacent to the surface of the venturi section 22. The gas bubbles 28 will quickly rise through the upwardly facing opening 23 as the liquid 27 flows past the upwardly facing opening 23. Gas bubbles 28 continue to rise and separate gravitationally from the quiescent liquid in the combined liquid containing reservoir and surge tank 24 until they are expelled into the air space above the liquid in the combined liquid containing reservoir and surge tank 24.
Referring now to FIGURE 3, an alternate conduit 29 is provided which has an inlet 117 and an outlet 118 connected to conduits 19 and 21. Conduit 29, however, does not have the venturi section. It does, however, have the upwardly facing opening 123 in the top of the conduit 29 which communicates in the same manner with the liquid 27 in the combined liquid containing reservoir and surge 3 tank 124. In this embodiment the gas bubbles 2S simply rise to the top of the conduit 29 and when reachnig the opening 123 separate themselves from the liquid in the conduit 29 and are received in the combined liquid containing reservoir andfsurge tank 124.
Referring now to FIGURE 4, a combined fluid separator and liquid containing reservoir conduit is indicated at 3i). The fluid separating means is provided in conduit 31. Conduit 31 is located between kthe .conduit 13 connected to the outlet 12 of the radiator 10 and the conduit 32 shown in part. Conduit 32 is connected to the water pump inlet of the internal combustion engine.
Conduit 31 is also provided with an inlet 33 and an outlet 34. Conduit 31 may be formed with a box-like cross section with the top portion of the conduit 31 including a venturi section v36. VAn upwardly facing opening 37 is also provided in the venturi section 36 downstream of the most restricted portion of the venturi section 35. Thus, opening 37 is positioned in a portion of conduit 31 where the cross sectional area of conduit 31 varies directly with the distance from the most restricted portion of the conduit.
A liquid containing reservoir conduit 38 is secured to the top of the venturi section 36 so that the upwardlyV facing opening 37 communicates with the interior of the liquid containing reservoir conduit 3S.y The liquid containing reservoir conduit 38 may have its axis substantially perpendicular to the axis of the conduit 31. The liquid containing reservoir conduit 38 may be arranged however at any convenient vertical anglerto conduit 31 as long as it rises higher than the other portions of the cooling system, and furthermore that the gas bubbles 28 be permitted to rise to the surface of liquid 27. Aller cap 39 isdisposed on top of the liquid containing reservoir conduit 3S so that the liquid 27 may be added as needed by the system. Liquid containing reservoir conduit 38 also acts as an expansion chamber for the liquid 27. The operation of this embodiment is similar to the embodiment of FIGURES 1 and 2.
FIGURE discloses an alternate'embodiment to the fluid separating means shown .in FIGURE 4. 1n this em-` bodiment the conduit indicated at 41 has an inlet 133, and outlet 134 and a substantially constant cross section. Conduit 41 does not have a venturi section. Gas bubbles 2S simply rise gravitationally to the top of the conduit 41 and when reaching the upwardly facing opening 137 pass into the connes of the quiescent liquid 27 of the liquid containing reservoir conduit 138, This embodiment is similar in operation to the embodiment of FIGURE 3.
The aforementioned described cooling systems are automatically self-purging of gas bubbles as long as there is a full liquid flow through any of the described conduits 16, 29, 31 or 41. A liquid expansion chamber as well as a reservoir of coolant also is provided. The liquid coolant level may drop substantially without detriment to the cooling system operation as long as it does not drop below the level of the corresponding upwardly facing opening 23 123, 37 or 137.
The invention is adaptable to many and different cooling systems used with many and different forms of mechanisms. 1t will be understood therefore that the invention is not to be limited to the exact construction shown and described but that various changes and modiiications may be made without departing from the spirit and scope of the invention as dened in thek appended claims.Y We claim:
1. A device for the separationV of a gas from a flowing liquid in which the gas is relatively insoluble compriisng a reservoir means and a conduit having an inlet means,
an outlet means, a portion of reduced cross sectional.
area between said inlet means and said outlet means, and an upwardly facing opening located between the most restricted part of said conduit and said outlet means and positioned .in .a portion of said conduitwhere the cross sectional area of said conduit varies directly with the distance from said most restricted part, said reservoir means communicating with said conduit through said upwardly facing opening, having a portionthereof situated above said conduit and said upwardly facing opening and being positioned in relation to said conduitto admit 0f gravitational separation of a gas into said portion from a liquid in said conduit.
2. 1A device for the separation of a gas from a flowing liquid in which the gas is relatively insoluble comprising a reservoir means and a conduit having an inlet means, an outlet means, a portion of reduced cross sectional area between said inlet means and said outlet means, and an upwardly facing opening located between the most restricted part of said conduit and said outlet means and positioned in a portion of said conduit where the cross sectional area of said conduit varies directly with the Adistance, from said most restricted part, said reservoir means being integrally connected to the topV of said conduit and communicating with said conduit through said upwardly facing opening so as to admit vof uninterrupted ascending flow Vof gas from said conduitthrough said opening into said reservoir.
3. A device for the separation of a gas from a owing liquid in which the gas is relatively insoluble comprising areservoir means and a conduit having an inlet means, an outlet means, a portion of reduced cross sectional area between said inlet means and and said outlet means, and an upwardly facing opening located between the most restricted part of said conduit and said outlet means and positioned ina portion of said conduit where the cross sectional area of said conduit varies directly with the distance from said most restricted part, said reservoir means communicating with said conduit through said upwardly facing opening and being integrally yconnected to the top of said conduit in a manner such that the resulting connection encompasses said upwardly facing opening and admits of `uninterrupted ascending ow of gas from said conduit through said opening into said reservoir.
4. A device for the separation of a gas from a flowing liquid in which the gas is relatively insoluble comprising a reservoir means and a conduit having an inlet means, an outlet means, and an upwardly facing openinglocated between the most restricted part of said conduit and said `outlet means and positioned in a portion of said conduit where the cross sectional area of said conduit varies directly with the distance from said most restricted part and the downstream extremity of said opening is above the upstream extremity of the same, said reservoirl means communicating with said conduit through said upwardly facing opening, having at least a portion thereof situated above said conduit and said upwardly facing opening and being positioned to .admit of gravitational separation of a gas into said portion from a liquid in said conduit, the area encompassed by said opening being small compared to the average cross sectional area of said reservoir means.
5. A device for the separation of a gas fromV a owing liquid in which the gas is. relatively insoluble comprising a reservoir means and a conduit having a irst end section of predetermined cross sectional area, anrintermediate section of lesser cross sectional area, ya second end section of greater cross sectional area than said intermediate section having a tapered portion adjacent said intermediate section the cross sectional area of which varies directly with the distance from said intermediate section, inlet means associated with said irst end section adapted 'to admit liquid to flow into said conduit, outlet means associated with said second end section adapted to admit liquid to flow from said conduit, and an upwardly facing opening positioned within said tapered portion, said reservoir means communicating with said conduit through said upwadly facing opening, having a portion thereof situated above said conduit and said upwardly facing opening and being positioned to admit of gravitational separation of a gas into said portion from a liquid in said conduit.
6. A device for the separation of a gas from a ilowing liquid in which the gas is` relatively insoluble comprising a conduit and a reservoir above and connected to the top of said conduit, said conduit having an inlet and an outlet and a venturi section intermediate of said inlet and outlet, said venturi section being provided with at least one upwardly facing opening which communicates with said reservoir and is located downstream from the most restricted portion thereof, said reservoir being positioned in relation to said conduit so as to admit of uninterrupted ascending ilow of gas from said conduit through said opening into said reservoir.
7. A device for the separation of air bubbles from a flowing stream of water comprising a conduit and a combined reservoir and surge tank connected to the top of said conduit, said conduit having an inlet and an outlet and a venturi section intermediate of said inlet and outlet, said venturi section being provided with at least one upwardly facing opening which communicates with said reservoir and is located downstream from the most restricted portion thereof, said opening extending transversely across said conduit for a major portion of the distance across the widest portion of said conduit at the position of said opening, said reservoir being positioned in relation to said conduit so as to admit of uninterrupted ascending flow of air from said conduit through said opening into said reservolr.
8. A device for the separation of air bubbles from a owing stream of water comprising a conduit and a cornbined reservoir and surge tank directly above and integrally connected to the top of said conduit, said conduit having an inlet and an outlet and a venturi section intermediate of said inlet and outlet, said venturi section being provided with at least one upwardly facing opening which communicates with said reservoir and is located downstream from the most restricted portion thereof, said opening extending transversely across said conduit for a distance substantially equal to the widest portion of said conduit at the position of said opening, said reservoir being positioned in relation to said conduit so as to admit of uninterrupted ascending flow of air from said conduit through said opening into said reservoir.
9. In a cooling system the combination of a radiator inlet; a conduit having outlet means connected to and communicating with said radiator inlet, an inlet means adapted to admit a flow of liquid and gas into said conduit, a section of reduced cross sectional area between said inlet means and said outlet means and an upwardly facing opening between the most restricted part of said conduit and said outlet means and positioned in a portion of said conduit where the cross sectional area of said conduit varies directly with the distance from said most restricted part so that the downstream extremity of said opening is above the upstream extremity of the same; and a combined reservoir and surge tank communicating with said conduit through said upwardly facing opening and positioned in relation to said conduit so as to admit of uninterrupted ascending ow of gas from said conduit through said opening into said reservoir, said combined liquid containing reservoir and surge tank having a removable filler cap remote from the upwardly facing opening.
10. In a cooling system the combination of a radiator outlet; a conduit having an inlet means adapted to admit a tlow of liquid and gas into said conduit and communicating with said radiator outlet, an outlet means, a section of reduced cross sectional area between said inlet means and said outlet means and an upwardly facing opening between the most restricted part of said conduit and said outlet means and positioned in a portion of said conduit where the cross sectional area of said conduit varies directly with the distance from said most restricted part so that the downstream extremity of said opening is above the upstream extremity of the same; and a combined reservoir and surge tank communicating with said conduit through said upwardly facing opening and positioned in relation to said conduit so as to admit of uninterrupted ascending i'low of gas from said conduit through said opening into said reservoir.
References Cited by the Examiner UNITED STATES PATENTS 580,169 4/97 Washington 55-193 2,200,620 5/40 Findley. 2,231,501 2/41 Jepertinger. 2,539,549 1/51 Rayburn 55--190 X 2,628,079 2/53 Haynes et al. 2,713,973 7/55 Hencken et al. 55-199 X 2,765,045 10/56 Meyers 55--174 X 3,004,626 10/61 Brinen 55-199 3,028,716 4/62 Sanderson et al. 55-203 3,077,927 2/ 63 White et a1 165-72 REUBEN FRIEDMAN, Primary Examiner.
HARRY B. THORNTON, HERBERT L. MARTIN,
Examiners.

Claims (1)

1. A DEVICE FOR THE SEPARATION OF A GAS FROM A FLOWING LIQUID IN WHICH THE GAS IS RELATIVELY INSOLUBLE COMPRISING A RESERVOIR MEANS AND A CONDUIT HAVING AN INLET MEANS, AN OUTLET MEANS, A PORTION OF REDUCED CROSS SECTIONAL AREA BETWEEN SAID INLET MEANS AND SAID OUTLET MEANS, AND AN UPWARDLY FACING OPENING LOCATED BETWEEN THE MOST RESTRICTED PART OF SAID CONDUIT AND SAID OUTLET MEANS AND POSITIONED IN A PORTION OF SAID CONDUIT WHERE THE CROSS SECTIONAL AREA OF SAID CONDUIT VARIES DIRECTLY WITH THE DISTANCE FROM SAID MOST RESTRICTED PART, SAID RESERVOIR MEANS COMMUNICATING WITH SAID CONDUIT THROUGH SAID UPWARDLY FACING OPENING, HAVING A PORTION THEREOF SITUATED ABOVE SAID CONDUIT AND SAID UPWARDLY FACING OPENING AND BEING POSITIONED IN RELATION TO SAID CONDUIT TO ADMIT OF GRAVITATIONAL SEPARATION OF A GAS INTO SAID PORTION FROM A LIQUID IN SAID CONDUIT.
US96962A 1961-03-20 1961-03-20 Fluid separator Expired - Lifetime US3195294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US96962A US3195294A (en) 1961-03-20 1961-03-20 Fluid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US96962A US3195294A (en) 1961-03-20 1961-03-20 Fluid separator

Publications (1)

Publication Number Publication Date
US3195294A true US3195294A (en) 1965-07-20

Family

ID=22259969

Family Applications (1)

Application Number Title Priority Date Filing Date
US96962A Expired - Lifetime US3195294A (en) 1961-03-20 1961-03-20 Fluid separator

Country Status (1)

Country Link
US (1) US3195294A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525196A (en) * 1967-09-13 1970-08-25 Schulz Joachim Device and process for gas removal from liquids
DE2810583A1 (en) * 1978-03-11 1979-09-20 Spiro Research Bv METHOD AND DEVICE FOR DEGASSING RECIRCULATION SYSTEMS FOR LIQUIDS
US4247309A (en) * 1976-03-11 1981-01-27 M.A.N. Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Process and apparatus for degasifying a liquid
US4276059A (en) * 1979-05-23 1981-06-30 Elast-O-Cor Products & Engineering Limited Deaerator for pulp stock
US4471907A (en) * 1979-06-01 1984-09-18 Amtrol Inc. Venturi pressurizer for incompressible-liquid circulating systems
EP0250734A2 (en) * 1986-06-28 1988-01-07 MAN Nutzfahrzeuge Aktiengesellschaft Cooling-system in a liquid cooled vehicle-combustion engine
ES2081234A2 (en) * 1992-05-07 1996-02-16 Radiadores Ordonez S A Improvements to motor-vehicle radiators
DE19754797A1 (en) * 1997-12-10 1999-06-17 Behr Gmbh & Co Gas vent for coolant circuit of internal combustion engine
DE102005004518A1 (en) * 2005-01-31 2006-10-12 Behr Gmbh & Co. Kg Expansion tank for a coolant for a cooling circuit, in particular for a low temperature circuit for indirect charge air cooling for an internal combustion engine, cooling circuit, in particular low temperature circuit for indirect charge air cooling for an internal combustion engine, method for cooling a hot component, in particular an internal combustion engine
US20080110344A1 (en) * 2006-11-13 2008-05-15 Ise Corporation Deaeration Device and Method of Use
US20110259545A1 (en) * 2009-07-10 2011-10-27 Toyota Jidosha Kabushiki Kaisha Coolant circulation circuit
DE102006014400B4 (en) * 2006-02-02 2012-01-26 Audi Ag Expansion tank for a cooling system and cooling arrangement
EP2426474A1 (en) * 2010-09-07 2012-03-07 Technisches Zentrum Entwicklungs- & Handelsgesellschaft mbH Air extraction device for water circulation channels
CN102452310A (en) * 2010-10-19 2012-05-16 通用汽车环球科技运作有限责任公司 Cooling systems with deaeration reservoirs
US20130220719A1 (en) * 2011-02-23 2013-08-29 Suzuki Motor Corporation Cooling Device For Hybrid Vehicles
JP2015059482A (en) * 2013-09-18 2015-03-30 トヨタ自動車株式会社 Vehicular tank
JP2017160821A (en) * 2016-03-08 2017-09-14 マツダ株式会社 Cooling device of engine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US580169A (en) * 1897-04-06 Aie separator for hydraulic systems
US2200620A (en) * 1938-05-12 1940-05-14 Eaton Mfg Co Heat exchanger
US2231501A (en) * 1938-01-29 1941-02-11 Modine Mfg Co Air separator for fluid circulating systems
US2539549A (en) * 1947-01-08 1951-01-30 Western Electric Co Impregnating apparatus
US2628079A (en) * 1950-06-22 1953-02-10 Ford Motor Co Radiator construction
US2713973A (en) * 1951-06-20 1955-07-26 Taco Heaters Inc Heating systems
US2765045A (en) * 1955-03-03 1956-10-02 Nat Tank Co Methods and means for separating oil and gas
US3004626A (en) * 1958-05-14 1961-10-17 Young Radiator Co Deaerating radiator
US3028716A (en) * 1957-02-12 1962-04-10 Ford Motor Co Fluid separator
US3077927A (en) * 1960-05-02 1963-02-19 Ford Motor Co Cooling system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US580169A (en) * 1897-04-06 Aie separator for hydraulic systems
US2231501A (en) * 1938-01-29 1941-02-11 Modine Mfg Co Air separator for fluid circulating systems
US2200620A (en) * 1938-05-12 1940-05-14 Eaton Mfg Co Heat exchanger
US2539549A (en) * 1947-01-08 1951-01-30 Western Electric Co Impregnating apparatus
US2628079A (en) * 1950-06-22 1953-02-10 Ford Motor Co Radiator construction
US2713973A (en) * 1951-06-20 1955-07-26 Taco Heaters Inc Heating systems
US2765045A (en) * 1955-03-03 1956-10-02 Nat Tank Co Methods and means for separating oil and gas
US3028716A (en) * 1957-02-12 1962-04-10 Ford Motor Co Fluid separator
US3004626A (en) * 1958-05-14 1961-10-17 Young Radiator Co Deaerating radiator
US3077927A (en) * 1960-05-02 1963-02-19 Ford Motor Co Cooling system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525196A (en) * 1967-09-13 1970-08-25 Schulz Joachim Device and process for gas removal from liquids
US4247309A (en) * 1976-03-11 1981-01-27 M.A.N. Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Process and apparatus for degasifying a liquid
DE2810583A1 (en) * 1978-03-11 1979-09-20 Spiro Research Bv METHOD AND DEVICE FOR DEGASSING RECIRCULATION SYSTEMS FOR LIQUIDS
US4456172A (en) * 1978-03-11 1984-06-26 Spiro Research B.V. Method of and apparatus for the degasification of circulation systems for liquids
US4276059A (en) * 1979-05-23 1981-06-30 Elast-O-Cor Products & Engineering Limited Deaerator for pulp stock
US4471907A (en) * 1979-06-01 1984-09-18 Amtrol Inc. Venturi pressurizer for incompressible-liquid circulating systems
EP0250734A2 (en) * 1986-06-28 1988-01-07 MAN Nutzfahrzeuge Aktiengesellschaft Cooling-system in a liquid cooled vehicle-combustion engine
US4759499A (en) * 1986-06-28 1988-07-26 Man Nutzfahrzeuge Gmbh Motor vehicle engine cooling system
EP0250734A3 (en) * 1986-06-28 1989-01-04 M A N Nutzfahrzeuge Gmbh De-aeration for water-cooled engines
ES2081234A2 (en) * 1992-05-07 1996-02-16 Radiadores Ordonez S A Improvements to motor-vehicle radiators
DE19754797A1 (en) * 1997-12-10 1999-06-17 Behr Gmbh & Co Gas vent for coolant circuit of internal combustion engine
DE102005004518A1 (en) * 2005-01-31 2006-10-12 Behr Gmbh & Co. Kg Expansion tank for a coolant for a cooling circuit, in particular for a low temperature circuit for indirect charge air cooling for an internal combustion engine, cooling circuit, in particular low temperature circuit for indirect charge air cooling for an internal combustion engine, method for cooling a hot component, in particular an internal combustion engine
US7631619B2 (en) 2005-01-31 2009-12-15 Behr Gmbh & Co. Kg Cooling agent compensation tank for a cooling circuit
US20080190385A1 (en) * 2005-01-31 2008-08-14 Behr Gmbh & Co. Kg Cooling Agent Compensation Tank For A Cooling Circuit
DE102006014400B4 (en) * 2006-02-02 2012-01-26 Audi Ag Expansion tank for a cooling system and cooling arrangement
US20080110344A1 (en) * 2006-11-13 2008-05-15 Ise Corporation Deaeration Device and Method of Use
US7531026B2 (en) * 2006-11-13 2009-05-12 Ise Corporation Deaeration device and method of use
US20110259545A1 (en) * 2009-07-10 2011-10-27 Toyota Jidosha Kabushiki Kaisha Coolant circulation circuit
EP2426474A1 (en) * 2010-09-07 2012-03-07 Technisches Zentrum Entwicklungs- & Handelsgesellschaft mbH Air extraction device for water circulation channels
CN102452310A (en) * 2010-10-19 2012-05-16 通用汽车环球科技运作有限责任公司 Cooling systems with deaeration reservoirs
US8966917B2 (en) 2010-10-19 2015-03-03 GM Global Technology Operations LLC Cooling systems with deaeration reservoirs
CN102452310B (en) * 2010-10-19 2016-04-13 通用汽车环球科技运作有限责任公司 There is the cooling system of degassing container
US20130220719A1 (en) * 2011-02-23 2013-08-29 Suzuki Motor Corporation Cooling Device For Hybrid Vehicles
US9016415B2 (en) * 2011-02-23 2015-04-28 Suzuki Motor Corporation Cooling device for hybrid vehicle
JP2015059482A (en) * 2013-09-18 2015-03-30 トヨタ自動車株式会社 Vehicular tank
JP2017160821A (en) * 2016-03-08 2017-09-14 マツダ株式会社 Cooling device of engine

Similar Documents

Publication Publication Date Title
US3195294A (en) Fluid separator
EP0122105B1 (en) Fuel flow measuring system for an internal combustion engine powered vehicle
US3368681A (en) Water discharge device
US5012768A (en) Cooling system
US3729273A (en) In-tank fuel pump reservoir
KR950031184A (en) Filter for separating pests from combustion gases
US2713422A (en) Combined oil and water conditioner
US2782008A (en) Heat exchangers for fluids
US3028716A (en) Fluid separator
US2771770A (en) Viscometer system
US2680538A (en) Gasoline service station pump with gas and water separator
US4747446A (en) Water box and expansion chamber device for a heat exchanger
US83430A (en) Improvement in condensers
GB1339825A (en) Liquid supply systems
US2116592A (en) Device for metering liquids
US3316692A (en) Liquid storage tank
US1560350A (en) Liquid-level indicator
US2048679A (en) Lubricating installation
US2672131A (en) Cooling system
US1202977A (en) Circulation-indicating device for liquid-cooling systems of engines.
US1898951A (en) Fluid metering system
US2191440A (en) Water clarifier for automobiles
US1927317A (en) Overflow tank for radiators
US4389897A (en) Impeller flow-meter pulsation damping
US2500781A (en) Lubricant purification system and apparatus