US3192351A - Electrical contact disc - Google Patents

Electrical contact disc Download PDF

Info

Publication number
US3192351A
US3192351A US108518A US10851861A US3192351A US 3192351 A US3192351 A US 3192351A US 108518 A US108518 A US 108518A US 10851861 A US10851861 A US 10851861A US 3192351 A US3192351 A US 3192351A
Authority
US
United States
Prior art keywords
rod
wheel
cut
cutting
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US108518A
Inventor
John R Lush
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fansteel Inc
Original Assignee
Fansteel Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fansteel Inc filed Critical Fansteel Inc
Priority to US108518A priority Critical patent/US3192351A/en
Priority to FR896619A priority patent/FR1324552A/en
Priority to GB17554/62A priority patent/GB952707A/en
Priority to US216081A priority patent/US3248780A/en
Application granted granted Critical
Publication of US3192351A publication Critical patent/US3192351A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D45/00Sawing machines or sawing devices with circular saw blades or with friction saw discs
    • B23D45/003Sawing machines or sawing devices with circular saw blades or with friction saw discs for particular purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D45/00Sawing machines or sawing devices with circular saw blades or with friction saw discs
    • B23D45/12Sawing machines or sawing devices with circular saw blades or with friction saw discs with a circular saw blade for cutting tubes
    • B23D45/124Sawing machines or sawing devices with circular saw blades or with friction saw discs with a circular saw blade for cutting tubes the workpieces turning about their longitudinal axis during the cutting operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D47/00Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts
    • B23D47/08Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts of devices for bringing the circular saw blade to the workpiece or removing same therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • B24B27/0658Grinders for cutting-off for cutting workpieces while they are turning about their longitudinal axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts

Definitions

  • Claim. (Cl. 200-166) tacting surface which is desired to provide a low resistance junction between the contact points. This configuration insures smoother circuit breaking by reducing arcing.
  • a method whereby electrical contact discs having the desired surface properties can be manufactured at a relatively low cost. This is accomplished by introducing a rod of electrical contact material into an area where it is engaged by a cutting device such as a rotating wheel or oscillating saw blade that enters the rod at an angle of less than 90 relative to the rod axis and is moved in its own plane.
  • a cutting device such as a rotating wheel or oscillating saw blade that enters the rod at an angle of less than 90 relative to the rod axis and is moved in its own plane.
  • the cutting device is maintained at a fixed angle after it enters the rod. If a disc having a spherical surface is desired, the angle of the cutting device is continuously varied between the angle at which it enters the rod and 90.
  • the conical discs then may be introduced into a tumbling device or other similar apparatus to form the cone face into a surface having a substantially spherical radius.
  • the novel articles which can be produced by this method include an electrical contact which may be conical at both ends or one which has a contacting surface at one or both ends that is generally conical in shape but which has a round apex, rectilinear medial portion, and a rounded junction between the conical face and disc body portion.
  • FIGURE 1 is a plan view of an apparatus which can be used for producing contact discs
  • FIGURE 2 is a series of enlarged and exaggerated views showing the cutting action which takes place in forming a contact disc having a conical contact surface when the axis of the wheel and the axis of the rod are in the same plane;
  • FIGURE 3 is a section taken along lines 3-3 of FIGURE 2;-
  • FIGURE 4 illustrates a finished generally conical contact disc
  • FIGURE 5 is a view showing the cutting action which takes place in forming a contact disc having a spherical contact surface
  • FIGURES 6a and 6b are two views showing the cutting action that takes place in forming a contact disc having conical surfaces at both ends;
  • FIGURE 7 shows a finished disc having a conical front and back surface.
  • FIGURE 1 The apparatus shown in FIGURE 1 is illustrated in schematic form and is but intended to be exemplary of apparatus that could be used to cut conical and spherical discs from a rod of electrical contact material.
  • a rod supporting, rotating and feeding assembly including a rod spindle housing 2 through which rod 3 3,192,351 Patented June 29, 1965 "ice extends.
  • the rod 3 is held in place in the spindle housing by a collet 4.
  • the rod 3 and collet 4 are rotated by a rod spindle drive motor 6 through pulley 7, belt 8, and pulley 9.
  • An air motor (not shown) or other equivalent device may be used to move rod 3 axially into a cutting area where it is cut into discs.
  • the rod 3 is biased against a rod stop 12 mounted in a bracket 13.
  • the rod 3 is cut into discs by a cut-off wheel 14.
  • the wheel 14 is a thin fiber or steel disc which cuts the rod into discs by moving in the direction of the plane of the disc. The axes of the wheel and rod are in the same plane.
  • the wheel 14 is power-driven by a motorized spindle 17 supported by spindle housing 18.
  • the housing 18 is slidably mounted on a table 16 through a tongue 22 that moves in groove 23 cut into a plate 24 secured to table 16.
  • the table 16 is pivotally mounted relative to the base 1 at pivot 15, the axis of which intersects the axis of rod 3 at right angles. As will be seen hereinafter, this relationship is essential when cutting discs having a spherical surface.
  • the table 16 may be rotated about pivot 15 by a hydraulic motor 26 that is secured to base 1.
  • the motor 2d may be continuously operated to swing table 16 about pivot 15 or may be utilized to adjust table 16 to a fixed angle relative to base 1.
  • the operation of motor 26 will depend on whether it is desired to cut discs having conical surfaces or those having spherical surfaces. The operation of the various components described above will be discussed in detail when considering the various methods covered by this application.
  • the cutoff wheel 14 When it is desired to cut conical discs, the cutoff wheel 14 is disposed at an angle of less than relative to the axis of rod 3 by hydraulic motor 26. The hydraulic motor is then locked in place to retain table 16 in a fixed position. As shown in FIG. 2, the cut-off wheel 14 cuts a conical surface on the front end of one disc and a slightly concave surface on the back end of the disc being cut off. The concavity results from the angular relationship between the cut-off wheel and rod 3 and the diameter of rod 3 (see FIG. 3).
  • FIG. 7 If it is desired to cut discs 30 having conical .contacting surfaces 30a, 30]), at both ends, as shown in FIG. 7, the axis of the cut-off wheel is displaced one-half the diameter of the cut-off wheel in a plane perpendicular to the plane containing the axes of the rod and cut-off wheel. Allowance should be made, of course, for necessary clearances.
  • FIGS. 6a and 6b The relationship between the cutting wheel and rod when cutting such double-conical discs is shown in FIGS. 6a and 6b. Briefly, due to the displacement of the wheel and rod axes, the portion of the wheel to the right of the center, as shown in FIG. 6b, is cutting a conical surface on the back face of the disc before the disc is severed from the rod. A disc having a part conical and part concave back surface can be obtained by displacing the axis of the cut-off wheel less than one-half the diameter of the wheel.
  • the apparatus disclosed here-in can also be utilized to cut discs having a spherical radius from an elongated rod of contact material. This is accomplished by introducing the cut-off wheel to the rod at an angle of less than 90 and continuously varying the angular relationship between the rod and the cut-off wheel until it reaches 90.
  • the varying relationships between the cutting wheel 14 and rod 3 are shown in FIG. 5. This is accomplished by operating motor 26 to oscillate table 16 about pivot 15.
  • the subject apparatus could provided with a brake or other mechanism for preventtng axial movement of the rodwhile the cutting wheel is being withdrawn from the rod. This serves to minimize the wear imposed on the cutting wheel 14 and thus lengthen its useful life.
  • the cutting device is moved in the plane of the cutter at an acute angle to the axis of the rodto cut the rod along substantially one-half a chordal length at the depthof cut.
  • the cutting takes place along an are between a point on the wheel which is on a line connecting the axes of the rod and wheel at the depth of cut, and a point at the intersection of the rod with the Wheel.
  • the curvature of the arc cut by the wheel is determined by the relationship between the diameter of the wheeland the diameter of the rod (see FIGURE 3). As the wheel increases in diameter, the cut more closely approaches one-half a chord. When a straight-edge a point at the intersection of the rod and cutting device.
  • a spherical surface is essentially made up of a number of cuts, each of which, except the last, are made in a plane disposed at an acute angle to the axis of the rod.
  • the plane in which the cut takes place varies with each cut to form the essentially spherical surface.
  • the last cut which severs the disc from the rod, is made in a plane normal to the axis of the rod.
  • the cutting device when cutting either conical or spherical surface, the cutting device enters the rod in a plane disposed at an acute angle to the rod and throughout all of its cutting travel is cutting along substantially one-half a chord of the rod at the depth of cut.
  • the contacts are placed into a tumbling device.
  • The'amount of tumbling to which the contact disc is subjected determines the final configurat-ion of the surface of the disc.
  • the discs are generally tumbled until the contacting surface is one that is generally conical in shape, but which has a rounded apex 28a, an intermediate rectilinear portion 28b, and a rounded juncture 28c between the generally conical face and the disc body portion 29 (see FIG. 4).
  • the discs could be formed until the contact surface has a substantially spherical radius. The discs so formed are readily usable where a low re' sistance junction between contact points is required.
  • contact discs can be produced with contacting surfaces that can be used in electrical apparatus without requiring further machining.
  • the apparatus illustrated is intended to be merely representative of various machines that could be used to cut discs having conical or spherical surfaces. It is obvious that, if desired, the power-driven cut-01f wheel could be fixed in place and the rod moved into engagement therewith instead of as illustrated in the drawing. Also, the wheel could be stationary and only the rod rotated. Furthermore, the driving means for the rotating disc and the arrangement of-thepowerdriven spindle are merely exemplary since other arrangements could be employed.
  • a generally disc-shaped electrical contact, element comprising a generally cylindrical body portion, a' front contact face for .making electrical contact to close an electrical circuit, said front face being of generally conical configuration with the apex of the cone and the juncture of the body portion of the disc and the front face being rounded and the surface of the cone intermediate the apex and the generally cylindrical body portion being rectilinear and merging at the marginal portions thereof into the, adjacent margins of the. aforesaid rounded portions.

Description

June 29, 1965 J. R. LUSH ELECTRICAL CONTACT DISC Filed May 8, 1961 INVENTOR. JOHN R. LUSH BY xflrffla'clexpraufriyafilamifi;
men!
United States Patent 3,192,351 ELECTRICAL CONTACT DISC M John R. Lush, Zion, Ill., assignor to Fansteel Metallurgical Corporation, a corporation of New York Filed May 8, 1961, Ser. No. 108,518
1 Claim. (Cl. 200-166) tacting surface which is desired to provide a low resistance junction between the contact points. This configuration insures smoother circuit breaking by reducing arcing.
In accordance with the present invention, there is provided a method whereby electrical contact discs having the desired surface properties can be manufactured at a relatively low cost. This is accomplished by introducing a rod of electrical contact material into an area where it is engaged by a cutting device such as a rotating wheel or oscillating saw blade that enters the rod at an angle of less than 90 relative to the rod axis and is moved in its own plane.
In order to cut a contact disc having a conical surface,
the cutting device is maintained at a fixed angle after it enters the rod. If a disc having a spherical surface is desired, the angle of the cutting device is continuously varied between the angle at which it enters the rod and 90.
- The conical discs then may be introduced into a tumbling device or other similar apparatus to form the cone face into a surface having a substantially spherical radius. The novel articles which can be produced by this method include an electrical contact which may be conical at both ends or one which has a contacting surface at one or both ends that is generally conical in shape but which has a round apex, rectilinear medial portion, and a rounded junction between the conical face and disc body portion.
Apparatus that is capable of performing these methods are described in the following specification and illustrated in the accompanying drawings in which:
FIGURE 1 is a plan view of an apparatus which can be used for producing contact discs;
' FIGURE 2 is a series of enlarged and exaggerated views showing the cutting action which takes place in forming a contact disc having a conical contact surface when the axis of the wheel and the axis of the rod are in the same plane;
FIGURE 3 is a section taken along lines 3-3 of FIGURE 2;-
FIGURE 4 illustrates a finished generally conical contact disc;
FIGURE 5 is a view showing the cutting action which takes place in forming a contact disc having a spherical contact surface;
FIGURES 6a and 6b are two views showing the cutting action that takes place in forming a contact disc having conical surfaces at both ends; and
FIGURE 7 shows a finished disc having a conical front and back surface.
The apparatus shown in FIGURE 1 is illustrated in schematic form and is but intended to be exemplary of apparatus that could be used to cut conical and spherical discs from a rod of electrical contact material. As disclosed therein, there is shown mounted on a machine base 1, a rod supporting, rotating and feeding assembly including a rod spindle housing 2 through which rod 3 3,192,351 Patented June 29, 1965 "ice extends. The rod 3 is held in place in the spindle housing by a collet 4. The rod 3 and collet 4 are rotated by a rod spindle drive motor 6 through pulley 7, belt 8, and pulley 9. An air motor (not shown) or other equivalent device may be used to move rod 3 axially into a cutting area where it is cut into discs. In the disclosed machine, the rod 3 is biased against a rod stop 12 mounted in a bracket 13.
In the illustrated embodiment, the rod 3 is cut into discs by a cut-off wheel 14. The wheel 14 is a thin fiber or steel disc which cuts the rod into discs by moving in the direction of the plane of the disc. The axes of the wheel and rod are in the same plane. The wheel 14 is power-driven by a motorized spindle 17 supported by spindle housing 18. The housing 18 is slidably mounted on a table 16 through a tongue 22 that moves in groove 23 cut into a plate 24 secured to table 16.
The table 16 is pivotally mounted relative to the base 1 at pivot 15, the axis of which intersects the axis of rod 3 at right angles. As will be seen hereinafter, this relationship is essential when cutting discs having a spherical surface. The table 16 may be rotated about pivot 15 by a hydraulic motor 26 that is secured to base 1. The motor 2d may be continuously operated to swing table 16 about pivot 15 or may be utilized to adjust table 16 to a fixed angle relative to base 1. The operation of motor 26 will depend on whether it is desired to cut discs having conical surfaces or those having spherical surfaces. The operation of the various components described above will be discussed in detail when considering the various methods covered by this application.
While it is not disclosed in the schematic view shown in FIG. 1, it is Within the scope of this invention to provide a means for displacing the axis of the cutting wheel in a plane normal to the plane containing the axes of rod 3 and wheel 14 when they are in the position shown in FIG. 1.
When it is desired to cut conical discs, the cutoff wheel 14 is disposed at an angle of less than relative to the axis of rod 3 by hydraulic motor 26. The hydraulic motor is then locked in place to retain table 16 in a fixed position. As shown in FIG. 2, the cut-off wheel 14 cuts a conical surface on the front end of one disc and a slightly concave surface on the back end of the disc being cut off. The concavity results from the angular relationship between the cut-off wheel and rod 3 and the diameter of rod 3 (see FIG. 3).
- If it is desired to cut discs 30 having conical .contacting surfaces 30a, 30]), at both ends, as shown in FIG. 7, the axis of the cut-off wheel is displaced one-half the diameter of the cut-off wheel in a plane perpendicular to the plane containing the axes of the rod and cut-off wheel. Allowance should be made, of course, for necessary clearances. The relationship between the cutting wheel and rod when cutting such double-conical discs is shown in FIGS. 6a and 6b. Briefly, due to the displacement of the wheel and rod axes, the portion of the wheel to the right of the center, as shown in FIG. 6b, is cutting a conical surface on the back face of the disc before the disc is severed from the rod. A disc having a part conical and part concave back surface can be obtained by displacing the axis of the cut-off wheel less than one-half the diameter of the wheel.
The apparatus disclosed here-in can also be utilized to cut discs having a spherical radius from an elongated rod of contact material. This is accomplished by introducing the cut-off wheel to the rod at an angle of less than 90 and continuously varying the angular relationship between the rod and the cut-off wheel until it reaches 90. The varying relationships between the cutting wheel 14 and rod 3 are shown in FIG. 5. This is accomplished by operating motor 26 to oscillate table 16 about pivot 15.
1.9 During this operation, the axes of wheel and rod 3 are located in the same plane. The location of pivot 15 in the same plane and normal to the axis of rod 3 insures that Wheel 14 will be disposed normal to the axis of rod 3 during the final out which severs aspherical disc' from the rod.
While it is not illustrated, the subject apparatus could provided with a brake or other mechanism for prevenitng axial movement of the rodwhile the cutting wheel is being withdrawn from the rod. This serves to minimize the wear imposed on the cutting wheel 14 and thus lengthen its useful life.
The cutting action that takes place when cutting conical or spherical discs with a cutting device, such as a wheel or a cutter having a straight edge, is as follows:
During the cutting of conical surfaces, the cutting device is moved in the plane of the cutter at an acute angle to the axis of the rodto cut the rod along substantially one-half a chordal length at the depthof cut. In the case of a cutting wheel, the cutting takes place along an are between a point on the wheel which is on a line connecting the axes of the rod and wheel at the depth of cut, and a point at the intersection of the rod with the Wheel. The curvature of the arc cut by the wheel is determined by the relationship between the diameter of the wheeland the diameter of the rod (see FIGURE 3). As the wheel increases in diameter, the cut more closely approaches one-half a chord. When a straight-edge a point at the intersection of the rod and cutting device.
It is obvious that only half a chord is out since cutting only takes place during the infeed of the cutting device and on the infeed side of the rod as it rotates with respect to the cutting edge of the cutting device.
The cutting action above described also applies to cutting spherical surfaces, since a spherical surface is essentially made up of a number of cuts, each of which, except the last, are made in a plane disposed at an acute angle to the axis of the rod. The plane in which the cut takes place varies with each cut to form the essentially spherical surface. The last cut, which severs the disc from the rod, is made in a plane normal to the axis of the rod.
In summation, it can be-seen that when cutting either conical or spherical surface, the cutting device enters the rod in a plane disposed at an acute angle to the rod and throughout all of its cutting travel is cutting along substantially one-half a chord of the rod at the depth of cut.
If the use to which the conical discs are put requires that the surfaces of discs 25 or 30 be rounded off, the contacts are placed into a tumbling device. The'amount of tumbling to which the contact disc is subjected determines the final configurat-ion of the surface of the disc. The discs are generally tumbled until the contacting surface is one that is generally conical in shape, but which has a rounded apex 28a, an intermediate rectilinear portion 28b, and a rounded juncture 28c between the generally conical face and the disc body portion 29 (see FIG. 4). However, if desired, the discs could be formed until the contact surface has a substantially spherical radius. The discs so formed are readily usable where a low re' sistance junction between contact points is required.
The details of the'mechanisms which can be employed to accomplish the foregoing operations are not important to an understanding of the present invention. However, it is noted that specific apparatus which can be used to accomplish the methods to which this application is directed is disclosed in two patent applications Ser. No. 108,447, and Ser. No. 108,448, now, respectively, US. Patents Nos. 3,186,133 and 3,174,257, which were filed in the name of William M. Maki and assigned to the assignee of the present invention.
With the disclosed or similar apparatus, contact discs can be produced with contacting surfaces that can be used in electrical apparatus without requiring further machining.
This can be'done with relativelysimple machine tools at a high rate of speed with the result that con tact discs can be produced at alrelatively lowcost compared with those presently being manufactured by forging or grinding.
As previously mentioned, the apparatus illustrated is intended to be merely representative of various machines that could be used to cut discs having conical or spherical surfaces. It is obvious that, if desired, the power-driven cut-01f wheel could be fixed in place and the rod moved into engagement therewith instead of as illustrated in the drawing. Also, the wheel could be stationary and only the rod rotated. Furthermore, the driving means for the rotating disc and the arrangement of-thepowerdriven spindle are merely exemplary since other arrangements could be employed.
Other equivalents will occur to those skilled in the art and it is, of course, intended to cover by the appended claims all suchembodiments as fall within the true spirit and scope of the invention.
I claim:
A generally disc-shaped electrical contact, element comprising a generally cylindrical body portion, a' front contact face for .making electrical contact to close an electrical circuit, said front face being of generally conical configuration with the apex of the cone and the juncture of the body portion of the disc and the front face being rounded and the surface of the cone intermediate the apex and the generally cylindrical body portion being rectilinear and merging at the marginal portions thereof into the, adjacent margins of the. aforesaid rounded portions.
References Cited by the Examiner UNITED STATES PATENTS BERNARD A. GILHEANY, Primary Examiner. MAX L. LEVY, Examiner.
US108518A 1961-05-08 1961-05-08 Electrical contact disc Expired - Lifetime US3192351A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US108518A US3192351A (en) 1961-05-08 1961-05-08 Electrical contact disc
FR896619A FR1324552A (en) 1961-05-08 1962-05-07 Process for manufacturing electrical contact grains and contact grains obtained by this process
GB17554/62A GB952707A (en) 1961-05-08 1962-05-07 Improvements in or relating to electrical contact disks
US216081A US3248780A (en) 1961-05-08 1962-08-10 Method of making electrical contact discs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US108518A US3192351A (en) 1961-05-08 1961-05-08 Electrical contact disc

Publications (1)

Publication Number Publication Date
US3192351A true US3192351A (en) 1965-06-29

Family

ID=22322666

Family Applications (1)

Application Number Title Priority Date Filing Date
US108518A Expired - Lifetime US3192351A (en) 1961-05-08 1961-05-08 Electrical contact disc

Country Status (1)

Country Link
US (1) US3192351A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2391391A (en) * 1944-02-25 1945-12-25 Allied Control Co Terminal element
US2433687A (en) * 1943-09-27 1947-12-30 Metals & Controls Corp Electrical contact
US2468888A (en) * 1944-09-25 1949-05-03 Cutler Hammer Inc Metal-backed nonwelding contact
US2545352A (en) * 1947-08-05 1951-03-13 George S Gibbs Method of making raised electrical contact points
US2625737A (en) * 1950-08-25 1953-01-20 D E Makepeace Company Method of making electrical contacts
US2694759A (en) * 1950-09-23 1954-11-16 Ite Circuit Breaker Ltd Cold welded contact
US2717296A (en) * 1953-09-14 1955-09-06 Gen Electric Electrical switch contacts
US2806927A (en) * 1955-06-07 1957-09-17 Alan A Allen Switch blade
US2925647A (en) * 1958-01-28 1960-02-23 Engelhard Ind Inc Method of making electrical contacts

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2433687A (en) * 1943-09-27 1947-12-30 Metals & Controls Corp Electrical contact
US2391391A (en) * 1944-02-25 1945-12-25 Allied Control Co Terminal element
US2468888A (en) * 1944-09-25 1949-05-03 Cutler Hammer Inc Metal-backed nonwelding contact
US2545352A (en) * 1947-08-05 1951-03-13 George S Gibbs Method of making raised electrical contact points
US2625737A (en) * 1950-08-25 1953-01-20 D E Makepeace Company Method of making electrical contacts
US2694759A (en) * 1950-09-23 1954-11-16 Ite Circuit Breaker Ltd Cold welded contact
US2717296A (en) * 1953-09-14 1955-09-06 Gen Electric Electrical switch contacts
US2806927A (en) * 1955-06-07 1957-09-17 Alan A Allen Switch blade
US2925647A (en) * 1958-01-28 1960-02-23 Engelhard Ind Inc Method of making electrical contacts

Similar Documents

Publication Publication Date Title
CA1050415A (en) Apparatus for cutting circumferential grooves in the tread of a tire
US3192351A (en) Electrical contact disc
US3248780A (en) Method of making electrical contact discs
US3916745A (en) Cutting arrangement
US4020820A (en) Process for truing grinding wheels
US3744357A (en) Profile cutting tool
US3691898A (en) Edge burr removal apparatus
KR940005315B1 (en) Dry-shaving apparatus
PL359104A1 (en) Assembly and method for cutting strands formed by thermoplastic filaments
US3186133A (en) Apparatus for making contact discs
US3148570A (en) Slitting machine
GB2195928A (en) Method of cutting a surface of a work-piece
US4067701A (en) Grinding machine for carbide cutting elements
US2956377A (en) Grinding machine and method
KR940006247A (en) Semiconductor Wafer Slicing Method and Apparatus
US2584479A (en) Phonograph record cutting machine
US3452484A (en) Lens trimming machines
US3055047A (en) Apparatus for making cams of thermoplastic material
KR900003387B1 (en) Hemisphere grinding apparatus
JPS6012288A (en) Chip dresser
SU795728A1 (en) Apparatus for kinematic breaking of chips
EP0541256B1 (en) Improvements in or relating to cutting wound coils
JP2006150478A (en) Cutting device and cutting method
SU1362573A1 (en) Arrangement for cutting pipes
RU2014982C1 (en) Method for sharpening disc cutter pairs for cutting thin-sheet materials