US3190837A - Making individual capsules by dual deposition - Google Patents
Making individual capsules by dual deposition Download PDFInfo
- Publication number
- US3190837A US3190837A US784020A US78402058A US3190837A US 3190837 A US3190837 A US 3190837A US 784020 A US784020 A US 784020A US 78402058 A US78402058 A US 78402058A US 3190837 A US3190837 A US 3190837A
- Authority
- US
- United States
- Prior art keywords
- colloid
- deposit
- units
- complex
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/124—Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
- B41M5/165—Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components characterised by the use of microcapsules; Special solvents for incorporating the ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/08—Simple coacervation, i.e. addition of highly hydrophilic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/10—Complex coacervation, i.e. interaction of oppositely charged particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2984—Microcapsule with fluid core [includes liposome]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2984—Microcapsule with fluid core [includes liposome]
- Y10T428/2985—Solid-walled microcapsule from synthetic polymer
- Y10T428/2987—Addition polymer from unsaturated monomers only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2989—Microcapsule with solid core [includes liposome]
Definitions
- This invention relates to a process for making minute capsules each having a particulate entity of matter as core material, and around each of which particulate core entities, individually, are made successive deposits of protective material, which deposits, together, form a wall of suflicient thickness and strength to enable such encapsulated particulate core entities each to be protected from extraordinary forces encountered in subsequent environmental contacts that without such thickness and strength would tend to cause escape or impairment of such encapsulated entities before they are required for use, and the invention relates further to capsules made by such process.
- the process is peculiarly adapted to the collective and simultaneous manufacture of a multiplicity of capsules that, because of their small maximum size, cannot be handled easily, individually, by manual or mechanical means.
- These capsules may be large enough, when completed, to be seen by the unaided eye, or the core entities thereof may be large enough to be seen by the unaided eye, but, on the other hand, such core entities and their encapsulating walls may be of such dimensions that the completed capsule requires the use of a microscope to be seen.
- the process is chiefly adapted for use in making minute capsules just about large enough to be seen by the unaided eye.
- the process by which the capsules of this invention are made employs, as a first step, the phenomenon of the coacervate deposition of film-forming hydrophilic colloid material, from an aqueous solution thereof, around substantially water-insoluble particulate entities, dispersed in said solution, of what are to become co-re materials, whether such core entities are liquid or solid, or dispersions of solid particulate matter in a liquid.
- This first deposition step of the film-forming hydrophilic colloid material around the core entities, individually, is brought about by causing a complex coacervation of the molecules of different kinds of colloid material into units, which thus-formed colloid molecular units deposit around the dispersed particulate core material entities that are provided, up to a certain thickness, whereupon such deposition around the core material entities ceases.
- this first deposition if gelled, is not always sufficient, as regards strength, when gelled, for the purposes for which the capsules are to be used, and, therefore, the solution in which the particulate core material entities have received their first deposited capsular wall deposit is modified and rejuvenated to enable a second step of coacervate deposition around the, then, partially-completed, capsules to be made.
- the materials still being kept above the gelation point of the gelable colloid material first deposited, the walls are still liquid.
- the pH of the rejuvenated aqueous solution and contents be above the coacervation region so that coacervation cannot occur prematurely.
- the rejuvenation of the aqueous solution to prepare for the second deposition is attained by supplying more film-forming hydrophilic colloid material to the solution, with the pH of the solution above the coacervation region, said added film-forming hydrophilic colloid material under these conditions again creating a potentially coacervatable condition.
- Coacervation is then induced, so as to form complex units, by lowering the pH of the aqueous dispersion mixture back into the coacervation region, which complex units, thus formed, then collect around the aforesaid partially-completed liquid-walled capsules to make a second deposit about each of them individually.
- the core entity of a particular capsule consists of either a single solid particle, a single liquid droplet, or a single liquid droplet having dispersed therein material of a smaller size, and the invention does not relate to the formation of capsules having multiple capsule entities of core material therein.
- each individual core entity not only has such a first deposit of hydrophilic colloid film-forming material therearound, but has a second surrounding and coherent deposit of hydrophilic colloid film-forming material over the first deposit, which second deposit in the preferred form of the invention is somewhat ditlerent from, but is similar, in the constituents thereof, to that of the first deposit.
- the capsules made by the process of this invention by reason of such successive deposits of capsular wall material, are very strong when gelled or when gelled and dried, and the capsules for that reason may be made with relatively large core entities up to sizes visible to the unaided eye.
- the core materials which are useful in the manufacture of such capsules not only differ among themselves in their physical sate, which may be the solid state or the liquid state, or combinations of solid and liquid state materials, but may differ in their chemical composition and intended use.
- liquid and solid core entity materials among many, may be mentioned foods, drugs, fuels, dyes, chemical reactants, electrical and magnetic materials, and perfumes or flavoring substances.
- solid materials which are useful, as core materials may be mentioned magnetic materials such as magnetic iron oxide, powdered substantially water-insoluble inorganic and organic chemical compounds, electrostatic materials such as carbon black pigment and iron powder, and combinations of such materials.
- oils and fats in the liquid or solid condition may be taken from the general classes consisting of mineral oils, vegetable oils, animal oils, and synthetic oils made by modification of natural oils, or oils of a purely synthetic origin, such as methyl salicylate and the liquid chlorinated diphenyls.
- oils and fats in the liquid or solid condition, which may be taken from the general classes consisting of mineral oils, vegetable oils, animal oils, and synthetic oils made by modification of natural oils, or oils of a purely synthetic origin, such as methyl salicylate and the liquid chlorinated diphenyls.
- parafiin oil, kerosene, cotton seed oil, soy bean oil, corn oil, olive oil, castor oil, lemon oil and other fruitskin oils, and turpentine are representa- 9 x3 tive.
- Animal oils such as fish oils, lard oil, and other perishable organic oils which may need protection from the atmosphere may be encapsulated by the process of this invention.
- the gelled and hardened thick-walled cap sules may be plasticized with water-soluble plasticizers, such as ethyleneglycol, and equivalents thereof, applied externally thereto.
- capsular Wall material which is of itself useful by reason of its own characteristics or which carries some other material which has a useful purpose, either with external substances or in combination with the core material, or both.
- capsule carried materials are bactericidal agents, light-reactant materials, light-filter materials, and coloring materials which, for instance, render the capsules identifiable as to their core content.
- Such capsule-wallcarried materials may be applied to the capsules after they are made, after any of the steps of gelling, hardening, and drying.
- the liquidcore drop size may be controlled by the novel manner in which the liquid is dispersed in the aqueous medium as will be described, and the consequent overall capsule size is influenced thereby.
- Powdered solids, to become core entities, may be sifted to the desired dimensions.
- the capsules may be solidified, in the aqueous medium, by gelling or other procedures, so that the capsule walls are solid and rigid, and, after such solidifying treatment, the capsules may be hardened to render them incapable of being destroyed by high-pH environments or by heat.
- the capsules may be used in the aqueous medium of which they were made or dispersed in other liquid or solid vehicles, after gelling or hardening in the aqueous medium.
- the capsules are to be used in dry form, as a free-flowing material, the capsular wall material after being solidified and subjected to such further treatment in the nature of hardening as is desirable, are separated from the aqueous medium in which they were made and dried.
- n-decane as a liquid, will be used as a typical core material, and it will be dispersed as minute droplets in water in which there has been previously dissolved a mixture of gelatin (preferably having an iso-electric point of about pH 8), gum arabic, and a polyethylenemaleic anhydride copolymer, as capsular wall material.
- gelatin preferably having an iso-electric point of about pH 8
- gum arabic preferably having an iso-electric point of about pH 8
- a polyethylenemaleic anhydride copolymer as capsular wall material.
- the process, in the beginning is carried on in an open-top vessel, with the ingredients at about 35 degrees centigrade, such temperature being selected so that the encapsulating wall material ingredients will all be in fluid form during the process.
- the core material also is in a liquid state.
- the temperature may be lowered after the capsule walls are made to gel and thus solidify the deposit thereof around each core entity, thus to form solid capsules with liquid cores on the completion of the two deposition steps.
- a further step to the process, as described so far, may be performed, in which the solidified wall material, now encapsulating each core entity, is hardened with cross-linking agents such as formaldehyde, glutaraldehyde, or equivalents.
- cross-linking agents such as formaldehyde, glutaraldehyde, or equivalents.
- a third capsular wall ingredient is added 40 grams of a 2%, by weight, aqueous solution of polyethylenernaleic anhydride co polymer having an approximate molecular weight of about 1,0002,000 as determined by the viscosity of it as a 1% solution in dimethyl formamide, at 25 degrees centigrade, according to Ostwald method 8, such copolymer now being obtainable in the United States of America from Monsanto Chemical Company under the trade designation DX 84341," the latter solution also being adjusted to pH 9, if not then at that point.
- This water solution of the initial wall-forming materials, kept at 35 degrees centigrade, is stirred, so that the liquid rotates about a vertical central axis, and then the core material, which in this example is n-decane, is introduced, or exuded, into the moving liquid, under its surface, by a burette, or other orificed emitter, at a drop-forming station, drop by drop, so that the drops are sheared off and carried away by the rotation of the dispersion, the burette, or emitter, being so controlled that the drops enter the liquid dispersion in such timing, relative to the rotational speed of the dispersion liquid past the end of the burette, that drops of the desired size are formed.
- the core material which in this example is n-decane
- the stirrer introduced from the top opening of the vessel, includes a vertical, centrally-located stirring rod having radially-extending horizontal stirring blades at the bottom end, the tip opening of the burette being placed beneath the surface of the liquid contents, close to the blades, so that the shearing force against the pendent droplets, as they issue from the burette, better controls the accuracy with which the drops are formed, as regards size.
- the drops are so regulated by a burette stopcock and the stirring speed, as to size, that the finished capsules, including the core matcrial and the surrounding capsular walls, may average 500 microns in largest dimension.
- the wall-forming materials are caused to make a first deposit onto the droplets by lowering the pH of the aqueous liquid medium to about 4.8, which may be done with a 10%, by weight, aqueous solution of acetic acid.
- concentration of initial ingredients proposed in this specific example, the deposition of the initial wall-forming ingredients which have so far been provided will result in a wall thickness of about 5 microns, whereupon such deposition stops, although some remnants of the wall-forming ingredients in the form of coacervate droplets are left, in the dispersion, undeposited. It is to be understood that this first deposition of wall-forming material, at this stage, is in the liquid state.
- the aqueous medium which contains the remnants of the original encapsulating wall material in complex coacervate form, which has not deposited on the liquid droplets, is raised for a short period of time to a pH of about 6.8 by use of a 10%, by weight, aqueous solution of sodium hydroxide, which causes such remnants of encapsulating wall material to return to their original uncomplexed state before substantially disturbing the deposited liquid complex units which have already deposited on the droplet core entities.
- aqueous solution of sodium hydroxide which causes such remnants of encapsulating wall material to return to their original uncomplexed state before substantially disturbing the deposited liquid complex units which have already deposited on the droplet core entities.
- aqueous medium containing the partially-formed capsules and the decomplexed remnants of the first encapsulating ingredients
- a 2%, by weight aqueous solution of 40 grams of polyethylenemaleic anhydride copolymer having a substantially higher molecular weight than that used in the initial ingredients, preferably polyethylenemaleic anhydride copolyrner having a molecular weight of about 60,000-70,000, as determined by the viscosity method mentioned before, and obtained at present in the United States of America from Monsanto Chemical Company under the trade designation DX 843-31.
- the separate preliminary step of raising the pH of the dispersion, before adding the second colloid material may be eliminated if the added colloid material is of a high enough pH naturally, or has been made so, to prevent spontaneous coacervation when added to the solution.
- the pH of the liquid dispersion mixture is lowered, before the partially formed capsule walls have been substantially affected by decoacervation, to approximately 5 by the addition of a by weight, solution of acetic acid, which causes deposition of said newly-added polyethylenemaleic anhydride copolymer and the remnants of the first-added film-forming material, as complex units, around each of the partially-completed capsules, individually, as a second liquid deposit coherent to the first deposit, thus completing a composite wall around each of the droplets of core material, the composite wall then totaling approximately 100 microns in thickness when the second deposition ceases.
- the capsules are completed, as far as the deposition of the encapsulating wall-forming material is concerned, but the encapsulating walls, at this point, are still in liquid form.
- the capsule walls, then rigid and solid, are still in a reversible state, and the capsule walls will revert to the liquid state upon being heated.
- the capsular wall material is cross-linked by treatment with the aforementioned tanning materials, formaldehyde, glutaraldehyde, or equivalent similar materials such as alpha-hydroxy-adipaldehyde.
- aqueous solution of formaldehyde per gram of gelatin is stirred in.
- glutaraldehyde is used, .5 milliliter of a by weight, aqueous solution per gram of gelatin may be used.
- Amounts of other cross-linking agents may be found by trial-and-error methods.
- the aqueous dispersion of capsules should have its pH raised to from between 7 and 9, to render it fully eifective, and the pH may be left there until the capsules are ready for use. Where a solution of glutaraldehyde is used, no raising of the pH is necessary.
- the capsules, so formed may be recovered from the aqueous medium by filtration, by centrifuging, or by spraying the dispersed capsules in a preferably hot, gas medium, and, when dry, the capsules may be used as particulate or powdered dry material.
- encapsulation of droplets of n-decane may be accomplished by the use of gelatin and polyethylenemaleic anhydride copolymer without the additional use of gum arabic.
- 12 grams of gelatin, having its iso-electric point at pH 8 is dissolved in 1,200 grams of water at 55 degrees centigrade.
- the solution if necessary, is adjusted to pH 9 with a 20%, by weight, aqueous solution of sodium hydroxide.
- aqueous solution of sodium hydroxide to raise the pH to 5.5, after which there is added 50 grams of a 2%, by weight, aqueous solution of polyethylcnemaleie anhydride copolymer of the higher molecular weight (60,000-70,000) before specified. If the latter aqueous solution is sufficiently high in pH, no pH adjustment may be necessary.
- the pH of the dispersion mixture is dropped, by use of a 10%, by weight, aqueous solution of acetic acid, to pH 4.6, whereupon the additionally-added higher-molecular-weight polyethylenemaleic anhydride copolymer and the remnants of the gelatin which had not deposited around the partiallycompleted capsules will deposit around the first deposited wall on each capsule, individually, to form a thick capsular wall around each core entity approximating a thickness of microns.
- the capsules which now have the capsular wall material around them in the liquid state, are chilled, to solidify the capsular wall material, and hardened, as before described with reference to the first preferred example.
- polyethylenemaleic anhydride occurs in other molecular weights than those specified herein and the novel process is not limited to the use of polyethylenemaleic anhydride of the weights specified nor in the order of use of the various polymers thereof, as the heavier molecular weight polymer may be used in the first deposit and the lighter weight polymer used to rejuvenate the deposition material for the second deposit, or the same molecular weight polymer may be used both in the original solution and as the addition material preparatory to the second deposit.
- the coacervatable system may be brought into and out of the coacervate zone, and back into the coacervate zone by other means, such as varying the temperature and the compositions or concentrations of the polymer material, as such procedures are known in the coacervate art.
- the figures given as to size are average figures, and, if a more select standard of average size is wanted in the final end product, such selection may be made from the manufactured stock of them.
- regulation of the burette stopcock and of the stirring speed may be resorted to, or other emulsification or dispersion practices may be used.
- solid core materials they may be sifted, as mentioned, to obtain the desired maximum average size.
- Water-immiscible core materials containing dispersed solids are handled in the same manner as liquids containing no solid constituents. If solid particulate material is to form the core entity, without the use of a liquid vehicle, solid particles of the selected size are beaten into the aqueous solution of encapsulating materials and kept agitated, so as to keep them in dispersed condition while the deposition is made of the encapsulating materials thereon, by adjustment of the pH, as before described in connection with the formation of capsules containing, as core material, only liquid entities. After the liquid deposition of encapsulating material has been accomplished around the solid core particulate entities, the encapsulating Wall material maybe solidified by cooling and hardening by cross-linking agents, as before described.
- the wall-forming materials When solid particulate material is dispersed in the wall-forming aqueous medium, the wall-forming materials are adsorbed, to a certain extent, on the surface of the said solid particles of core material and form seed points for the coacervate deposition of capsular Wall material thereon, as has been described with regard to the first step of the process.
- a process for the collective and simultaneous manufacture of capsules, each having core material surrounded by capsular wall material which comprises (a) establishing a system consisting of a dispersion of particulate entities of water-insoluble matter, each of which is to become the core of a capsule, in an agitated aqueous dispersion medium in which the particulate entities are substantially insoluble, said medium containing dissolved therein film-forming hydrophilie colloid materials, at least one of which is gelable, consisting of different kinds of molecules which combine to form coacervate complex units under coacervating conditions;
- a process for the collective and simultaneous manun 0 facture of a multiplicity of capsules, each capsule consisting of a single entity of core material surrounded by capsular wall material which comprises (a) establishing an agitated system consisting of an aqueous dispersion medium in which are dissolved film-forming hydrophilic colloid materials to form a solution, the said colloid materials containing heterogeneous molecules which combine to form coacervate complex units when the pH of said colloid-containing aqueous dispersion medium is lowered below a point at which complex coacervation occurs, at least one of the materials being gelable, said aqueous medium and contents being kept at a temperature which keeps the gelable component of the colloid materials in an ungelled state, said colloid-containing aqueous dispersion medium having its pH maintained above said point until it is desired that complex coacervation is to take place, and said colloid-containing aqueous dispersion medium being kept agitated until the process is completed, and in which are dispersed part
- a process for the collective and simultaneous manufacture of a multiplicity of capsules, each consisting of a single entity of core material surrounded by capsular wall material which includes the steps of (a) dissolving film-forming hydrophilic colloid materials in an aqueous dispersion medium, at least one of which colloid materials is temperature-gelable, to form a solution at a temperature which keeps the colloid material in an ungelled state, which temperature is maintained until the last step of the process, the said colloid materials containing different kinds of molecules which combine to form coacervate complex units when the pH of said solution is below the coacervation point, and said solution having its pH maintained above such point until it is desired that complex coacervation is to take place, said solution being agitated until the process is completed by the remaining steps;
- the gelable hydrophilic colloid material is gelatin and the process is followed by the step of treating the capsules with crosslinking compounds to harden the Walls thereof, said cross-linking compounds being selected from the group consisting of formaldehyde, glutaraldehyde, and alphahydroxy-adipaldehyde.
- a process for the collective and simultaneous manufacture of capsules, each having core material surrounded by capsular wall material which comprises (at) establishing a system consisting of a dispersion of particulate entities of water-insoluble material, each of which is to become the core of a capsule, in an agitated aqueous dispersion medium in which the particulate entities are substantially insoluble, said medium containing dissolved therein film-forming hydrophilic colloid materials consisting of different kinds of molecules which combine to form coacervate complex units under coacervating conditions, at least one of which colloid materials is gelable;
- a process for the collective and simultaneous manufacture of a multiplicity of capsules of a chosen size, each capsule consisting of a droplet of liquid core material surrounded by capsule Wall-forming polymeric material consisting of the steps of (a) providing a solution of capsule wall-forming organic polymeric material and a solvent with which the liquid core material is immiscible; exuding the liquid core material from an orifice of an emitter at a drop-forming station located Within the liquid solution, to form droplets and at the same time moving the solution past the drop-forming station at such a speed as to wash the droplets from the orifice when the droplets have reached the desired size, thereby to disperse the droplets of core material in the solution of capsule wallforrning material; and (b) changing the conditions of the solution system so the capsule wall-forming material forms a separate phase of polymer-rich liquid droplets which deposit on the dispersed droplets of core material to form liquid-walled capsules.
- a method of dispersing, in a potentially coacervatable solution of film-forming organic polymeric material, chosen sized liquid droplets of a material immiscible with the solution, the droplets being intended as cores around which the filmforming material deposits when coacervation thereof is induced, to form liquid-walled capsules including the steps of causing the solution to flow past a drop-forming station within the body of the solution, at a chosen pre-determined speed; and introducing the liquid droplets into the flowing solution at the drop-forming station by a flow-control means, whereby the liquid droplets issuing from the flow-control means are whipped away into the flowing solution, the size of the said whippedaway droplets being determined both by the chosen rate of flow of the solution and the chosen flow control means, in combination.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Medicinal Preparation (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL246985D NL246985A (fr) | 1958-12-31 | ||
NL129921D NL129921C (fr) | 1958-12-31 | ||
US784020A US3190837A (en) | 1958-12-31 | 1958-12-31 | Making individual capsules by dual deposition |
GB41074/59A GB872713A (en) | 1958-12-31 | 1959-12-03 | Discrete dual-walled capsules and process for producing the same by coacervation |
CH8211159A CH394131A (fr) | 1958-12-31 | 1959-12-21 | Procédé de fabrication de capsules composée chacune d'un noyau sensiblement insoluble dans l'eau, entouré d'une paroi de matière colloïdale hydrophile |
DEN17701A DE1245320B (de) | 1958-12-31 | 1959-12-29 | Herstellen kleiner Kapseln |
FR814424A FR1248178A (fr) | 1958-12-31 | 1959-12-30 | Capsules discrètes à double paroi et leur procédé d'obtention |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US784020A US3190837A (en) | 1958-12-31 | 1958-12-31 | Making individual capsules by dual deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
US3190837A true US3190837A (en) | 1965-06-22 |
Family
ID=25131105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US784020A Expired - Lifetime US3190837A (en) | 1958-12-31 | 1958-12-31 | Making individual capsules by dual deposition |
Country Status (6)
Country | Link |
---|---|
US (1) | US3190837A (fr) |
CH (1) | CH394131A (fr) |
DE (1) | DE1245320B (fr) |
FR (1) | FR1248178A (fr) |
GB (1) | GB872713A (fr) |
NL (2) | NL246985A (fr) |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3328257A (en) * | 1962-02-20 | 1967-06-27 | Gevaert Photo Prod Nv | Preparation of microcapsules |
US3369900A (en) * | 1963-03-25 | 1968-02-20 | Polaroid Corp | Microscopic capsules and method of making the same |
US3406119A (en) * | 1965-03-05 | 1968-10-15 | Keuffel & Esser Co | Encapsulation |
US3435947A (en) * | 1965-11-26 | 1969-04-01 | Ncr Co | Article having an expandable and rigidizable compacted flexible material |
FR2077379A1 (fr) * | 1970-01-28 | 1971-10-22 | Ncr Co | |
FR2192868A1 (fr) * | 1972-07-19 | 1974-02-15 | Fuji Photo Film Co Ltd | |
US4124526A (en) * | 1976-06-16 | 1978-11-07 | Monsanto Company | Encapsulation process and resulting aqueous dispersion of encapsulated droplets |
EP0000667A1 (fr) * | 1977-08-01 | 1979-02-07 | Northwestern University | Véhicule biodégradable pouvant être localisé par magnétisme et administré par voie intravasculaire ainsi qu'un procédé pour sa préparation |
US4247406A (en) * | 1979-04-23 | 1981-01-27 | Widder Kenneth J | Intravascularly-administrable, magnetically-localizable biodegradable carrier |
EP0042249A2 (fr) | 1980-06-13 | 1981-12-23 | Northwestern University | Microsphères lipidiques biodégradables pouvant être localisées magnétiquement |
FR2501528A1 (fr) * | 1981-03-13 | 1982-09-17 | Damon Corp | Procede de rupture selective d'une membrane permeable de microcapsules |
US4367170A (en) * | 1975-01-24 | 1983-01-04 | American Optical Corporation | Stabilized photochromic materials |
US4394287A (en) * | 1981-04-10 | 1983-07-19 | Eurand America, Inc. | Incorporation of finely divided additives at the surface of microcapsule walls |
US4565764A (en) * | 1982-09-10 | 1986-01-21 | Canon Kabushiki Kaisha | Microcapsule toner and process of making same |
US4590170A (en) * | 1980-07-09 | 1986-05-20 | Fuji Photo Film Co., Ltd. | Process for preparing microcapsule reagents for immunological response |
US4770183A (en) * | 1986-07-03 | 1988-09-13 | Advanced Magnetics Incorporated | Biologically degradable superparamagnetic particles for use as nuclear magnetic resonance imaging agents |
US4798741A (en) * | 1985-12-13 | 1989-01-17 | E. I. Du Pont De Nemours And Company | Preparation of microencapsulated pigment |
US4963367A (en) * | 1984-04-27 | 1990-10-16 | Medaphore, Inc. | Drug delivery compositions and methods |
US4965007A (en) * | 1988-05-10 | 1990-10-23 | Eastman Kodak Company | Encapsulated superparamagnetic particles |
US5401516A (en) * | 1992-12-21 | 1995-03-28 | Emisphere Technologies, Inc. | Modified hydrolyzed vegetable protein microspheres and methods for preparation and use thereof |
US5443841A (en) * | 1992-06-15 | 1995-08-22 | Emisphere Technologies, Inc. | Proteinoid microspheres and methods for preparation and use thereof |
US5447728A (en) * | 1992-06-15 | 1995-09-05 | Emisphere Technologies, Inc. | Desferrioxamine oral delivery system |
US5541155A (en) * | 1994-04-22 | 1996-07-30 | Emisphere Technologies, Inc. | Acids and acid salts and their use in delivery systems |
US5578323A (en) * | 1992-06-15 | 1996-11-26 | Emisphere Technologies, Inc. | Proteinoid carriers and methods for preparation and use thereof |
WO1996040070A1 (fr) * | 1995-06-07 | 1996-12-19 | Emisphere Technologies, Inc. | Parfums et aromatisants |
US5629020A (en) * | 1994-04-22 | 1997-05-13 | Emisphere Technologies, Inc. | Modified amino acids for drug delivery |
US5643957A (en) * | 1993-04-22 | 1997-07-01 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5650386A (en) * | 1995-03-31 | 1997-07-22 | Emisphere Technologies, Inc. | Compositions for oral delivery of active agents |
US5667806A (en) * | 1995-06-07 | 1997-09-16 | Emisphere Technologies, Inc. | Spray drying method and apparatus |
US5693338A (en) * | 1994-09-29 | 1997-12-02 | Emisphere Technologies, Inc. | Diketopiperazine-based delivery systems |
US5709861A (en) * | 1993-04-22 | 1998-01-20 | Emisphere Technologies, Inc. | Compositions for the delivery of antigens |
US5714167A (en) * | 1992-06-15 | 1998-02-03 | Emisphere Technologies, Inc. | Active agent transport systems |
US5750147A (en) * | 1995-06-07 | 1998-05-12 | Emisphere Technologies, Inc. | Method of solubilizing and encapsulating itraconazole |
US5766633A (en) * | 1993-04-22 | 1998-06-16 | Emisphere Technologies, Inc. | Oral drug delivery compositions and methods |
USRE35862E (en) * | 1986-08-18 | 1998-07-28 | Emisphere Technologies, Inc. | Delivery systems for pharmacological agents encapsulated with proteinoids |
US5792451A (en) * | 1994-03-02 | 1998-08-11 | Emisphere Technologies, Inc. | Oral drug delivery compositions and methods |
US5804688A (en) * | 1997-02-07 | 1998-09-08 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5811127A (en) * | 1992-06-15 | 1998-09-22 | Emisphere Technologies, Inc. | Desferrioxamine oral delivery system |
US5820881A (en) * | 1995-04-28 | 1998-10-13 | Emisphere Technologies, Inc. | Microspheres of diamide-dicarboxylic acids |
US5863944A (en) * | 1997-04-30 | 1999-01-26 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5866536A (en) * | 1995-03-31 | 1999-02-02 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5876710A (en) * | 1997-02-07 | 1999-03-02 | Emisphere Technologies Inc. | Compounds and compositions for delivering active agents |
US5879681A (en) * | 1997-02-07 | 1999-03-09 | Emisphere Technolgies Inc. | Compounds and compositions for delivering active agents |
US5939381A (en) * | 1997-02-07 | 1999-08-17 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5958457A (en) * | 1993-04-22 | 1999-09-28 | Emisphere Technologies, Inc. | Compositions for the delivery of antigens |
US5962710A (en) * | 1997-05-09 | 1999-10-05 | Emisphere Technologies, Inc. | Method of preparing salicyloylamino acids |
US5965121A (en) * | 1995-03-31 | 1999-10-12 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5989539A (en) * | 1995-03-31 | 1999-11-23 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5990166A (en) * | 1997-02-07 | 1999-11-23 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6001347A (en) * | 1995-03-31 | 1999-12-14 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6051258A (en) * | 1995-06-07 | 2000-04-18 | Emisphere Technologies, Inc. | Proteinoid emulsions and methods for preparation and use thereof |
US6060513A (en) * | 1997-02-07 | 2000-05-09 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6071510A (en) * | 1995-03-31 | 2000-06-06 | Emisphere Technologies, Inc. | Modified amino acids and compositions comprising the same for delivering active agents |
US6084112A (en) * | 1995-09-11 | 2000-07-04 | Emisphere Technologies, Inc. | Method for preparing ω-aminoalkanoic acid derivatives from cycloalkanones |
US6090958A (en) * | 1995-03-31 | 2000-07-18 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6099856A (en) * | 1992-06-15 | 2000-08-08 | Emisphere Technologies, Inc. | Active agent transport systems |
US6221367B1 (en) | 1992-06-15 | 2001-04-24 | Emisphere Technologies, Inc. | Active agent transport systems |
US6242495B1 (en) | 1997-02-07 | 2001-06-05 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6331318B1 (en) | 1994-09-30 | 2001-12-18 | Emisphere Technologies Inc. | Carbon-substituted diketopiperazine delivery systems |
US6375983B1 (en) | 1996-06-14 | 2002-04-23 | Emisphere Technologies, Inc. | Microencapsulated fragrances and method for preparation |
EP1219348A3 (fr) * | 2000-11-27 | 2003-01-02 | Xerox Corporation | Procédé pour l'encapsulation |
US20050186176A1 (en) * | 1996-03-29 | 2005-08-25 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
JP2006506410A (ja) * | 2002-11-04 | 2006-02-23 | オーシャン・ニュートリション・カナダ・リミテッド | 複数の殻を有するマイクロカプセル及びそれらの調製方法 |
US20060134130A1 (en) * | 1993-04-22 | 2006-06-22 | Emisphere Technologies, Inc. | Oral drug delivery compositions and methods |
US20060166859A1 (en) * | 1997-02-07 | 2006-07-27 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US20060165990A1 (en) * | 2005-01-21 | 2006-07-27 | Curtis Jonathan M | Microcapsules and emulsions containing low bloom gelatin and methods of making and using thereof |
US20070269566A1 (en) * | 2006-05-17 | 2007-11-22 | Curtis Jonathan M | Homogenized formulations containing microcapsules and methods of making and using thereof |
US20100173002A1 (en) * | 2006-06-05 | 2010-07-08 | Jin Yulai | Microcapsules with improved shells |
US20100209524A1 (en) * | 2002-04-11 | 2010-08-19 | Ocean Nutrition Canada Ltd. | Encapsulated agglomeration of microcapsules and method for the preparation thereof |
US20110117180A1 (en) * | 2007-01-10 | 2011-05-19 | Ocean Nutrition Canada Limited | Vegetarian microcapsules |
US20170065497A1 (en) * | 2014-03-31 | 2017-03-09 | Givaudan Sa | Organic compounds |
US20180327597A1 (en) * | 2013-01-02 | 2018-11-15 | International Business Machines Corporation | Renewable self-healing capsule system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU57907A1 (fr) * | 1969-02-04 | 1970-08-04 | ||
JPS5034510B1 (fr) * | 1970-04-02 | 1975-11-08 | ||
DE2930408A1 (de) * | 1979-07-26 | 1981-02-12 | Bayer Ag | Reaktionsdurchschreibepapier |
JPS6150912A (ja) * | 1984-08-16 | 1986-03-13 | Shionogi & Co Ltd | リポソ−ム製剤の製造法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2492861A (en) * | 1946-05-27 | 1949-12-27 | Ind Sound Systems Inc | Apparatus and method for manufacturing capsules by upward displacement |
US2800457A (en) * | 1953-06-30 | 1957-07-23 | Ncr Co | Oil-containing microscopic capsules and method of making them |
US2874299A (en) * | 1952-06-30 | 1959-02-17 | Walter H Barkas | Ionization recording capsules |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL95044C (fr) * | 1953-06-30 |
-
0
- NL NL129921D patent/NL129921C/xx active
- NL NL246985D patent/NL246985A/xx unknown
-
1958
- 1958-12-31 US US784020A patent/US3190837A/en not_active Expired - Lifetime
-
1959
- 1959-12-03 GB GB41074/59A patent/GB872713A/en not_active Expired
- 1959-12-21 CH CH8211159A patent/CH394131A/fr unknown
- 1959-12-29 DE DEN17701A patent/DE1245320B/de active Pending
- 1959-12-30 FR FR814424A patent/FR1248178A/fr not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2492861A (en) * | 1946-05-27 | 1949-12-27 | Ind Sound Systems Inc | Apparatus and method for manufacturing capsules by upward displacement |
US2874299A (en) * | 1952-06-30 | 1959-02-17 | Walter H Barkas | Ionization recording capsules |
US2800457A (en) * | 1953-06-30 | 1957-07-23 | Ncr Co | Oil-containing microscopic capsules and method of making them |
Cited By (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3328257A (en) * | 1962-02-20 | 1967-06-27 | Gevaert Photo Prod Nv | Preparation of microcapsules |
US3369900A (en) * | 1963-03-25 | 1968-02-20 | Polaroid Corp | Microscopic capsules and method of making the same |
US3406119A (en) * | 1965-03-05 | 1968-10-15 | Keuffel & Esser Co | Encapsulation |
US3435947A (en) * | 1965-11-26 | 1969-04-01 | Ncr Co | Article having an expandable and rigidizable compacted flexible material |
FR2077379A1 (fr) * | 1970-01-28 | 1971-10-22 | Ncr Co | |
FR2192868A1 (fr) * | 1972-07-19 | 1974-02-15 | Fuji Photo Film Co Ltd | |
US4367170A (en) * | 1975-01-24 | 1983-01-04 | American Optical Corporation | Stabilized photochromic materials |
US4124526A (en) * | 1976-06-16 | 1978-11-07 | Monsanto Company | Encapsulation process and resulting aqueous dispersion of encapsulated droplets |
EP0000667A1 (fr) * | 1977-08-01 | 1979-02-07 | Northwestern University | Véhicule biodégradable pouvant être localisé par magnétisme et administré par voie intravasculaire ainsi qu'un procédé pour sa préparation |
US4247406A (en) * | 1979-04-23 | 1981-01-27 | Widder Kenneth J | Intravascularly-administrable, magnetically-localizable biodegradable carrier |
EP0042249A2 (fr) | 1980-06-13 | 1981-12-23 | Northwestern University | Microsphères lipidiques biodégradables pouvant être localisées magnétiquement |
US4331654A (en) * | 1980-06-13 | 1982-05-25 | Eli Lilly And Company | Magnetically-localizable, biodegradable lipid microspheres |
US4590170A (en) * | 1980-07-09 | 1986-05-20 | Fuji Photo Film Co., Ltd. | Process for preparing microcapsule reagents for immunological response |
FR2501528A1 (fr) * | 1981-03-13 | 1982-09-17 | Damon Corp | Procede de rupture selective d'une membrane permeable de microcapsules |
US4394287A (en) * | 1981-04-10 | 1983-07-19 | Eurand America, Inc. | Incorporation of finely divided additives at the surface of microcapsule walls |
US4565764A (en) * | 1982-09-10 | 1986-01-21 | Canon Kabushiki Kaisha | Microcapsule toner and process of making same |
US4963367A (en) * | 1984-04-27 | 1990-10-16 | Medaphore, Inc. | Drug delivery compositions and methods |
US4798741A (en) * | 1985-12-13 | 1989-01-17 | E. I. Du Pont De Nemours And Company | Preparation of microencapsulated pigment |
US4770183A (en) * | 1986-07-03 | 1988-09-13 | Advanced Magnetics Incorporated | Biologically degradable superparamagnetic particles for use as nuclear magnetic resonance imaging agents |
USRE35862E (en) * | 1986-08-18 | 1998-07-28 | Emisphere Technologies, Inc. | Delivery systems for pharmacological agents encapsulated with proteinoids |
US4965007A (en) * | 1988-05-10 | 1990-10-23 | Eastman Kodak Company | Encapsulated superparamagnetic particles |
US5578323A (en) * | 1992-06-15 | 1996-11-26 | Emisphere Technologies, Inc. | Proteinoid carriers and methods for preparation and use thereof |
US5447728A (en) * | 1992-06-15 | 1995-09-05 | Emisphere Technologies, Inc. | Desferrioxamine oral delivery system |
US5714167A (en) * | 1992-06-15 | 1998-02-03 | Emisphere Technologies, Inc. | Active agent transport systems |
US6099856A (en) * | 1992-06-15 | 2000-08-08 | Emisphere Technologies, Inc. | Active agent transport systems |
US5443841A (en) * | 1992-06-15 | 1995-08-22 | Emisphere Technologies, Inc. | Proteinoid microspheres and methods for preparation and use thereof |
US5840340A (en) * | 1992-06-15 | 1998-11-24 | Emisphere Technologies, Inc. | Proteinoid carriers and methods for preparation and use thereof |
US5601846A (en) * | 1992-06-15 | 1997-02-11 | Emisphere Technologies, Inc. | Proteinoid microspheres and methods for preparation and use thereof |
US6221367B1 (en) | 1992-06-15 | 2001-04-24 | Emisphere Technologies, Inc. | Active agent transport systems |
US5811127A (en) * | 1992-06-15 | 1998-09-22 | Emisphere Technologies, Inc. | Desferrioxamine oral delivery system |
US6413550B1 (en) | 1992-06-15 | 2002-07-02 | Emisphere Technologies, Inc. | Proteinoid carriers and methods for preparation and use thereof |
US6348207B1 (en) | 1992-06-15 | 2002-02-19 | Emisiphere Technologies, Inc. | Orally deliverable supramolecular complex |
US6245359B1 (en) | 1992-06-15 | 2001-06-12 | Emisphere Technologies, Inc. | Active agent transport systems |
US6071538A (en) * | 1992-06-15 | 2000-06-06 | Emisphere Technologies, Inc. | Oral delivery composition comprising supramolecular complex |
US5540939A (en) * | 1992-12-21 | 1996-07-30 | Emisphere Technologies, Inc. | Modified hydrolyzed vegetable protein microspheres and methods for preparation and use thereof |
US5972387A (en) * | 1992-12-21 | 1999-10-26 | Emisphere Technologies, Inc. | Modified hydrolyzed vegetable protein microspheres and methods for preparation and use thereof |
US5401516A (en) * | 1992-12-21 | 1995-03-28 | Emisphere Technologies, Inc. | Modified hydrolyzed vegetable protein microspheres and methods for preparation and use thereof |
US6100298A (en) * | 1993-04-22 | 2000-08-08 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5766633A (en) * | 1993-04-22 | 1998-06-16 | Emisphere Technologies, Inc. | Oral drug delivery compositions and methods |
US5709861A (en) * | 1993-04-22 | 1998-01-20 | Emisphere Technologies, Inc. | Compositions for the delivery of antigens |
US5958457A (en) * | 1993-04-22 | 1999-09-28 | Emisphere Technologies, Inc. | Compositions for the delivery of antigens |
US5643957A (en) * | 1993-04-22 | 1997-07-01 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5955503A (en) * | 1993-04-22 | 1999-09-21 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US20060134130A1 (en) * | 1993-04-22 | 2006-06-22 | Emisphere Technologies, Inc. | Oral drug delivery compositions and methods |
US5792451A (en) * | 1994-03-02 | 1998-08-11 | Emisphere Technologies, Inc. | Oral drug delivery compositions and methods |
US5541155A (en) * | 1994-04-22 | 1996-07-30 | Emisphere Technologies, Inc. | Acids and acid salts and their use in delivery systems |
US6180140B1 (en) | 1994-04-22 | 2001-01-30 | Emisphere Technologies, Inc. | Modified amino acids for drug delivery |
US5629020A (en) * | 1994-04-22 | 1997-05-13 | Emisphere Technologies, Inc. | Modified amino acids for drug delivery |
US5693338A (en) * | 1994-09-29 | 1997-12-02 | Emisphere Technologies, Inc. | Diketopiperazine-based delivery systems |
US5976569A (en) * | 1994-09-29 | 1999-11-02 | Emisphere Technologies, Inc. | Diketopiperazine-based delivery systems |
US6331318B1 (en) | 1994-09-30 | 2001-12-18 | Emisphere Technologies Inc. | Carbon-substituted diketopiperazine delivery systems |
US5965121A (en) * | 1995-03-31 | 1999-10-12 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6090958A (en) * | 1995-03-31 | 2000-07-18 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6428780B2 (en) | 1995-03-31 | 2002-08-06 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5650386A (en) * | 1995-03-31 | 1997-07-22 | Emisphere Technologies, Inc. | Compositions for oral delivery of active agents |
US5989539A (en) * | 1995-03-31 | 1999-11-23 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6346242B1 (en) | 1995-03-31 | 2002-02-12 | Emishpere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6001347A (en) * | 1995-03-31 | 1999-12-14 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5866536A (en) * | 1995-03-31 | 1999-02-02 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6071510A (en) * | 1995-03-31 | 2000-06-06 | Emisphere Technologies, Inc. | Modified amino acids and compositions comprising the same for delivering active agents |
US5820881A (en) * | 1995-04-28 | 1998-10-13 | Emisphere Technologies, Inc. | Microspheres of diamide-dicarboxylic acids |
US6461545B1 (en) | 1995-06-07 | 2002-10-08 | Emisphere Technologies, Inc. | Method of solubilizing and encapsulating itraconazole |
US5750147A (en) * | 1995-06-07 | 1998-05-12 | Emisphere Technologies, Inc. | Method of solubilizing and encapsulating itraconazole |
US6100285A (en) * | 1995-06-07 | 2000-08-08 | Emisphere Technologies, Inc. | Method of solubilizing itraconazole |
WO1996040070A1 (fr) * | 1995-06-07 | 1996-12-19 | Emisphere Technologies, Inc. | Parfums et aromatisants |
US5824345A (en) * | 1995-06-07 | 1998-10-20 | Emisphere Technologies, Inc. | Fragrances and flavorants |
US6051258A (en) * | 1995-06-07 | 2000-04-18 | Emisphere Technologies, Inc. | Proteinoid emulsions and methods for preparation and use thereof |
US5667806A (en) * | 1995-06-07 | 1997-09-16 | Emisphere Technologies, Inc. | Spray drying method and apparatus |
US6084112A (en) * | 1995-09-11 | 2000-07-04 | Emisphere Technologies, Inc. | Method for preparing ω-aminoalkanoic acid derivatives from cycloalkanones |
US7417022B2 (en) | 1996-03-29 | 2008-08-26 | Mhr Institutional Partners Iia Lp | Compounds and compositions for delivering active agents |
US20050186176A1 (en) * | 1996-03-29 | 2005-08-25 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6375983B1 (en) | 1996-06-14 | 2002-04-23 | Emisphere Technologies, Inc. | Microencapsulated fragrances and method for preparation |
US8686154B2 (en) | 1997-02-07 | 2014-04-01 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5876710A (en) * | 1997-02-07 | 1999-03-02 | Emisphere Technologies Inc. | Compounds and compositions for delivering active agents |
US6313088B1 (en) | 1997-02-07 | 2001-11-06 | Emisphere Technologies, Inc. | 8-[(2-hydroxy-4-methoxy benzoyl) amino]-octanoic acid compositions for delivering active agents |
US5804688A (en) * | 1997-02-07 | 1998-09-08 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5879681A (en) * | 1997-02-07 | 1999-03-09 | Emisphere Technolgies Inc. | Compounds and compositions for delivering active agents |
US5939381A (en) * | 1997-02-07 | 1999-08-17 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6060513A (en) * | 1997-02-07 | 2000-05-09 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US20090324540A1 (en) * | 1997-02-07 | 2009-12-31 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US6242495B1 (en) | 1997-02-07 | 2001-06-05 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5990166A (en) * | 1997-02-07 | 1999-11-23 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US7553872B2 (en) | 1997-02-07 | 2009-06-30 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US20060166859A1 (en) * | 1997-02-07 | 2006-07-27 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5863944A (en) * | 1997-04-30 | 1999-01-26 | Emisphere Technologies, Inc. | Compounds and compositions for delivering active agents |
US5962710A (en) * | 1997-05-09 | 1999-10-05 | Emisphere Technologies, Inc. | Method of preparing salicyloylamino acids |
EP1219348A3 (fr) * | 2000-11-27 | 2003-01-02 | Xerox Corporation | Procédé pour l'encapsulation |
US8968872B2 (en) | 2002-04-11 | 2015-03-03 | Dsm Nutritional Products Ag | Encapsulated agglomeration of microcapsules and method for the preparation thereof |
US20100209524A1 (en) * | 2002-04-11 | 2010-08-19 | Ocean Nutrition Canada Ltd. | Encapsulated agglomeration of microcapsules and method for the preparation thereof |
JP2006506410A (ja) * | 2002-11-04 | 2006-02-23 | オーシャン・ニュートリション・カナダ・リミテッド | 複数の殻を有するマイクロカプセル及びそれらの調製方法 |
US8900630B2 (en) | 2002-11-04 | 2014-12-02 | Dsm Nutritional Products | Microcapsules having multiple shells and method for the preparation thereof |
JP4833553B2 (ja) * | 2002-11-04 | 2011-12-07 | オーシャン・ニュートリション・カナダ・リミテッド | 複数の殻を有するマイクロカプセル及びそれらの調製方法 |
US20060165990A1 (en) * | 2005-01-21 | 2006-07-27 | Curtis Jonathan M | Microcapsules and emulsions containing low bloom gelatin and methods of making and using thereof |
US8034450B2 (en) | 2005-01-21 | 2011-10-11 | Ocean Nutrition Canada Limited | Microcapsules and emulsions containing low bloom gelatin and methods of making and using thereof |
US20090274791A1 (en) * | 2005-07-07 | 2009-11-05 | Mattson Pete H | Food Articles With Delivery Devices and Methods for the Preparation Thereof |
US9968120B2 (en) * | 2006-05-17 | 2018-05-15 | Dsm Nutritional Products Ag | Homogenized formulations containing microcapsules and methods of making and using thereof |
US20070269566A1 (en) * | 2006-05-17 | 2007-11-22 | Curtis Jonathan M | Homogenized formulations containing microcapsules and methods of making and using thereof |
US20100173002A1 (en) * | 2006-06-05 | 2010-07-08 | Jin Yulai | Microcapsules with improved shells |
US9056058B2 (en) | 2006-06-05 | 2015-06-16 | Dsm Nutritional Products | Microcapsules with improved shells |
US20110117180A1 (en) * | 2007-01-10 | 2011-05-19 | Ocean Nutrition Canada Limited | Vegetarian microcapsules |
US10166196B2 (en) | 2007-01-10 | 2019-01-01 | Dsm Nutritional Products Ag | Vegetarian microcapsules |
US20180327597A1 (en) * | 2013-01-02 | 2018-11-15 | International Business Machines Corporation | Renewable self-healing capsule system |
US20180327596A1 (en) * | 2013-01-02 | 2018-11-15 | International Business Machines Corporation | Renewable self-healing capsule system |
US10584246B2 (en) * | 2013-01-02 | 2020-03-10 | International Business Machines Corporation | Renewable self-healing capsule system |
US10584245B2 (en) * | 2013-01-02 | 2020-03-10 | International Business Machines Corporation | Renewable self-healing capsule system |
US20170065497A1 (en) * | 2014-03-31 | 2017-03-09 | Givaudan Sa | Organic compounds |
EP3126045B1 (fr) * | 2014-03-31 | 2020-04-29 | Givaudan S.A. | Améliorations apportées ou relatives à des composés organiques |
Also Published As
Publication number | Publication date |
---|---|
FR1248178A (fr) | 1960-12-09 |
DE1245320B (de) | 1967-07-27 |
CH394131A (fr) | 1965-06-30 |
NL129921C (fr) | |
NL246985A (fr) | |
GB872713A (en) | 1961-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3190837A (en) | Making individual capsules by dual deposition | |
US3041289A (en) | Method of making walled clusters of capsules | |
USRE24899E (en) | Oil-containrab | |
US3341466A (en) | Process for making capsules | |
Jyothi et al. | Microencapsulation: a review | |
US4394287A (en) | Incorporation of finely divided additives at the surface of microcapsule walls | |
US3748277A (en) | Process of forming minute capsules | |
US4402856A (en) | Microcapsules with a defined opening temperature, a process for their production and their use | |
US8357318B2 (en) | Wax encapsulation | |
US4115315A (en) | Pearlescent capsules and process for their preparation | |
US3533958A (en) | Process for making minute capsules | |
US3043782A (en) | Process for preparing a more impermeable coating by liquid-liquid phase separation | |
US3516943A (en) | Replacement of capsule contents by diffusion | |
US3116206A (en) | Encapsulation process and its product | |
US5023024A (en) | Process for producing microcapsules | |
JPS5812055B2 (ja) | 疎水性油滴含有カプセルの硬化方法 | |
DE1912323B2 (de) | Verfahren zur herstellung von mikrokapseln | |
US3743604A (en) | Process for the production of microcapsules | |
CA1113232A (fr) | Alcaloide sous micro-capsules | |
US3607775A (en) | Process for encapsulating minute particles by use of autogenously polymerizable capsule wall material | |
US5378413A (en) | Process for preparing microcapsules having gelatin walls crosslinked with quinone | |
NO133649B (fr) | ||
US3565819A (en) | Process of producing microcapsules | |
US3804775A (en) | Method of preparing microcapsules | |
US3436355A (en) | Process for making capsules and method of making premix used therein |