US3165823A - Metallic surface coating and method for making the same - Google Patents

Metallic surface coating and method for making the same Download PDF

Info

Publication number
US3165823A
US3165823A US823214A US82321459A US3165823A US 3165823 A US3165823 A US 3165823A US 823214 A US823214 A US 823214A US 82321459 A US82321459 A US 82321459A US 3165823 A US3165823 A US 3165823A
Authority
US
United States
Prior art keywords
coating
nickel
aluminum
chromium
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US823214A
Inventor
Edward P Rowady
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Corp
Original Assignee
Eaton Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Manufacturing Co filed Critical Eaton Manufacturing Co
Priority to US823214A priority Critical patent/US3165823A/en
Priority to GB3566/60A priority patent/GB949612A/en
Priority to US343174A priority patent/US3338733A/en
Application granted granted Critical
Publication of US3165823A publication Critical patent/US3165823A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Definitions

  • one object of this invention is to provide a metal article having an improved metallic coating tenaciously bonded thereto that is resistant to corrosion at elevated temperatures.
  • Another object of this invention is to provide a metal article having an improved metallic coating tenaciously bonded thereto that is extremely hard and resistant to corrosion and wear at elevated temperatures.
  • Still another object of this invention is to provide a simple process whereby metallic objects of various configurations, including sheets, strips, rods, bars, irregularshaped bodies and the like can be quickly coated with corrosionand wear-resistant metals over all or a portion of the surface of said objects and tenaciously bonded thereto.
  • FIGURE 1 is a magnified longitudinal sectional view of a fragmentary portion of the base metal having on its surface a coating of nickel-chromium alloy which is tenaciously bonded thereto by means of an interdiifused chemical bond;
  • FIGURE 2 is a magnified longitudinal sectional view of a fragmentary portion of the base metal having on its surface an outer coating of aluminum which has been interdiffused with the'underlying coating of nickel-chromium alloy.
  • the surface coating treatment is comprised of two separable treating sequences; first, the application and bonding of a corrosionresistant coating to the base metal and, second, the application and interdiifusion of an aluminum coating over said corrosion-resistant coating.
  • the separability of these two treating sequences provides processing flexibility so that metal objects may be processed in only the first or in both treating sequences, depending upon the extent and nature of the surface protection required.
  • the corrosionresistant coating sequence is comprised principally of the following processing steps: preheating the article to be coated to an elevated temperature, metal spraying the surface or a designated portion thereof with a'corrosionresistant metal alloy, and interditf using the coating and the base metal at an elevated temperature. Because superior bonding of the coating is achieved when the article has a metallurgically clean surface, appropriate surface cleaning steps should precede the preheating and coating steps. In addition, the coated article may be surface finished if thetexture and/ or dimensional tolerances of the coated article are critical.
  • the second coating sequence is comprised principally of preheating the coated object, applying a thin coating of aluminum over the underlying corrosion resistant coating, and finally interdiffusing the aluminum coating with the underlying corrosion-resistant coating under controlled conditions.
  • Aluminum should be made on a metallurgically clean surface which many require a degreasing processing step prior to the preheat step. it may also be desirable, depending on the nature of the coated article, to perform a very light surface finishing operation on the overlying aluminum coating.
  • the object to be treated may be of any metallic coniposition, providing, however, that the material is sufficiently resistant to corrosion so that substantially no oxide is formed on the surface thereof during the rapid pre-heat in air prior to applying the corrosion-resistant coating.
  • the object to be treated may be of any metallic coniposition, providing, however, that the material is sufficiently resistant to corrosion so that substantially no oxide is formed on the surface thereof during the rapid pre-heat in air prior to applying the corrosion-resistant coating.
  • ferrous base and nickel base stainless alloys that are resistant to oxide formation when rapidly heated in air to temperatures between about 1300 and 1800 F. and are suitable for surface treatment in accordance with this invention. Rapid heating techniques, such as induction heating, minimize surface oxidation because of the short length of time required to attain the desired temperature and consequently constitute the preferred heating method.
  • a second surface cleaning step comprised of sand or grit blasting the surface is also preferred, in order to remove therefrom any solid deposits and oxide scales and impart a plurality of slight depressions in the surface of the base metal to aid mechanical bonding of the initial surface coating prior to the diffusion step.
  • the metal article with a metallurgically clean surface is next preheated rapidly to a temperature ranging between 1360 and 1800 F., preferably 1650 to 1800 F. for most materials, which constitutes a critical step of this process.
  • Preheating the metal article prior to coating insures in timate contact of the corrosion-resistant coating with the surface of the base metal and improves mechanical bonding therebetween by preventing rapid cooling and contraction of the coa ing relative to the base surface, Attempts to apply a corrosion-resistant coating of an appreciable thickness such as 0.010 inches and thicker by metal spraying a metal article which had not been preheated resulted of the coating from the surface.
  • moderate preheat temperatures of about 800 F.
  • a substantially pure 80 nickel chromium alloy is used, having a composition, for example, such as that specified in ASTM designation B82-57 adopted in 1946 and as revised in 1952 and in 1957, having an analysis as follows:
  • a nickel-chromium alloy can be utilized having a broader composition range than the alloy specified above.
  • the initial coating should consist substantially of a nickel-chromium alloy containing between 70 and 97 percent nickel and from 3 to percent chromium with other constituents such as iron, cobalt and tungsten not to exceed a combined total of 10 percent by weight.
  • Conventional quantities of age hardening elements, such as titanium, aluminum and molybdenum are not objectionable.
  • elements such as boron forming low melting point oxides on the surface to be coated are undesirable.
  • the nickelchromium alloy is applied by a metal spray technique utilizing conventional spray guns adaptable for melting and spraying nickel-chromium alloy supplied in a wire form.
  • these spray guns utilize a combustible gas such as acetylene mixed with oxygen for converting the nickelchromium wire into a molten state and in which state it is propelled in the form of fine droplets by an air blast toward the object to be coated.
  • a coating of substantially uniform thickness ranging from about 0.001 to 0.100 inches is applied to all or a designated portion of the surface of the preheated metal article.
  • the nature of the bond between the coating and the base metal-immediately after spraying is primarily a mechanical one comprised of interlocking surface irregularities and the bond is susceptible to rupture if subjected to high stresses.
  • the coated metal object is next treated in a diffusion step wherein the mechanical bond is converted to a chemical bond which tenaciously secures the coating to the surface of the base material.
  • the diffusion step is comprised of heating the coated metal object to a temperature between 1800 and 2250 F., preferably 1900 to 2100 F.
  • the rate of interdifl'usion between the nickel-chromium alloy coating and base metal increases with temperature and, accordingly, the length of treatment time required to secure a satisfactory bond is inversely proportional to the temperature employed. Interdiffusion at a temperature of about 1800 F. is feasible but commercially undesirable because time periods as long as one hour are required to achieve satisfactory bonding of the coating to the base metal. On the other hand, diffusion at temperatures in excess of 2250" F.
  • FIGURE 1 An illustration of the relationship between a base metal 10 coated with a corrosion-resistant nickel-chromium alloy 11 and tenaciously bonded thereto is shown in FIGURE 1.
  • the interdifiused chemical bond between the base metal 10 and corrosion-resistant coating 11 has been exaggerated for purposes of clarity and is indicated by the bond 12.
  • the penetration or depth of the interdifiused zone l2 to achieve adequate chemical bonding should be at least one atomic layer and, preferably, about 0.0005 inch.
  • Metallic articles coated with the nickel-chromium alloy and processed in accordance with the steps described above may be used in that form or, if smooth surfaces and dimentional tolerances are critical, the article may be surface finished by machining, grinding, polishing or the like.
  • the second coating treatment comprising the application of an overlying aluminum coating would sequentially follow the application and bonding of the nickel-chromium surface coating.
  • the aluminum coating Prior to applying the aluminum coating, it may be necessary to re-clean the surface of the coated object, particularly if an intervening machining operation has been performed on the nickel-chromium surface coating.
  • Preheating the metal article prior to the application of the aluminium coating is not absolutely essential, nor is it as critical as in the case of the preheat step preceding the application of the nickel-chromiurn alloy coating. Generally, it is preferred to preheat the object to a temperature between 300 and 1400 F. to
  • the aluminum coating may be applied in a number of different ways, such as by dipping in a molten bath or, preferably, by the metallizing spray gun technique in a manner similar to that employed in applying the nickel-chromium alloy coating.
  • the thickness of the aluminum spray coating may range from 0.0003 to 0.004 inch.
  • a coating thickness of less than 0.0003 may not provide a sufficient quantity of aluminum to form an aluminum nickel chromium alloy layer of suificient thickness to provide the necessary protection, while a coating thickness exceeding 0.004 inch causes excessive flow and dripping of the aluminum coating during diffusion.
  • Adherence of the aluminum to the nickel-alurninum alloy coating prior to the difiusion step is a combination of mechanical as well as chemical bonding.
  • the rate of difiusion of aluminum into the nickel-chromium alloy coating is substantially greater that that of the nickelchromium alloy into the base metal, so that at elevated preheat temperatures of about 1200 to 1400" F. some interdifiusion occurs during the application of the aluminum to the metal article.
  • the coated object is heated to a temperature within the range of from l500 to 2100 F. and maintained at that temperature for a period of from a few seconds to five minutes to achieve controlled difiusion and alloying of the aluminum into the nickel-chromium alloy coating and forming therewith an extremely hard corrosionand Wear-resistant coating.
  • the diiiusion time required is dependent on the diffusion temperature, as well as the preheat temperature of the metallic object during the spray application of the aluminum. If, for example, the aluminum is applied to the coated object, pre-heated to a temperature of about 1400" F., a substantial interdiii'usion is achieved during the application of the aluminum with a lesser amount of subsequent diffusion required.
  • the thickness of the interditfused layer should be at least about 0.8003 inch thick to provide sufiicient protection but, preferably, not greater than 0.004 inch thick,'because of the brittle nature of the interdiffused alloy.
  • FIGURE 2 An enlarged fragmentary view of a base metal having thereon an interditfused alloy layer of aluminum, nickel and chromium is shown in FIGURE 2.
  • the dittused alloy layer is designated by the numeral 13 while the undiftused outer layer comprised predominantly of aluminum and oxides thereof is designated 14.
  • the undiifused portion of the underlying nickel-chromium alloy coating 11 is bonded to the base metal it? by means of chemical bond 12. It will, of course, be appreciated that the principal zones or layers on the surface of the base metal are not as definitive as shown in FEGURE 2, but rather, in actual practice, the layers gradually blend one into the other without a definite line of demarkation.
  • Hardness determinations obtained with a Rockwell testing apparatus of the interdiffused alloy layer indicate the hardness to range from approximately 48 to 62 Rockwell C.
  • X-ray diffraction analyses made of the composition of this unique corrosionand wear-resistant layer pro prised varying difiraction patterns, indicating that the alloy lacks chemical homogeneity.
  • These X-ray studies further indicated that the predominant phase in the hard alloy layer is based on the space lattice Al (Ni,Cr)
  • the coating contains appreciable quantities 6 of a second phase comprised of aluminum oxide in the form A1 0 in amounts up to about 10 weight percent.
  • the aluminum oxide as well as lesser quantities of nickel and chromium oxides are formed during the spray application of the coatings and during subsequent diffusion at elevated temperatures in air.
  • One of the specific applications of this invention relates to the corrosion and wear protection of engine valves, particularly the exhaust valves of an interned combustion engine.
  • gasolines inherently contain constituents such as sulfur which, on combustion, produce corrosive elements such as sulfur dioxide which have a deleterious effect on the metal objects they contact.
  • most gasolines also contain small quantities of special additives, such as tetraethyl lead, as an anti-knock agent, halogenated hydrocarbons as scavengers for the lead oxide formed from tetraethyl lead during combustion, and phosphorus-conraining compounds to inhibit pre-ignition and spark plug fouling.
  • additives although effective to achieve their intended purpose, are highly corrosive and attack the surface of engine valves exposed to the high temperature exhaust gases with a resultant pitting and flaking of the valve, materially shortening its effective operating life.
  • engine valves can be produced which are'highly resistant to corrosion and wear under these severe operating conditions.
  • Most engine valves are of a ferrous or nickel base stainless alloy having the requisite oxidation resistance suitable for applying the nickel-chromium alloy coating in accordance with the processing sequence heretofore described.
  • iron oxide formation on the head face of the valve promotes pie-ignition, a very damaging form of combustion.
  • a coating of nickel-chromium alloy over the head portion of the valve exposed to the high temperature exhaust gases is sutficient to prevent formation of the iron oxide scale.
  • the seat face of the valve is, of course, that portion of the valve which is in contact with the valve seat, forming therewith a pressuretight seal.
  • a typical processing sequence for applying a corrosionand wear-resistant coating to the base of a valve is comprised of taking the valve that has been machined roughly to size and cleaning the surface to be coated by degreasing and grit blasting.
  • the cleaned valve is next inserted so that its head is surrounded by an induction coil providing localized heating, whereby the surface to be coated is raised to a temperature of approximately 1700 F. within about fifteen seconds and a nickel-chromium alloy sprayed on the face of said valve immediately after its withdrawal from the coil.
  • the head of the valve is reinserted in the induction coil and heated to a djfiusion temperature of approximately 2100 F.
  • the head is reinserted in an induction coil, whereby it is preheated to approximately 500 F. in a matter of seconds, and then withdrawn from the coil to permit an aluminum spray coating to be applied over the nickel-chromium alloy coating.
  • the coated valve is once again reinserted into the induction coil and heated to a temperature of about 2000" F. for a period of approximately four minutes to provide controlled interdiffusion of the aluminum and nickel-chromium alloy coating forming thereby the corrosion and wear resistant layer having a hardness in the range of about 48 to 58 Rockwell C.
  • the valve is then permitted to cool gradually in air to room temperature, at which time it is ready for use.
  • Variations to this processing sequence include the application of the nickel-chromium corrosion-resistant alloy to the head as well as to the seat face of the valve in cases where head corrosion protection is also desired. Moreover, instead of applying a spray coating of aluminum to only the seat face of the valve, it may be desired to also apply a protective coating of aluminum on the head portion of the valve, which may be either uncoated or coated with the nickel-chromium alloy and in which case it is preferred to dip the entire head of the valve in a bath of molten aluminum.
  • the individual treating steps are, of course, adaptable to integration by automation whereby the metallic article or valve to be coated can be automatically processed starting with the uncoated object through to the finished product.
  • a metal article comprised of a ferrous base stainless alloy having on at least a portion of its surface a hard, corrosion-resistant surface coating, said coating consisting essentially of between about 35 and about 62 weight percent nickel, between about 1 and about 18 weight percent chromium, and between about 35 and about 50 weight percent aluminum, said coating being interposed between an underlying coating tenaciously bonded to the surface of the metal article and an outer coating, said underlying coating consisting of a metal selected from the group consisting of nickel and chromium, and nickel and chromium alloys comprised of at least 90 weight percent of the elements nickel and chromium, said nickel content ranging from about 97 to about 70 weight percent, said chromium content ranging from about 3 to about 30 weight percent, said outer coating consisting of a metal selected from the group consisting of aluminum and alloys of aluminum comprised of at least 90 weight percent aluminum.
  • a metal article comprised of a nickel base stainless alloy having on at least a portion of its surface a hard,
  • said coating consisting essentially of between about 35 and about 62 weight percent nickel, between about 1 and about 18 weight percent chromium, and between about 35 and about 50 weight percent aluminum, said coating being interposed between an underlying coating tenaciously bonded to the surface of the metal article and an outer coating, said underlying coating consisting of a metal selected from the group consisting of nickel and chromium, and nickel and chromium alloys comprised of at least weight percent of the elements nickel and chromium, said nickel content ranging from about 97 to about 70 weight percent, said chromium content ranging from about 3 to about 30 weight percent said outer coating consisting of a metal selected from the group consisting of aluminum and alloys of aluminum comprised of at least 90 Weight percent aluminum.
  • a metal article comprised of a stainless alloy havmg on at least a portion of its surface a hard, corrosionresistant coating, said coating consisting essentially of between about 35 and about 62 weight percent nickel, between about 1 and about 18 weight percent chromium, and between about 35 to about 50 weight percent aluminum, said coating comprising a phase of Al (Ni,Cr) and a phase of alpha alumina, said coating having a thickness of between about 0.0003 and about 0.004 inch.
  • said underlying coating consisting of a metal selected from the group consisting of nickel and chromium, and nickel and chromium alloys comprised of at least 90 weight percent of the elements nickel and chromium, said nickel content ranging from about 97 to about 70 weight percent, said chromium content ranging from about 3 to about 30 weight percent, and said outer coating consisting of a metal selected from the group consisting of aluminum and alloys of aluminum comprised of at least 90 weight percent aluminum.
  • Column 2 line 29 for "many” read may column 5 line 3, for "nickel-aluminum: read nickel-chromium line 7, for “that", first occurrence, read than column 6, line 46, for "ariplanes” read airplanes Signed and sealed this 10th day of-August 1965.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

1965 E. P. IIQOWADY 3,165,823
METALLIC SURFACE COATING AND METHOD FOR MAKING THE SAME Filed June 26, 1959 IN V EN TOR. Z'JwdrZ 2 Fa wad? United States Patent ice 3,165,823 METALLI SURFAQE COATLNG AND METHQD MAKMG THE SAME Edward P. Rowady, Detroit, Mich, assignor to Eaton Manufacturing Company, Cleveland, @hio, a corpor tion of @hio Filed June 25, E59, Ser. No. 823,214 Cl ms. (or. 29-197 The present invention relates to metallic surface coatings that are resistant to corrosion and wear at elevated temperatures and to an improved process for applying and bonding said surface coatings to metallic objects.
A great number of applications exists wherein metallic articles are subjected at elevated temperatures to corrosive gases, such as air, and combustion gases resulting from the burning of a variety of fuels. Under these con ditions, articles composed of metals such as iron and many ferrous base alloys, that are susceptible to such corrodents are severely attacked on their surfaces as evidenced by pitting and surface scaling and this surface deterioration materially reduces their operating efliciency and useful life. This condition is further aggravated when the objects must concurrently withstand surface to surface contact and Wear, particularly when operating tolerances between said adjacent surfaces are critical. Substitution of corrosion susceptible base metals with special heat-resistant alloys to achieve a satisfactory operating life has not been entirely satisfactory because of the greater cost of such special alloys, which are generally more difficult to manufacture and to fabricate into the desired form. Quite often, the substitution of special corrosion-resistant alloys results in a sacrifice or compromise of some of the structural considerations in favor of the corrosion-resistant properties of the material. Numerous surface coatings have been applied to base metals susceptible to corrosion at elevated temperatures to obviate the necessity of substituting special heat-resistant alloys and to achieve a satisfactory operating life of the metal object. However, the processes by which surface coatings have been heretofore applied have been commercially undesirable due to their complexity, prolonged treating cycle and resultant uneconomical operation.
Accordingly, one object of this invention is to provide a metal article having an improved metallic coating tenaciously bonded thereto that is resistant to corrosion at elevated temperatures.
Another object of this invention is to provide a metal article having an improved metallic coating tenaciously bonded thereto that is extremely hard and resistant to corrosion and wear at elevated temperatures.
Still another object of this invention is to provide a simple process whereby metallic objects of various configurations, including sheets, strips, rods, bars, irregularshaped bodies and the like can be quickly coated with corrosionand wear-resistant metals over all or a portion of the surface of said objects and tenaciously bonded thereto.
Gther objects and advantages of the present invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings, wherein:
FIGURE 1 is a magnified longitudinal sectional view of a fragmentary portion of the base metal having on its surface a coating of nickel-chromium alloy which is tenaciously bonded thereto by means of an interdiifused chemical bond; and
FIGURE 2 is a magnified longitudinal sectional view of a fragmentary portion of the base metal having on its surface an outer coating of aluminum which has been interdiffused with the'underlying coating of nickel-chromium alloy.
ddfii zli Patented Jan. 1%, i965 The surface coating treatment, as embodied in this invention, is comprised of two separable treating sequences; first, the application and bonding of a corrosionresistant coating to the base metal and, second, the application and interdiifusion of an aluminum coating over said corrosion-resistant coating. The separability of these two treating sequences provides processing flexibility so that metal objects may be processed in only the first or in both treating sequences, depending upon the extent and nature of the surface protection required. The corrosionresistant coating sequence is comprised principally of the following processing steps: preheating the article to be coated to an elevated temperature, metal spraying the surface or a designated portion thereof with a'corrosionresistant metal alloy, and interditf using the coating and the base metal at an elevated temperature. Because superior bonding of the coating is achieved when the article has a metallurgically clean surface, appropriate surface cleaning steps should precede the preheating and coating steps. In addition, the coated article may be surface finished if thetexture and/ or dimensional tolerances of the coated article are critical. The second coating sequence is comprised principally of preheating the coated object, applying a thin coating of aluminum over the underlying corrosion resistant coating, and finally interdiffusing the aluminum coating with the underlying corrosion-resistant coating under controlled conditions. Application of the aluminum should be made on a metallurgically clean surface which many require a degreasing processing step prior to the preheat step. it may also be desirable, depending on the nature of the coated article, to perform a very light surface finishing operation on the overlying aluminum coating.
The object to be treated may be of any metallic coniposition, providing, however, that the material is sufficiently resistant to corrosion so that substantially no oxide is formed on the surface thereof during the rapid pre-heat in air prior to applying the corrosion-resistant coating. There are numerous ferrous base and nickel base stainless alloys that are resistant to oxide formation when rapidly heated in air to temperatures between about 1300 and 1800 F. and are suitable for surface treatment in accordance with this invention. Rapid heating techniques, such as induction heating, minimize surface oxidation because of the short length of time required to attain the desired temperature and consequently constitute the preferred heating method.
With reference to the first treating sequence wherein the corrosion-resistant coating is applied to the base metal, it is preferred to clean the article in a vapor degreasing operation or other suitable cleaning operation, to remove any surface film which may have been deposited thereon, such as during prior handling or in machining operations. A second surface cleaning step, comprised of sand or grit blasting the surface is also preferred, in order to remove therefrom any solid deposits and oxide scales and impart a plurality of slight depressions in the surface of the base metal to aid mechanical bonding of the initial surface coating prior to the diffusion step.
The metal article with a metallurgically clean surface is next preheated rapidly to a temperature ranging between 1360 and 1800 F., preferably 1650 to 1800 F. for most materials, which constitutes a critical step of this process. Preheating the metal article prior to coating insures in timate contact of the corrosion-resistant coating with the surface of the base metal and improves mechanical bonding therebetween by preventing rapid cooling and contraction of the coa ing relative to the base surface, Attempts to apply a corrosion-resistant coating of an appreciable thickness such as 0.010 inches and thicker by metal spraying a metal article which had not been preheated resulted of the coating from the surface. Moreover, the use of moderate preheat temperatures of about 800 F. failed to provide suflicient adherence whereby adequate bonding might be achieved during the subsequent diffusion step. It is for this reason that preheat temperatures of at least 1300" F. are employed, and preferably 1650 F. to 1800 F. Preheat temperatures in excess of 1 800 F. are undesirable because of the increasing tendency to form oxides on the surface to be coated. As heretofore mentioned, the use of rapid heating techniques such as induction heating, which constitutes a preferred heating method, generally requires only a fraction of a minute to elevate the ob ect to be coated to the appropriate temperature. When that temperature has been attained, a metal coating of corrosion-resistant alloy is immediately applied over all or that portion of the surface of the metal object that requires protection.
In surface treating applications wherein only the first treating sequence is to be utilized, a substantially pure 80 nickel chromium alloy is used, having a composition, for example, such as that specified in ASTM designation B82-57 adopted in 1946 and as revised in 1952 and in 1957, having an analysis as follows:
Silicon 0.75-1.5 Sulphur, maximum 0.03
The presence of other elements in the alloy that have a tendency to form low melting point oxides such as the element boron, for example, which reduce the overall melting temperature of the oxide on the surface of the metal object are undesirable constituents because they accelerate the normal corrosion rate.
In surface treatments which include both the treating sequences, that is, the corrosion-resistant coating followed by an aluminum coating, a nickel-chromium alloy can be utilized having a broader composition range than the alloy specified above. The initial coating should consist substantially of a nickel-chromium alloy containing between 70 and 97 percent nickel and from 3 to percent chromium with other constituents such as iron, cobalt and tungsten not to exceed a combined total of 10 percent by weight. Conventional quantities of age hardening elements, such as titanium, aluminum and molybdenum are not objectionable. As aforementioned, elements such as boron forming low melting point oxides on the surface to be coated are undesirable.
In the preferred practice of this invention, the nickelchromium alloy is applied by a metal spray technique utilizing conventional spray guns adaptable for melting and spraying nickel-chromium alloy supplied in a wire form. Generally, these spray guns utilize a combustible gas such as acetylene mixed with oxygen for converting the nickelchromium wire into a molten state and in which state it is propelled in the form of fine droplets by an air blast toward the object to be coated. In this manner, a coating of substantially uniform thickness ranging from about 0.001 to 0.100 inches is applied to all or a designated portion of the surface of the preheated metal article. The nature of the bond between the coating and the base metal-immediately after spraying is primarily a mechanical one comprised of interlocking surface irregularities and the bond is susceptible to rupture if subjected to high stresses. For the purpose of obtaining an improved bond, the coated metal object is next treated in a diffusion step wherein the mechanical bond is converted to a chemical bond which tenaciously secures the coating to the surface of the base material. To avoid rupture of the aforementioned interlocking surface irregularities, it is preferred to prevent the coated metal object from cooling rapidly to a temperature substantially below the preheat temperature prior to the diffusion step. The diffusion step is comprised of heating the coated metal object to a temperature between 1800 and 2250 F., preferably 1900 to 2100 F. for a short duration of time so that interdifiusion or alloying occurs between the coating metal and the base metal to the depth of at least one atomic layer. The rate of interdifl'usion between the nickel-chromium alloy coating and base metal increases with temperature and, accordingly, the length of treatment time required to secure a satisfactory bond is inversely proportional to the temperature employed. Interdiffusion at a temperature of about 1800 F. is feasible but commercially undesirable because time periods as long as one hour are required to achieve satisfactory bonding of the coating to the base metal. On the other hand, diffusion at temperatures in excess of 2250" F. occurs rapidly, requiring a treating period of only about a minute or less, but this temperature is unsatisfactory :because of the rapid growth in the grain size of the base metal and the tendency to oxidize any exposed surface of a metallic object which may have received a protective coating over only a portion of its surface. Furthermore, warpage of the metal object at very hi h temperatures may occur and, of course, melting of the base metal is the final limiting factor. For these reasons, in the preferred practice of this invention, diffusion temperatures of 1900 to 2100 F. are employed, requiring treating periods of from about one to about five minutes for producing tenaciously bonded nickel-chromium alloy coatings,
An illustration of the relationship between a base metal 10 coated with a corrosion-resistant nickel-chromium alloy 11 and tenaciously bonded thereto is shown in FIGURE 1. The interdifiused chemical bond between the base metal 10 and corrosion-resistant coating 11 has been exaggerated for purposes of clarity and is indicated by the bond 12. As has heretofore been mentioned, the penetration or depth of the interdifiused zone l2 to achieve adequate chemical bonding should be at least one atomic layer and, preferably, about 0.0005 inch.
Metallic articles coated with the nickel-chromium alloy and processed in accordance with the steps described above may be used in that form or, if smooth surfaces and dimentional tolerances are critical, the article may be surface finished by machining, grinding, polishing or the like.
In situations where, in addition to the nickel-chromium corrosion-resistant coating, it is desired to impart a hard, corrosionand wear-resistant coating to the metal object the second coating treatment comprising the application of an overlying aluminum coating would sequentially follow the application and bonding of the nickel-chromium surface coating. Prior to applying the aluminum coating, it may be necessary to re-clean the surface of the coated object, particularly if an intervening machining operation has been performed on the nickel-chromium surface coating. Preheating the metal article prior to the application of the aluminium coating is not absolutely essential, nor is it as critical as in the case of the preheat step preceding the application of the nickel-chromiurn alloy coating. Generally, it is preferred to preheat the object to a temperature between 300 and 1400 F. to
remove all traces of moisture on the surface of the object and to facilitate intimate contact between the aluminum and the nickel-chromium intermediate coating. Although a commercially pure aluminum is preferred, such as a 28 grade, alloys of aluminum with elements such as silicon, copper and magnesium in percentages preferably not exceding a combined total of 10 percent by weight are also satisfactory. The aluminum coating may be applied in a number of different ways, such as by dipping in a molten bath or, preferably, by the metallizing spray gun technique in a manner similar to that employed in applying the nickel-chromium alloy coating. The thickness of the aluminum spray coating may range from 0.0003 to 0.004 inch. A coating thickness of less than 0.0003 may not provide a sufficient quantity of aluminum to form an aluminum nickel chromium alloy layer of suificient thickness to provide the necessary protection, while a coating thickness exceeding 0.004 inch causes excessive flow and dripping of the aluminum coating during diffusion. Adherence of the aluminum to the nickel-alurninum alloy coating prior to the difiusion step is a combination of mechanical as well as chemical bonding. The rate of difiusion of aluminum into the nickel-chromium alloy coating is substantially greater that that of the nickelchromium alloy into the base metal, so that at elevated preheat temperatures of about 1200 to 1400" F. some interdifiusion occurs during the application of the aluminum to the metal article.
After the aluminum spray coating has been applied, the coated object is heated to a temperature within the range of from l500 to 2100 F. and maintained at that temperature for a period of from a few seconds to five minutes to achieve controlled difiusion and alloying of the aluminum into the nickel-chromium alloy coating and forming therewith an extremely hard corrosionand Wear-resistant coating. The diiiusion time required is dependent on the diffusion temperature, as well as the preheat temperature of the metallic object during the spray application of the aluminum. If, for example, the aluminum is applied to the coated object, pre-heated to a temperature of about 1400" F., a substantial interdiii'usion is achieved during the application of the aluminum with a lesser amount of subsequent diffusion required. In addition, during the period required to heat the aluminum coated metal article up to the diffusion treatment temperature, more interdifiusion will occur between the aluminum and nickel-chromium alloy, the extent of which is dependent on the rate of heating and time required to attain the appropriate temperature. The totm on combined interditlusion of the nickel-chromium and aluminum coatings is controlled so as to produce an alloy layer of the desired composition and hardness and which is exterernely resistant to corrosion and Wear. Moreover, the thickness of the interditfused layer should be at least about 0.8003 inch thick to provide sufiicient protection but, preferably, not greater than 0.004 inch thick,'because of the brittle nature of the interdiffused alloy. By controlling the thickness of the interdifiused loy layer to about 0.004 inch or less, the brittle alloy responds in a more ductile manner, thereby greatly increasing its wear and impact resistance.
The fact that partial interdiffusion of the aluminum occurs during the application 01 the aluminum to the nickel-chromium alloy coating forming therewith a substantially tenacious bond provides additional processing flexibility in that the diffusion step may either immodiately followthe aluminizing coating or may be deferred to a later time, if desired, without risk of separation or flaking of the outer aluminum coating.
An enlarged fragmentary view of a base metal having thereon an interditfused alloy layer of aluminum, nickel and chromium is shown in FIGURE 2. The dittused alloy layer is designated by the numeral 13 while the undiftused outer layer comprised predominantly of aluminum and oxides thereof is designated 14. The undiifused portion of the underlying nickel-chromium alloy coating 11 is bonded to the base metal it? by means of chemical bond 12. It will, of course, be appreciated that the principal zones or layers on the surface of the base metal are not as definitive as shown in FEGURE 2, but rather, in actual practice, the layers gradually blend one into the other without a definite line of demarkation. Hardness determinations obtained with a Rockwell testing apparatus of the interdiffused alloy layer indicate the hardness to range from approximately 48 to 62 Rockwell C. X-ray diffraction analyses made of the composition of this unique corrosionand wear-resistant layer pro duced varying difiraction patterns, indicating that the alloy lacks chemical homogeneity. These X-ray studies further indicated that the predominant phase in the hard alloy layer is based on the space lattice Al (Ni,Cr) In addition, the coating contains appreciable quantities 6 of a second phase comprised of aluminum oxide in the form A1 0 in amounts up to about 10 weight percent. The aluminum oxide as well as lesser quantities of nickel and chromium oxides are formed during the spray application of the coatings and during subsequent diffusion at elevated temperatures in air.
One of the specific applications of this invention relates to the corrosion and wear protection of engine valves, particularly the exhaust valves of an interned combustion engine. it is well known that commercial gasolines inherently contain constituents such as sulfur which, on combustion, produce corrosive elements such as sulfur dioxide which have a deleterious effect on the metal objects they contact. In addition, most gasolines also contain small quantities of special additives, such as tetraethyl lead, as an anti-knock agent, halogenated hydrocarbons as scavengers for the lead oxide formed from tetraethyl lead during combustion, and phosphorus-conraining compounds to inhibit pre-ignition and spark plug fouling. These additives, although effective to achieve their intended purpose, are highly corrosive and attack the surface of engine valves exposed to the high temperature exhaust gases with a resultant pitting and flaking of the valve, materially shortening its effective operating life.
By applying a corrosionand wear-resistant surface coating on the heads and/ or faces of the valves in accordance with the preferred practice of this invention, engine valves can be produced which are'highly resistant to corrosion and wear under these severe operating conditions. Most engine valves are of a ferrous or nickel base stainless alloy having the requisite oxidation resistance suitable for applying the nickel-chromium alloy coating in accordance with the processing sequence heretofore described. Valves in engines which are subjected to only moderate operating severity, such as in most passenger automobiles, normally do not require additional corrosion protection beyond that afforded by the valve material. However, in modern high-compression ratio passenger car engines, iron oxide formation on the head face of the valve promotes pie-ignition, a very damaging form of combustion. Accordingly, a coating of nickel-chromium alloy over the head portion of the valve exposed to the high temperature exhaust gases is sutficient to prevent formation of the iron oxide scale. Valves in heavy-duty engine operation, as encountered in ariplanes and in trucks, for example, generally require corrosion and wear protection of the seat face of the valve and head corrosion protection to assure a long and efiicient operating life. The seat face of the valve is, of course, that portion of the valve which is in contact with the valve seat, forming therewith a pressuretight seal. When applying a corrosionand wear-resistant seat facing to a valve, it is preferred to machine the face of the valve after applying the nickel-chromium alloy coating and prior to applying the aluminum'coating to assure satisfactory dimensional control. Surface finishing the face of the valve after the application and controlled ditlusion of the thin aluminum coating is generally not necessary. A light surface finishing operation to remove high spots is permissible but a deep surface finishing operation is undesirable, due to the possibility of reioving all or a portion of the hard nickel chromium aluminum alloy layer.
Engine dynamcmeter studies under accelerated test conditions designed to evaluate the relative operating life of exhaust valves of the same base material indicated that valves having a'protective coating on their heads comprised of nickel, 2O chromium alloy to inhibit head corrosion and applied in accordance with the preferred practice of this invention had effective operating lives about four times greater than the same valves in an uncoated condition. Similar accelerated engine tests designed to evaluate the relative er'fectiveness of a corrosionand Wear-resistant coating comprised of interdiifused aluminum and nickel-chromium alloy applied to the seat face of a valve indicated that the coated valve had an operating life prior to failure approximately five times greater than the same valve in an uncoated condition.
A typical processing sequence for applying a corrosionand wear-resistant coating to the base of a valve is comprised of taking the valve that has been machined roughly to size and cleaning the surface to be coated by degreasing and grit blasting. The cleaned valve is next inserted so that its head is surrounded by an induction coil providing localized heating, whereby the surface to be coated is raised to a temperature of approximately 1700 F. within about fifteen seconds and a nickel-chromium alloy sprayed on the face of said valve immediately after its withdrawal from the coil. Immediately after application of the nickel-chromium spray coating, the head of the valve is reinserted in the induction coil and heated to a djfiusion temperature of approximately 2100 F. for a period of about one minute, and then permitted to cool gradually in air prior to machining. After the coated valve has been machined and degreased, the head is reinserted in an induction coil, whereby it is preheated to approximately 500 F. in a matter of seconds, and then withdrawn from the coil to permit an aluminum spray coating to be applied over the nickel-chromium alloy coating. The coated valve is once again reinserted into the induction coil and heated to a temperature of about 2000" F. for a period of approximately four minutes to provide controlled interdiffusion of the aluminum and nickel-chromium alloy coating forming thereby the corrosion and wear resistant layer having a hardness in the range of about 48 to 58 Rockwell C. The valve is then permitted to cool gradually in air to room temperature, at which time it is ready for use.
Variations to this processing sequence include the application of the nickel-chromium corrosion-resistant alloy to the head as well as to the seat face of the valve in cases where head corrosion protection is also desired. Moreover, instead of applying a spray coating of aluminum to only the seat face of the valve, it may be desired to also apply a protective coating of aluminum on the head portion of the valve, which may be either uncoated or coated with the nickel-chromium alloy and in which case it is preferred to dip the entire head of the valve in a bath of molten aluminum. The individual treating steps are, of course, adaptable to integration by automation whereby the metallic article or valve to be coated can be automatically processed starting with the uncoated object through to the finished product.
While it will be apparent that the preferred embodiment herein illustrated is well calculated to fulfill the objects above stated, it will be appreciated that the invention is susceptible to modification, variation and change without departing from the proper scope or fair meaning of the subjoined claims.
What is claimed is:
1. A metal article comprised of a ferrous base stainless alloy having on at least a portion of its surface a hard, corrosion-resistant surface coating, said coating consisting essentially of between about 35 and about 62 weight percent nickel, between about 1 and about 18 weight percent chromium, and between about 35 and about 50 weight percent aluminum, said coating being interposed between an underlying coating tenaciously bonded to the surface of the metal article and an outer coating, said underlying coating consisting of a metal selected from the group consisting of nickel and chromium, and nickel and chromium alloys comprised of at least 90 weight percent of the elements nickel and chromium, said nickel content ranging from about 97 to about 70 weight percent, said chromium content ranging from about 3 to about 30 weight percent, said outer coating consisting of a metal selected from the group consisting of aluminum and alloys of aluminum comprised of at least 90 weight percent aluminum.
2. A metal article comprised of a nickel base stainless alloy having on at least a portion of its surface a hard,
corrosion-resistant surface coating, said coating consisting essentially of between about 35 and about 62 weight percent nickel, between about 1 and about 18 weight percent chromium, and between about 35 and about 50 weight percent aluminum, said coating being interposed between an underlying coating tenaciously bonded to the surface of the metal article and an outer coating, said underlying coating consisting of a metal selected from the group consisting of nickel and chromium, and nickel and chromium alloys comprised of at least weight percent of the elements nickel and chromium, said nickel content ranging from about 97 to about 70 weight percent, said chromium content ranging from about 3 to about 30 weight percent said outer coating consisting of a metal selected from the group consisting of aluminum and alloys of aluminum comprised of at least 90 Weight percent aluminum.
3. A metal article comprised of a stainless alloy havmg on at least a portion of its surface a hard, corrosionresistant coating, said coating consisting essentially of between about 35 and about 62 weight percent nickel, between about 1 and about 18 weight percent chromium, and between about 35 to about 50 weight percent aluminum, said coating comprising a phase of Al (Ni,Cr) and a phase of alpha alumina, said coating having a thickness of between about 0.0003 and about 0.004 inch. and interposed between an underlying coating tenaciously bonded to the surface of the metal article and an outer coating, said underlying coating consisting of a metal selected from the group consisting of nickel and chromium, and nickel and chromium alloys comprised of at least 90 weight percent of the elements nickel and chromium, said nickel content ranging from about 97 to about 70 weight percent, said chromium content ranging from about 3 to about 30 weight percent, and said outer coating consisting of a metal selected from the group consisting of aluminum and alloys of aluminum comprised of at least 90 weight percent aluminum.
4. A metal article having a coating on at least a portron of its surface as described in claim 3, wherein said metal article is a valve of an internal combustion engine, said valve comprised of a ferrous base stainless alloy.
5. A metal article having a coating on at least a portion of ts surface as described in claim 3 wherein said metal article is a valve of an internal combustion engine, and said valve comprised of a nickel base stainless alloy.
References Cited in the file of this patent UNITED STATES PATENTS 873,746 Haynes Dec. 17, 1907 1,520,549 Otto Dec. 23, 1924 1,555,578 Howe Sept. 29, 1925 1,802,695 Bennett Apr. '28, 1931 1,895,556 Smith Jan. 31, 1933 1,983,415 Strosacker Dec. 4, 1934 1,998,496 Fiedler Apr. 23, 1935 2,008,862 Guetti July 23, 1935 2,034,539 Sharp Mar. 17, 1936 2,390,805 Merryman Dec. 11, 1945 2,402,834 Nachtamn June 25, 1946 2,450,803 Johnson Oct. 5, 1948 2,478,037 Brem'ian Aug. 2, 1949 2,505,896 Hedlund May 2, 1950 2,514,873 Keene July 11, 1950 2,637,686 McKay May 5, 1953 2,664,874 Graham Jan. 5, 1954 2,687,565 Schaefer Aug. 31, 1954 2,756,489 Morris July 31, 1956 2,853,768 Boucek Sept. 30, 1958 2,859,158 Schaer Nov. 4, 1958 2,957,782 Boller Oct. 25, 1960 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No 3,165 ,823 January 19, a 1965 Edward P. Rowady It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Column 2 line 29 for "many" read may column 5 line 3, for "nickel-aluminum: read nickel-chromium line 7, for "that", first occurrence, read than column 6, line 46, for "ariplanes" read airplanes Signed and sealed this 10th day of-August 1965.
(SEAL) Attest:
ERNEST W. SWIDER EDWARD J. BRENNER Attesting Officer Commissioner of Patents

Claims (1)

1. A METAL ARTICLE COMPRISED OF A FERROUS BASE STAINLESS ALLOY HAVING ON AT LEAST A PORTION OF ITS SURFACE A HARD, CORROSION-RESISTANT SURFACE COATING, SAID COATING CONSISTING ESSENTIALLY OF BETWEEN ABOUT 35 AND ABOUT 62 WEIGHT PERCENT NICKEL, BETWEEN ABOUT 1 AND ABOUT 18 WEIGHT PERCENT CHROMIUM, AND BETWEEN ABOUT 35 AND ABOUT 50 WEIGHT PERCENT ALUMINUM, SAID COATING BEING INTERPOSED BETWEEN AN UNDERLYING COATING TENACIOUSLY BONDED TO THE SURFACE OF THE METAL ARTICLE AND AN OUTER COATING, SAID UNDERLYING COATING CONSISTING OF A METAL SELECTED FROM THE GROUP CONSISTING OF NICKEL AND CHROMIUM, AND NICKEL AND CHROMIUM ALLOYS COMPRISED OF AT LEAST 90 WEIGHT PERCENT OF THE ELEMENTS NICKEL AND CHROMIUM, SAID NICKEL CONTENT RANGING FROM ABOUT 97 TO ABOUT 70 WEIGHT PERCENT, SAID CHROMIUM CONTENT RANGING FROM ABOUT 3 TO ABOUT 30 WEIGHT PERCENT, SAID OUTER COATING CONSISTING OF A METAL SELECTED FROM THE GROUP CONSISTING OF ALUMINUM AND ALLOYS OF ALUMINUM COMPRISED OF AT LEAST 90 WEIGHT PERCENT ALUMINUM.
US823214A 1959-06-26 1959-06-26 Metallic surface coating and method for making the same Expired - Lifetime US3165823A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US823214A US3165823A (en) 1959-06-26 1959-06-26 Metallic surface coating and method for making the same
GB3566/60A GB949612A (en) 1959-06-26 1960-02-01 A process for supplying a coating on at least a portion of a metallic surface and a metal article produced in such process
US343174A US3338733A (en) 1959-06-26 1963-12-30 Method of coating metallic surfaces with layers of nickel-chromium and aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US823214A US3165823A (en) 1959-06-26 1959-06-26 Metallic surface coating and method for making the same

Publications (1)

Publication Number Publication Date
US3165823A true US3165823A (en) 1965-01-19

Family

ID=25238103

Family Applications (1)

Application Number Title Priority Date Filing Date
US823214A Expired - Lifetime US3165823A (en) 1959-06-26 1959-06-26 Metallic surface coating and method for making the same

Country Status (1)

Country Link
US (1) US3165823A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113248A (en) * 1976-05-07 1978-09-12 Aikoh Co., Ltd. Baseball bat made of light alloy
US20090214888A1 (en) * 2003-08-18 2009-08-27 Upchurch Charles J Method and apparatus for producing alloyed iron article
US8557397B2 (en) 2011-12-29 2013-10-15 Arcanum Alloy Design Inc. Metallurgically bonded stainless steel
US8628861B2 (en) 2011-12-29 2014-01-14 Arcanum Alloy Design Inc. Metallurgically bonded stainless steel
US8790790B2 (en) * 2011-12-29 2014-07-29 Arcanum Alloy Design, Inc. Metallurgically bonded stainless steel
US10871124B2 (en) * 2018-08-02 2020-12-22 Ford Global Technologies, Llc Coated valve seat region of an internal combustion engine
US10876198B2 (en) 2015-02-10 2020-12-29 Arcanum Alloys, Inc. Methods and systems for slurry coating
US11261516B2 (en) 2016-05-20 2022-03-01 Public Joint Stock Company “Severstal” Methods and systems for coating a steel substrate

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US873746A (en) * 1907-05-03 1907-12-17 Elwood Haynes Metal alloy.
US1520549A (en) * 1923-05-24 1924-12-23 Johnson Service Co Thermostatic couple
US1555578A (en) * 1923-11-06 1925-09-29 Gen Electric Treatment of metals
US1802695A (en) * 1924-06-26 1931-04-28 Metropolitan Eng Co Bimetallic protective coating for iron tubes
US1895556A (en) * 1931-02-05 1933-01-31 Smith Willoughby Statham Magnetic alloy
US1983415A (en) * 1930-10-31 1934-12-04 Dow Chemical Co Process of thermally decomposing hydrocarbons
US1998496A (en) * 1929-04-09 1935-04-23 Fiedler Marcell Process of surface plating of metals with alloys
US2008862A (en) * 1935-03-12 1935-07-23 Lorenzo S Guetti Alloy
US2034539A (en) * 1934-03-10 1936-03-17 Edison General Elec Appliance Electric heater
US2390805A (en) * 1943-03-10 1945-12-11 Westinghouse Electric Corp Method of making metallic articles
US2402834A (en) * 1941-07-12 1946-06-25 John S Nachtman Manufacture of ductile stainless clad rolled steel strip
US2450803A (en) * 1942-01-24 1948-10-05 Thompson Prod Inc Method of making sheathed valves
US2478037A (en) * 1944-09-02 1949-08-02 Joseph B Brennan Method of applying a silver layer to a steel bearing blank
US2505896A (en) * 1944-04-22 1950-05-02 Eaton Mfg Co Construction of composite metal articles
US2514873A (en) * 1945-06-30 1950-07-11 Superior Steel Corp Bimetallic billet
US2637686A (en) * 1949-04-02 1953-05-05 Int Nickel Co Process of producing drawn articles
US2664874A (en) * 1947-06-23 1954-01-05 Shell Dev Coated metal product and method of producing same
US2687565A (en) * 1951-02-21 1954-08-31 Clevite Corp Method of bonding aluminum to steel
US2756489A (en) * 1946-05-03 1956-07-31 Howard E Morris Metal alloy
US2853768A (en) * 1956-02-28 1958-09-30 United States Steel Corp Overhead conductor
US2859158A (en) * 1957-01-31 1958-11-04 Glenn R Schaer Method of making a nickel-chromium diffusion alloy
US2957782A (en) * 1956-07-13 1960-10-25 Boller Dev Corp Process for coating ferrous metals

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US873746A (en) * 1907-05-03 1907-12-17 Elwood Haynes Metal alloy.
US1520549A (en) * 1923-05-24 1924-12-23 Johnson Service Co Thermostatic couple
US1555578A (en) * 1923-11-06 1925-09-29 Gen Electric Treatment of metals
US1802695A (en) * 1924-06-26 1931-04-28 Metropolitan Eng Co Bimetallic protective coating for iron tubes
US1998496A (en) * 1929-04-09 1935-04-23 Fiedler Marcell Process of surface plating of metals with alloys
US1983415A (en) * 1930-10-31 1934-12-04 Dow Chemical Co Process of thermally decomposing hydrocarbons
US1895556A (en) * 1931-02-05 1933-01-31 Smith Willoughby Statham Magnetic alloy
US2034539A (en) * 1934-03-10 1936-03-17 Edison General Elec Appliance Electric heater
US2008862A (en) * 1935-03-12 1935-07-23 Lorenzo S Guetti Alloy
US2402834A (en) * 1941-07-12 1946-06-25 John S Nachtman Manufacture of ductile stainless clad rolled steel strip
US2450803A (en) * 1942-01-24 1948-10-05 Thompson Prod Inc Method of making sheathed valves
US2390805A (en) * 1943-03-10 1945-12-11 Westinghouse Electric Corp Method of making metallic articles
US2505896A (en) * 1944-04-22 1950-05-02 Eaton Mfg Co Construction of composite metal articles
US2478037A (en) * 1944-09-02 1949-08-02 Joseph B Brennan Method of applying a silver layer to a steel bearing blank
US2514873A (en) * 1945-06-30 1950-07-11 Superior Steel Corp Bimetallic billet
US2756489A (en) * 1946-05-03 1956-07-31 Howard E Morris Metal alloy
US2664874A (en) * 1947-06-23 1954-01-05 Shell Dev Coated metal product and method of producing same
US2637686A (en) * 1949-04-02 1953-05-05 Int Nickel Co Process of producing drawn articles
US2687565A (en) * 1951-02-21 1954-08-31 Clevite Corp Method of bonding aluminum to steel
US2853768A (en) * 1956-02-28 1958-09-30 United States Steel Corp Overhead conductor
US2957782A (en) * 1956-07-13 1960-10-25 Boller Dev Corp Process for coating ferrous metals
US2859158A (en) * 1957-01-31 1958-11-04 Glenn R Schaer Method of making a nickel-chromium diffusion alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113248A (en) * 1976-05-07 1978-09-12 Aikoh Co., Ltd. Baseball bat made of light alloy
US20090214888A1 (en) * 2003-08-18 2009-08-27 Upchurch Charles J Method and apparatus for producing alloyed iron article
US8137765B2 (en) 2003-08-18 2012-03-20 Upchurch Charles J Method of producing alloyed iron article
US8557397B2 (en) 2011-12-29 2013-10-15 Arcanum Alloy Design Inc. Metallurgically bonded stainless steel
US8628861B2 (en) 2011-12-29 2014-01-14 Arcanum Alloy Design Inc. Metallurgically bonded stainless steel
US8784997B2 (en) * 2011-12-29 2014-07-22 Arcanum Alloy Design, Inc. Metallurgically bonded stainless steel
US8790790B2 (en) * 2011-12-29 2014-07-29 Arcanum Alloy Design, Inc. Metallurgically bonded stainless steel
US10876198B2 (en) 2015-02-10 2020-12-29 Arcanum Alloys, Inc. Methods and systems for slurry coating
US11261516B2 (en) 2016-05-20 2022-03-01 Public Joint Stock Company “Severstal” Methods and systems for coating a steel substrate
US10871124B2 (en) * 2018-08-02 2020-12-22 Ford Global Technologies, Llc Coated valve seat region of an internal combustion engine

Similar Documents

Publication Publication Date Title
US3338733A (en) Method of coating metallic surfaces with layers of nickel-chromium and aluminum
US3819338A (en) Protective diffusion layer on nickel and/or cobalt-based alloys
US3719519A (en) Process of forming protective coatings on metallic surfaces by spraying a combination of powders of a metal alloy,chromium and a ceramic oxide
US3961098A (en) Coated article and method and material of coating
US3692554A (en) Production of protective layers on cobalt-based alloys
DE102014211366A1 (en) Method for producing an oxidation protection layer for a piston for use in internal combustion engines and pistons with an oxidation protection layer
GB2129017A (en) Forming protective diffusion layer on nickel cobalt and iron base alloys
EP1094131B1 (en) A corrosion protective coating for a metallic article and a method of applying a corrosion protective coating to a metallic article
US3957454A (en) Coated article
US3779720A (en) Plasma sprayed titanium carbide tool steel coating
US3165823A (en) Metallic surface coating and method for making the same
US3827920A (en) Method for forming a wear-resistant surface on a metal article
US2664874A (en) Coated metal product and method of producing same
CA1177283A (en) Layer resistant to frictional wear and produced by thermal spraying
US2788290A (en) Method of forming a protective coating on a molybdenum-base article
US2900715A (en) Protection of titanium
US3573963A (en) Method of coating nickel base alloys with a mixture of tungsten and aluminum powders
AU601130B2 (en) Metallic coating of improved life
US2988807A (en) Method of aluminizing cobalt base alloys and article resulting therefrom
US2875090A (en) Methods of forming superficial diffusion alloys on metal pieces and especially refractory metal pieces
US3053689A (en) Process of coating austenitic steel with chromium alloy coatings
US3953193A (en) Coating powder mixture
US3865634A (en) Heat resistant alloy for carburization resistance
US3197291A (en) Ceramic coated corrosion-resistant product
US3298936A (en) Method of providing high temperature protective coatings