US3162633A - Perfluoroguanamines - Google Patents

Perfluoroguanamines Download PDF

Info

Publication number
US3162633A
US3162633A US192090A US19209062A US3162633A US 3162633 A US3162633 A US 3162633A US 192090 A US192090 A US 192090A US 19209062 A US19209062 A US 19209062A US 3162633 A US3162633 A US 3162633A
Authority
US
United States
Prior art keywords
parts
mole
perfluoroguanamines
fabric
employed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US192090A
Inventor
John T Shaw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to GB43299/59A priority Critical patent/GB923086A/en
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Priority to US192090A priority patent/US3162633A/en
Application granted granted Critical
Publication of US3162633A publication Critical patent/US3162633A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds

Definitions

  • This invention relates to a novel class of guanamines and more particularly to perfluoroguanamines and the method of preparing the same.
  • the present invention relates to the application of the above-said novel perfluoroguanamines to various bases, and in particular, bases of proteinaceous or cellulosic origin to achieve a number of desirable elfects, including insect repellency and the provision of germicidal, grease and oil resistance to such bases.
  • the perfluoroguanarnines of this invention may be defined by the following general formulas:
  • n may be an integer between 1 and 14
  • m is an integer between 0 and 9
  • R to R are selected from the group consisting of H, alkyl, cycloalkyl, allyl, phenyl, substituted phenyl, or CH OR wherein R is H or lower alkyl containing 1 to 4 carbon atoms.
  • perfluoroguanamines includes perfluoroguanarnines per se, their formaldehyde condensates, or methylol guanamines, and the alkylated or etherified perfiuoroguanamine-formaldehyde condensates or methylol guanamines.
  • An object of the present invention is to provide a novel class of perfiuoroguanamines, as that term is hereinabove identified, and a novel process for the preparation of said perfiuoroguanaminegwn
  • a further object of this invention is to provide a process for the preparation of perfluoroguanamines contemplated by this invention, which process is not applicable to the preparation of other corresponding perhaloguanamines, as for example, perchloro or perbromoguanamine compounds.
  • a further object of this invention isto provide a process for treating base materials, such as proteinaceous or cellulosic base materials, to impart a number of desirable effects thereto, including insect repellency, grease and oil repellency, germicidal activity, and with respect to cellulosic textile materials, such properties as crease resistence and shrinkage control.
  • base materials such as proteinaceous or cellulosic base materials
  • a still further object of the present invention is to provide base materials of proteinaceous or cellulosic origin characterized by the above-enumerated and other desirable properties.
  • perfluoroguanamines of this invention may be defined by the following general formulas:
  • n is an integer between 1 and 14, inclusive
  • m is an integer between 0 and 9, inclusive
  • R to R are hydrogen, alkyl, cycloalkyl, ally], phenyl, or sub s'tituted phenyl.
  • perfiuoroguanamines contemplated by this invention may be converted to Inethylol perfluoroguanamines by employing procedures normally involved in the methylolation of an aminoplast with aldehydes, and more specifically, with formaldehyde or formaldehyde-engendering substances such as paraformaldehyde, hexamethylene tetramine, and other known equivalents.
  • a suitable perfluoroguanarnine is reacted at an alkaline pH usually from between about 7.5 and 10, with from between about 1 and about 9 moles of formaldehyde, depending upon the number of available hydrogens and extent of methylolation or condensation desired.
  • the perfiuoroguanamines typified by general Formulas I and II above, if not substituted, contain four replaceable hydrogens (Formula I) or 8 replaceable hydrogens (Formula II) prior to methylolation. Normally, a slight excess of the formaldehyde is required to achieve a given or desired degree of methylolation.
  • methylolation may be considered to be complete when the solution clears.
  • the amount of methylolation to be achieved or required is dependent upon end use. Where it is only necessary to provide a means of attachment of the guanamine molecules to a fiber, as for example, in moth proofing or grease proofing of the fiber or fabric formed therefrom, a monomethylol derivative of the guanamines contemplated by this invention is for the most part suitable. However, where the methylol perfiuoroguanamine is to be employed to impart crease proofing or shinkage control to the base material, as for example, a cellulosic fabric, in addition to imparting certain of the special properties identified above, two or more methylol groups are required.
  • methylol perfluoroguanamines of this invention may be etherified or alkylated by employing known methods usuable in the etherification of methylol aminoplast resins.
  • alkylation or etherification is carried out on the acid side, where the methylol perfluoroguanamine is reacted with a saturated monohydric aliphatic alcohol containing from 1 to 4 carbon atoms.
  • the amount of alcohol required to achieve a given degree of etherification depends upon the degree of etherification desired and the number of moles of combined formaldehyde or methylol groups in the perfluoroguanamine molecule.
  • a slight molecular excess of the selected alcohol should be employed to achieve etherification of a combined mole of formaldehyde.
  • the perfluoroguanamine contains two methylol groups, and it is desired to fully etherify these groups, from between 2 to 3 moles of alcohol should be employed.
  • etherification may be carried out at temperatures from between about 30 C. to 100 C., and preferably from between 35 to C., employing a pH of from between about 1 and about 6.
  • the reaction is carried out until etherification is complete, which is evidenced by the clearness of the solution, and thereafter, the pH of the solution is neutralized by adjusting to a pH of between 7 and 8 to prevent further reaction and polymerization.
  • the methylol and alkylated methylol perfluoroguanamines of the present invention are preferably Water-soluble.
  • the degree of solubility in general, is determined by the number of methylol groups attached to the perfluoroguanamine molecule and by the length of the perfluoroalkyl chain in the molecule. In general, solubility is increased by increasing the number of methylol groups and by shortening the perfluoroalkyl chain.
  • the perfluoroguanamines having less than complete solubility in water may be employed in aqueous dispersions, in water-alcohol mixtures, or in solution in organic solvents therefor.
  • perfluoroguanamines and their methylolated and alkylated methylol derivatives be in monomeric form for the utility to be described more fully hereinafter, or be only partially polymerized, since a high degree of polymerization adversely atfects the water solubility of these materials.
  • a suitable perfiuoroalkane carboxylic acid ester is reacted with a biguanide, normally and preferably using a slight excess of the ester.
  • the reaction is carried out at a temperature of from between 15 C. and C. and preferably from between 35 and 65 until the guanamine is formed, which is generally indicated by the formation of a precipitate.
  • the resulting precipitate is then filtered off and dried, or it may be condensed with formaldehyde and etherified, in accordance with the general procedure outlined above.
  • perfluoroalleane carboxylic acids used as the starting material in the preparation of the esters and diesters employable in the process of this invention are well-known and are described in U.S. Patent No. 2,657,011 and No. 2,693,458, while the perfluoro dicarboxylic acids are disclosed in US. Patent No. 2,715,107 and in Industrial and Engineering Chemistry, 39, at page 415.
  • the preparation of the esters of these perfluorocarboxylic acids may be accomplished in accordance with standard procedures well known to those skilled in the art, which means will be exemplified in the following examples.
  • N- substituted biguanides which may be employed, the following are illustrative: l-methylbiguanide; l-ethylbiguanide; l-n-propylbiguanide; l-isopropylbiguanide; l-n-butylbiguanide; l-isobutylbiguanide; 1-sec.-butylbiguanide; l-nhexylbiguanide; .1-sec.-octylbiguanide; l-n-decylbiguanide; l-n-dodecylbiguanide; l-n-octadecylbiguanide; l-cyclohexylbiguanide; l-allylbiguanide; l-phenylbiguanide; l-(pchlorophenyl)biguanide; 1,5-diethylbiguanide; 1,5-bis(
  • guanamines with saturated straight chain perfl-uoroalkyl or alkylene groups While, in general, the present invention has been described with respect to guanamines with saturated straight chain perfl-uoroalkyl or alkylene groups, guanamines with branched chain or unsaturated perfluoroalkyl or alkylene groups are also contemplated.
  • Example 1 Trifluroacetoguanamine ('1 Fa o Eight parts (0.0562 mole) of ethyl trifiuoroacetate was added portionwise with stirring to a solution of 5.1 parts (0.051 mole) of biguanide in v18 parts of methanol at 35 C. The rate of addition was such that the solution boiled very gently. A precipitate formed, and after stirring for 48 hours at room temperature, the precipitate was filtered off and dried. The product, a white solid, weighed 6.2 parts and sublimed at 318-323" C. (Recrystallization of the product from methanol gave no improvement in the sublimation point.)
  • Example 2.-Trifluoroaoetoguamimine The methyl trifluoroacetate used in this example was prepared by mixing 100 parts (0.968 mole) of concentrated sulfuric acid and 56 parts (1.76 moles) of absolute methanol in the cold and adding at 0-5 C. 100 parts (0.88 mole) of trifluoroacetic acid over a period of 1 hour with stirring. After standing overnight, the mixture was stirred for 2 hours while refluxing. The resulting solution, after cooling to room temperature and drying over anhydrous calcium sulfate for 30 minutes, was distilled in the presence of parts of phosphoric anhydride. 82 parts (73.5%) of methyl trifiuoroacetate boiling at 4344 C. was obtained.
  • Example 3 Polymethylol Trifluoroacetoguanamine Ten'parts (0.055 mole) of trifluoroacetoguanamine was added portionwise to -17.8 parts of a 37% solution of formaldehyde, containing 6.6 parts (0.22 mole) of formaldehyde, with the pH adjusted to 11.6 with sodium hydroxide. The mixture was heated at 75-80 C. for 30 minutes in order to obtain a complete solution. Analysis of this solution showed that 3.5 moles of formaldehyde had reacted with the guanamine.
  • the methyl pentafluoropropionate used in this example was prepared by adding dropwise 34 parts (1.06 moles) of methyl alcohol to a mixture of 49 parts (0.5 mole) of concentrated sulfuric acid and 164 parts (1.0 mole) of pentafluoropropionic acid at 0 C. After refluxing for 19 hours, the product was distilled twice in the presence of phosphoric anhydride. The distillate, boiling at 60- 61.5 C., weighed 107 parts (60.9% of theory).
  • Example 5 P0lymethyl0l Pentafluoropropioguanamine
  • Example 6 H eptafluorobuiyroguanam inc
  • the methyl heptafiuorobutyrate used in this example was prepared by adding a mixture of 64 parts (2 moles) of methanol and parts (1.1 moles) of concentrated sulfuric acid at 5 C. to 214 parts (1.0 mole) of heptafiuorobutyric acid also at -5 C.
  • the reaction mixture was stirred while allowing to warm to room temperature and for an additional 4 hours at room temperature, followed by standing overnight. After refiuxing for 2 hours, distillation of this material gave 210.5 g. of liquid boiling at 70-80 C.
  • the product, after redistilling in the presence of phosphoric anhydride weighed 196 g. and boiled at 80-81 C.
  • Example 8 Perztadecafluorocapryloguanamine 1 F 2) 0O a ('LNH.
  • the methyl pentadecafluorocaprylate required for this example was prepared by adding 103.5 parts (0.25 mole) of pentadecafluorocaprylic acid portionwise to a mixture of 32 parts (0.326 mole) of concentrated sulfuric acid and 16 parts (0.5 mole) of methanol while keeping the temperature at C. After stirring for two hours at room temperature, the resulting emulsion was allowed to stand overnight and was then refluxed for two hours. On cooling, two layers formed, and the lower layer was separated and distilled in the presence of 16 parts of sulfuric acid. The fraction boiling at 157-160 C. was redistilled in the presence of phosphoric anhydride. The desired ester, boiling at 157-458 C., weighed 56 g. (52.3% of theory).
  • Example 1.0 ---Heptaeosaflaoromyristoguanamine (0 F2) 12 C F a
  • Example 11 Hexafla0r0glutar0guanamine 5.31 parts (0.0198 mole) of dimethyl hexafluoroglutarate was added at room temperature over a 5-10-minute period to a solution of 3.21 parts (0.32 mole) of biguanide in 40 parts of methanol. Stirring was continued for one hour at room temperature and for 1.5 hours at the reflux temperature. After cooling in an ice-water bath, the white precipitate was filtered off and washed. The product Weighed 5 parts and melted above 320 C.
  • Example 13 -N-n-Butyl-Triflaoroacetoguanamine C Fa To a solution of 3.86 parts (0.02 mole) of l-n-butylbiguanide hydrochloride and 1.18 parts (0.02 mole) of sodium methoxide in 60 parts of methanol there was added 2.76 parts (0.022 mole) of methyl trifiuoroacetate. After stirring for four days at room temperature, the solution was poured into about parts of water. The precipitate was filtered off, and after drying, it weighed 2.75 parts and melted at 98100 C.
  • Example 14 --N-Et/zyl-Trifluoroacetoguanamine N H2N
  • the method of Example 13 is used, substituting 3.30 parts (0.02 mole) of l-ethylbiguanide hydrochloride for the l-n-butylbiguanide hydrochloride.
  • Example 13 The method of Example 13 is used, substituting an equivalent quantity of l-n-octadecylbiguanide hydrochloride for the l-n-butylbiguanide hydrochloride.
  • Example 1 6.-N-Cycl0l7exyl-Tr'ifluoroacetoguanamine N CHr-CH N, 27.4. Found: c, 47.2;1-1, 3.15;N, 27.5.
  • Example 1 8 -N,N'-Bis(p-Ch loroplzenyl) Triflrloroacetoguanamine
  • a mixture of 10.8 parts (0.033 M) of 1,5-bis(p-chlorophenyl) biguanide, 8.5 parts (0.066 mole) of methyl trifluoroacetate, 1.6 parts (0.039 mole) of sodium methoxide and 120 parts of methanol was heated at 100 C. in an autoclave for 24- hours. After the reaction mixture was cooled and poured into about 200 parts of Water, the precipitate was separated by filtration and dried. The product, after purification by crystallization from dioxane, melted at 182-185" C.
  • Example 21 -Trichloroacetoguanamine ('3 C13 o t r HgN-C (i-NH;
  • the perfiuoroguanamines of this invention may be applied to suitable bases, primarily those of a protienaceous or cellulosic characteristic, to impart a Wide variety of affects.
  • suitable bases primarily those of a protienaceous or cellulosic characteristic
  • they may be applied from aqueous, wateralcohol or solvent solutions, or aqueous dispersions by spraying, immersion, dipping, padding, or the like.
  • the perfluoroguanamines of this invention may be applied to fibers of either a protienaceous or cellulosic origin or the materials formed therefrom, such as textile fabrics, woven or non-Woven, including felted, wood, paper, or cellulosic films.
  • protienaceous bases suitable examples of these include wool fibers and fabrics formed therefrom, furs, feathers, hair, hides and numerous other materials which may be treated alone or blended with nonprotienaceous materials, such as cellulosics, synthetic fibrous materials, such as nylons, acrylics, and the like.
  • nonprotienaceous materials such as cellulosics, synthetic fibrous materials, such as nylons, acrylics, and the like.
  • the application to protienaceous base materials of the perfluoroguanamines of this invention is for the purpose of imparting insect repellency, grease and oil resistance or repellency thereto.
  • cellulosic base materials are for the purpose of imparting grease and oil repellency thereto, as well as for the purpose of imparting dimensional stability and crease resistance, as in the case of cellulosic textile materials.
  • perfluoroguanarnines of this invention may be employed as hand modifiers.
  • textile materials as that and similar terms are employed herein, it is meant filaments, yarns, fibers and fabrics, whether the latter be felted, woven or non-Woven or otherwise formed.
  • cellulosic material as that and similar terms are employed herein, it is meant textile materials containing a substantial portion of cellulosic fibers, preferably at least 50%, such as cotton, regenerated cellulose, such as viscose, rayon, linen, hemp, jute, and the like.
  • Such fibers may be used alone or blended with synthetic or natural textile materials, as for example, the nylons, the acrylic fibers, polyester fibers, wool fibers, silk and the like.
  • these resinous compounds may be applied as solutions or dispersions by any of the several known methods for finishing textile materials.
  • they may be applied by spraying, im-
  • mersion, dipping, padding, or the like being the usually preferred and more conventional method.
  • an organic solvent such as dimethyl formamide or methanol or the like, or a mixture of water and dimethyl formamide or an alcohol, such as methanol, ethanol, or mixtures thereof, in order to obtain a solution which may be padded onto the fabric.
  • these compounds may be padded or applied from aqueous dispersions.
  • the application baths or treating solutions or dispersions may normally contain from 0.1 to 30% by weight of guanamines solids and preferably from between about 0.5 to about Curing catalysts are normally employed with the methylolated guanamines and their alkylated derivatives to provide a desirable rapid cure of the resins on the fiber.
  • Curing catalysts are normally employed with the methylolated guanamines and their alkylated derivatives to provide a desirable rapid cure of the resins on the fiber.
  • the curing catalysts that may be employed are the ammonium salts, such as ammonium chloride, amine salts like triethylamine hydrochloride, alkanolamine salts, like triethanolamine hydrochloride, metal salts, such as magnesium chloride, zinc nitrate or aluminum chloride, and the like, free acids, like oxalic, tartaric, and the like.
  • Catalyst concentrations may vary widely, depending upon the effectiveness of the catalyst itself, and the intended use of the resin treated base material. The range may be from about .5 to 25%, and in certain limited instances higher, based on the weight of the resin solids employed. More particularly, with ammonium salts, such as ammonium sulfate, it may vary from about .5 to 7.5%, based on the weight of the resin solids employed; with metal salts such as magnesium chloride, zinc nitrate, amounts of between 8 and 20% based on the weight of the resin solids is a preferred operating range. With amine or alkanolamine salts, such as isopropylamine hydrochloride, from about 1 to 10% catalyst concentration, based on the weight of the resin solids employed, is preferred.
  • the preferred method of treating textile materials, and specifically formed fabrics consists of padding the material through a suitable pad bath, followed by passing the wet material through squeeze rolls adjusted to control the amount of pad bath liquor picked up by the textile material. Thereafter, the treated or impregnated textile material is dried and, if need be, the resin cured.
  • the drying and curing may be accomplished in separate steps, or in one operation, if this is prefererd.
  • drying When drying is carried out in a separate step, it may be done at temperatures ranging from about 100 to 250 F. for from about three minutes to about one and one-half minute, respectively. These times and temperatures have been found to be eminently satisfactory, particularly for lightweight cellulosic fabrics. Heavier fabrics may require more time. Generally speaking, the length of time required is inversely proportional to the temperature at which drying is affected. Thus, somewhat longer periods of time will be required when lower temperatures are employed, and somewhat shorter periods of time will be required where higher temperatures are employed. Thereafter, curing of the resin on the treated fabric is carried out.
  • the time required for the cure is inversely proportional to the temperature.
  • the most preferred temperature and time range for the curing of dry fabrics are from about 4 minutes at about 275 F. to about 30 seconds at 450 F.
  • times from between about minutes at about 250 F. to about 3 minutes at about 350 F. have been found satisfactory. It should be noted that where the guanamines are unmethylolated, only drying is necessary to remove the carrier or solvent employed.
  • the guanamines containing long perfluoroalkyl groups appear to be best, and thus the preferred members within the scope of this invention are those having the longest alkyl or alkylene groups.
  • Example 22 -Applicati0ns 0f Perfluoroguanamines on Wool Solutions of certain of the perfluoroguanamines described in Examples 1-12 and 20 and 21 hereinabove were padded onto wool flanel from a solvent solution so as to impart the solids thereto indicated in Table I below. The fabric was then dried at 225 F.
  • Fabrics A and A-1 were dry cleaned and wet drycleaned" by the procedures of Example 23, and then tested for insect repeilency in a second series of tests. The results are shown in Table Ila.
  • the dry cleaning operation was carried out in the Dynamic Absorption Tester described on page 146 of the 1957 edition of the Technical Manual and Yearbook of the American Association of Textile Chemists and Colorists.
  • the cloth to be cleaned (265-g. load) was rotated in the above apparatus with 2,000 ml. of petrolcurn naphtha (Varsol) for 20 minutes. After centrifuging and steaming to remove the solvent, the cloth was pressed.
  • Varsol petrolcurn naphtha
  • the wet dry-cleaning operation was carried out in the same apparatus.
  • the cloth to be cleaned was rotated for 20 minutes with 2,300 ml. of petroleum naphtha and 160 ml. of a dry cleaning soap solution, prepared as described on p. 133, note 2, of the above reference.
  • the solvent was drained out of the apparatus and 2,300 ml. of fresh naphtha was added and the rotating was continued for 10 minutes. After centrifuging and steaming to remove the solvent, the cloth was pressed.
  • Example B Polymethylol pentafiuoropropioguanamme (Exam- 10 ple 5).
  • Example 24 -Applicatz'0n 0f Trifluoroacetoguanamine on Wool followeded by After-Treatment with Melamine Resin Acid Colloid 5.9% solution of triiluoroacetoguanamine in dimethyl formarnide was applied to wool flannel. A pick-up from the pad bath of 85% resulted in a 5% application on the weight of the fabric. After drying the fabric at 225 F. for 2 minutes, the fabric was passed through a pad bath containing 5.9% of an acid colloid of methylolated trirnethylol melamine.
  • the acid colloid was prepared by allowing a solution of 125 parts of methylolated trimethylol melamine and 74 parts of acetic acid in suiiicient water to give a final volume equivalent to 1000 parts of water to stand overnight. With an 85% pick-up, the application of the colloid was 5% on the weight of the fabric. The fabric was dried and cured for 15 minutes at 225 F.
  • Example 25 Applz'cati0n of Polymethylol Trifluoroacetoguanamine on Cotton
  • a solution consisting of 5.88 parts of polymethylol trifluoroacetoguanamine, 0.71 part of zinc nitrate, 25 parts of methanol and sufiicient water to make a total of 100 parts was padded onto x 80 cotton percale with pick-up on the weight of the fabric.
  • the wrinkle recovery was measured on a Monsanto Wrinkle Recovery Tester following the tentative test method 664956 described on page 158 of the 1957 Tech- 35 nical Manual and Yearbook of the American Association of Textile Chemists and Colorists, volume 33.
  • the yellowing index is calculated by the equation:
  • the washes referred to under Yellowing Index consisted of a 15-minute wash cycle at 140 F. in a solution containing 0.01% soap and 0.02% available chlorine (Clorax) at a liquor-to-cloth ratio of 7:1 in a Laundromat washer. Following bleaching, the fabrics were rinsed in water at 140 F. for three -minute cycles and then tumble-dried from 140 to 145 F. for 30 minutes.
  • Example 26 Application of Perfluoroguanamines 011 Cotton as Germicides 1% applications of the perfluoroguanamines identified in Table VI were made on 80 X 80 cotton percale from a solution of dimethyl formamide. The fabrics were dried at 225 F.
  • the treated fabrics Were tested for antibacterial activity by a standard Agar plate method.
  • This test is a convenient method for evaluating the extent of durability of the antibacterial activity of the textile finish, and involves the determination of the inhibition of the bac terial growth on a piece of textile placed on an Agar plate inoculated with various strains of bacteria.
  • the two commonly used strains are E. coli and S. aureus, which are strains usually employed in evaluation of antibacterial agents for various purposes.
  • the effectiveness of the finish may be determined.
  • Durability of the finish is determined by subjecting the treated textile to a series of repeated launderings. The number of times the material may be laundered before antibacterial activity decreases below an effective level will give a measure of the durability of the finish.
  • Efiective finishes show clear area at least under the If. 5 disc, with more effectively finished areas having a diameter greater than that of the disc itself. If the area of inhibition is greater than the area of the disc, the activity is given as the diameter of the clear area in millimeters. Otherwise, a rating of C denotes complete inhibition of bacterial growth under the disc; a rating of P denotes partial inhibition; and N denotes no inhibition or activity when S and VS denote slight and very slight inhibition. It should be noted that P is at least 50 to 75% inhibition under the test fabric.
  • Example 27 Application of Pentadccafluorocapryloguanamine on Cotton for Oil Repellency A 5.88% solution of pentadecafiuorocapryloguanarnine in methanol was padded onto cotton percale with an pick-up on the weight of the fabric. The fabric, containing 5% of the guanamine, was dried at 225 F.
  • the treated fabric showed oil repellency lasting up to one-half hour.
  • the fabric had a smooth, soft and slightly full hand with no yellowing or other change in color.
  • Example 28 Applicati0n 0 Polymethylol Pentadecafluorocapiyloguanaminc on Cotton for Oil Repellency
  • a solution consisting of 5.88 parts of polymethylol pentadecafluorocapryloguanamine, 0.71 part of magnesium chloride, 35 parts of ethanol and sufficient water to make a total of parts, was padded onto cotton percale with an 85% pick-up on the weight of the fabric.
  • the fabric, containing 5% of the resin was dried for 2 minutes at 225 F. and cured for 1.5 minutes at 350 F.
  • a perfluoroguanamine of this invention may, where desirable, be employed with other conventional textile resins to achieve additional effects.
  • the guanamine contains no functional groups capable of reacting with the textile material, it may be desirable to employ the guanamines with other textile finishing resins, and more particularly, aminoplast textile finishing resins.
  • Prominent among this class of materials are the polymethylolated melamines, including those melamines having having from 2 to 6 moles of combined formaldehyde which may also have been condensed with from 2 to 6 moles of alcohol, preferably methanol.
  • Suitable examples of such polymethylol melamines include trimethylol melamine, trirnethoxymethyl melamine, trimethoxymethyl dimethylol melamine, tetramethylol melamine, and hexamethoxymethyl melamine.
  • these materials may be employed with urea formaldehyde resins including their alkylated derivatives, ethylene urea formaldehyde resins, 1,2-propylene urea formaldehyde resins, 1,3-propylene urea formaldehyde resins, other cyclic ureas of this type, and their alkylated derivatives.
  • these materials may be employed with other textile finishing agents not characterized as aminoplast resins, which may be either thermosetting or thermoplastic.
  • aminoplast resins which may be either thermosetting or thermoplastic.
  • phenol formaldehyde resins ketone formaldehyde resins, as for example, acetone formaldehyde resins
  • epoxy resins as for example, polyglycidyl ethers of polyhydric alcohols, such as the diglycidyl ether of ethylene glycol, and the like.
  • thermoplastic resins which may be mentioned are monoor homoploymers or copolymers of acrylates, such as methacrylate, ethylacrylate, butylacryllate, methylmethacrylate, butylmethacrylate, or copolymers of these or their equivalents. with styrene, including ring and chain substituted styrenes, acrylonitrile, polyvinyl chloride, polyvinyl acetate, and the like.
  • the compositions of this invention may obviously be employed with conventional textile treating agents, such as softeners, stiffeners, lubricants, dicyandiamide, and other known treating bath components.
  • Tetramethylol pentafluoropropioguanamine Tetramethylol heptafluorobutyroguanamine. Tetramethylol nonadecafiuorocapriguanamine. Octamethylol hexafluoroglutaroguanamine. Octamethylol hexadecafluorosebacognanamine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

United States Patent 3,162,633 PERFLUORGGUAI'JANHNE John T. Shaw. Middlesex, NJg, assignor to American (lyanarnid Company, Stamford, Cont-1., a corporation of Maine No Drawing. Original application Dec. 24, 1958, Ser. No. 782,640. Divided and this application May 3, 1962, Ser. No. 192,tl0
8 Claims. (Cl. 260-2499) This invention relates to a novel class of guanamines and more particularly to perfluoroguanamines and the method of preparing the same. In addition, the present invention relates to the application of the above-said novel perfluoroguanamines to various bases, and in particular, bases of proteinaceous or cellulosic origin to achieve a number of desirable elfects, including insect repellency and the provision of germicidal, grease and oil resistance to such bases.
The perfluoroguanarnines of this invention may be defined by the following general formulas:
where n may be an integer between 1 and 14, m is an integer between 0 and 9, and R to R are selected from the group consisting of H, alkyl, cycloalkyl, allyl, phenyl, substituted phenyl, or CH OR wherein R is H or lower alkyl containing 1 to 4 carbon atoms.
As indicated by the above general references to the perfluoroguanamines contemplated by this invention, the term perfluoroguanamines includes perfluoroguanarnines per se, their formaldehyde condensates, or methylol guanamines, and the alkylated or etherified perfiuoroguanamine-formaldehyde condensates or methylol guanamines.
The use of certain guanarnines and derivatives thereof as textile finishing resins has been recognized and they have been employed to achieve a wide variety of effects on textile materials, as for example the impartation of crease resistance thereto. As a typical illustration of this prior art, reference is made to US. Patent No. 2,3 85,766
An object of the present invention is to provide a novel class of perfiuoroguanamines, as that term is hereinabove identified, and a novel process for the preparation of said perfiuoroguanaminegwn A further object of this invention is to provide a process for the preparation of perfluoroguanamines contemplated by this invention, which process is not applicable to the preparation of other corresponding perhaloguanamines, as for example, perchloro or perbromoguanamine compounds.
A further object of this invention isto provide a process for treating base materials, such as proteinaceous or cellulosic base materials, to impart a number of desirable effects thereto, including insect repellency, grease and oil repellency, germicidal activity, and with respect to cellulosic textile materials, such properties as crease resistence and shrinkage control.
22 A still further object of the present invention is to provide base materials of proteinaceous or cellulosic origin characterized by the above-enumerated and other desirable properties.
THE PERFLUOROGUANAMINES OF THIS INVEN- TION AND THEIR METHOD OF MANUFACTURE The perfluoroguanamines of this invention may be defined by the following general formulas:
wherein n is an integer between 1 and 14, inclusive, m is an integer between 0 and 9, inclusive, and R to R are hydrogen, alkyl, cycloalkyl, ally], phenyl, or sub s'tituted phenyl.
As typical illustrations of the perfluoroguanamines of the invention, the following are illustrative:
These and the other perfiuoroguanamines contemplated by this invention may be converted to Inethylol perfluoroguanamines by employing procedures normally involved in the methylolation of an aminoplast with aldehydes, and more specifically, with formaldehyde or formaldehyde-engendering substances such as paraformaldehyde, hexamethylene tetramine, and other known equivalents. To achieve methylolation (the condensation of the perfiuoroguanamine with formaldehyde) a suitable perfluoroguanarnine is reacted at an alkaline pH usually from between about 7.5 and 10, with from between about 1 and about 9 moles of formaldehyde, depending upon the number of available hydrogens and extent of methylolation or condensation desired. Thus, it will be noted that the perfiuoroguanamines typified by general Formulas I and II above, if not substituted, contain four replaceable hydrogens (Formula I) or 8 replaceable hydrogens (Formula II) prior to methylolation. Normally, a slight excess of the formaldehyde is required to achieve a given or desired degree of methylolation. Thus, for example, if it is desirable to produce the monomethylol derivative, from between 1 and 2 moles of formaldehyde should be employed. If complete methylolation is desired, a slight excess of formaldehyde over that required to achieve full methylolation is employed. In methylolating the perfluoroguanamines in accordance with this invention, temperatures on the order of from between about 30 C. to 100 C. may be employed, and preferably temperatures from between about 35 up to about 85 C. are most eifective. In general, methylolation may be considered to be complete when the solution clears.
To a degree, the amount of methylolation to be achieved or required is dependent upon end use. Where it is only necessary to provide a means of attachment of the guanamine molecules to a fiber, as for example, in moth proofing or grease proofing of the fiber or fabric formed therefrom, a monomethylol derivative of the guanamines contemplated by this invention is for the most part suitable. However, where the methylol perfiuoroguanamine is to be employed to impart crease proofing or shinkage control to the base material, as for example, a cellulosic fabric, in addition to imparting certain of the special properties identified above, two or more methylol groups are required.
As examples of suitable methylol perfiuoroguanamines within the purview of the present invention, the following are illustrative:
trimethylol trifiuoroacetoguanarnine; tetramethylol trifiuoroacetoguanamine; trimethylol pentafiuoropropioguanamine; tetramethylol pentafluoropropioguanamine; tetramethylol heptafluorobutyroguanamine; tetramethylol nonfluorovaleroguanamine; trimethylol pentadecafiorocapryloguanamine; tetramethylol nonadecafiuorocapriguanamine; tetramethylol heptacosafluoromyristoguanamine; hexamethylol tetrafluorosuccinoguanamine; octamethylol hexafiuoroglutaroguanamine; octamethylol hexadecafluorosebacoguanamine; trimethylol N-ethyl-trifluoroacetoguanarnine; trimethylol N-n-butyl-trifluoroacetoguanamine; dimethylol N-cyclohexyl-pentafiuoropropioguanamine; trimethylol N-phenyl-heptocosafiuoromyristoguanamine; dimethylol N,N'-diethyl-trifluoroacetoguanamine; tetramethylol N,N"-di-n-butyl-hexafiuoroglutaroguanamine; methylol N,N'-diethyl-trifluoroacetoguanamine; and dimethylol N,N-diethyl-trifluoroacetoguanamine.
The methylol perfluoroguanamines of this invention may be etherified or alkylated by employing known methods usuable in the etherification of methylol aminoplast resins. In general, alkylation or etherification is carried out on the acid side, where the methylol perfluoroguanamine is reacted with a saturated monohydric aliphatic alcohol containing from 1 to 4 carbon atoms. The amount of alcohol required to achieve a given degree of etherification depends upon the degree of etherification desired and the number of moles of combined formaldehyde or methylol groups in the perfluoroguanamine molecule. In general, a slight molecular excess of the selected alcohol should be employed to achieve etherification of a combined mole of formaldehyde. Thus, for example, where the perfluoroguanamine contains two methylol groups, and it is desired to fully etherify these groups, from between 2 to 3 moles of alcohol should be employed.
Normally, etherification may be carried out at temperatures from between about 30 C. to 100 C., and preferably from between 35 to C., employing a pH of from between about 1 and about 6.
The reaction is carried out until etherification is complete, which is evidenced by the clearness of the solution, and thereafter, the pH of the solution is neutralized by adjusting to a pH of between 7 and 8 to prevent further reaction and polymerization. The methylol and alkylated methylol perfluoroguanamines of the present invention are preferably Water-soluble. The degree of solubility, in general, is determined by the number of methylol groups attached to the perfluoroguanamine molecule and by the length of the perfluoroalkyl chain in the molecule. In general, solubility is increased by increasing the number of methylol groups and by shortening the perfluoroalkyl chain. The perfluoroguanamines having less than complete solubility in water may be employed in aqueous dispersions, in water-alcohol mixtures, or in solution in organic solvents therefor.
It is generally preferred that the perfluoroguanamines and their methylolated and alkylated methylol derivatives be in monomeric form for the utility to be described more fully hereinafter, or be only partially polymerized, since a high degree of polymerization adversely atfects the water solubility of these materials.
As examples of suitable alkylated methylol perfluoroguanamines within the purview of the present invention, the following are illustrative: tris(methoxymethyl) trifiuoroacetoguanamine; tetrakis(methoxymethyl) triiluoroacetoguanamine; tris(methoxymethyl)methylol pentafluoropropioguanamme; tetrakis(ethoxymethyl) heptafiuorobutyroguanaminc; bis(methoxymethyl) bis(ethoxymethyl) pentadecafiuorocapryloguanamine;
tris(methoxymethyl) butoxymethyl heptacosafluoromyristoguanamine;
bis(ethoxymethyl) hexamethylol hexafiuoroglutaroguanamine;
N,N,N-tris(methoxymethyl)-N'-ethyl-trifiuoroacetoguanamine;
N,N-bis (methoxyrnethyl N-methylol-N'-ethyl-trifluoroacetoguanamine;
N,N-bis(methoxymethyl-N-n-butyl-trifiuoroacetoguanamine;
N-methoxymethyl-N-ethyl-pentafiuoropropioguanamine;
N,N"-bis(ethoxymethyl)-N,N'-di-n-butyl-hexafluoroglutaroguanamine.
The perfluoroguanamines per se, from which the methylolated and alkylated methylol derivatives may be derived, are prepared, in general, by reacting an ester of a perfluoroalkyl carboxylic acid with a biguanide. In general, and preferably, esters are lower alkyl esters, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, and the like, but the present invention is in nowise limited thereto. In the preparation of the perfiuoroguanamines per se, a suitable perfiuoroalkane carboxylic acid ester is reacted with a biguanide, normally and preferably using a slight excess of the ester. The reaction is carried out at a temperature of from between 15 C. and C. and preferably from between 35 and 65 until the guanamine is formed, which is generally indicated by the formation of a precipitate. The resulting precipitate is then filtered off and dried, or it may be condensed with formaldehyde and etherified, in accordance with the general procedure outlined above.
As will be seen more clearly hereinafter, the above generally described process is not suitable for the preparation of such perhalo guanamines as'tribromo and trichloroacetoguanamine. In this connection, methyl trifluoroacetate and biguanide will produce trifluoroacetoguanamine, but methyl tribromoacetate or methyl trichloroacetate and biguanide do not produce the corresponding trihaloacetoguanaminc. Reasons for this distinction are not known.
The perfluoroalleane carboxylic acids used as the starting material in the preparation of the esters and diesters employable in the process of this invention are well-known and are described in U.S. Patent No. 2,657,011 and No. 2,693,458, while the perfluoro dicarboxylic acids are disclosed in US. Patent No. 2,715,107 and in Industrial and Engineering Chemistry, 39, at page 415. The preparation of the esters of these perfluorocarboxylic acids may be accomplished in accordance with standard procedures well known to those skilled in the art, which means will be exemplified in the following examples.
Biguanides per se and N-substituted biguanides are generally well known, preparation of the latter beingdescribed in the literature, e.g., Monat., 9, 228 (1888); Ben, 62, 1394 (1929); Ben, 62, 1400' (1929). Among the N- substituted biguanides which may be employed, the following are illustrative: l-methylbiguanide; l-ethylbiguanide; l-n-propylbiguanide; l-isopropylbiguanide; l-n-butylbiguanide; l-isobutylbiguanide; 1-sec.-butylbiguanide; l-nhexylbiguanide; .1-sec.-octylbiguanide; l-n-decylbiguanide; l-n-dodecylbiguanide; l-n-octadecylbiguanide; l-cyclohexylbiguanide; l-allylbiguanide; l-phenylbiguanide; l-(pchlorophenyl)biguanide; 1,5-diethylbiguanide; 1,5-bis(pchlorophenyl)biguanide; and 1,1-diethylbiguanide.
While, in general, the present invention has been described with respect to guanamines with saturated straight chain perfl-uoroalkyl or alkylene groups, guanamines with branched chain or unsaturated perfluoroalkyl or alkylene groups are also contemplated.
in order to illustrate the present invention, the following examples are given primarily by way of illustration. No details contained therein should be construed as limitations on the present invention, except insofar as they appear in the appended claims. All parts are by Weight unless otherwise designated.
Example 1 .Trifluroacetoguanamine ('1 Fa o Eight parts (0.0562 mole) of ethyl trifiuoroacetate was added portionwise with stirring to a solution of 5.1 parts (0.051 mole) of biguanide in v18 parts of methanol at 35 C. The rate of addition was such that the solution boiled very gently. A precipitate formed, and after stirring for 48 hours at room temperature, the precipitate was filtered off and dried. The product, a white solid, weighed 6.2 parts and sublimed at 318-323" C. (Recrystallization of the product from methanol gave no improvement in the sublimation point.)
Analysis.Calcd. for C H N F C, 26.8; H, 2.25; N, 39.1. Found: C, 26.8; H, 2.43; N, 39.8.
Example 2.-Trifluoroaoetoguamimine The methyl trifluoroacetate used in this example was prepared by mixing 100 parts (0.968 mole) of concentrated sulfuric acid and 56 parts (1.76 moles) of absolute methanol in the cold and adding at 0-5 C. 100 parts (0.88 mole) of trifluoroacetic acid over a period of 1 hour with stirring. After standing overnight, the mixture was stirred for 2 hours while refluxing. The resulting solution, after cooling to room temperature and drying over anhydrous calcium sulfate for 30 minutes, was distilled in the presence of parts of phosphoric anhydride. 82 parts (73.5%) of methyl trifiuoroacetate boiling at 4344 C. was obtained.
To a solution of 58.7 parts (0.582 mole) of biguanide in 230 parts of absolute methanol, prepared at 50 C. and cooled to 35 C., there was added 82 parts (0.64 mole) of methyl triiluoroacetate over a period of 90 minutes. The mixture, after stirring overnight at room temperature, was cooled to 5 C. and filtered. The product,
, e a weighing 93.4 parts after drying in vacuo (89.9% of theory), sublime'd at 318321.5 C.
Example 3.Polymethylol Trifluoroacetoguanamine Ten'parts (0.055 mole) of trifluoroacetoguanamine was added portionwise to -17.8 parts of a 37% solution of formaldehyde, containing 6.6 parts (0.22 mole) of formaldehyde, with the pH adjusted to 11.6 with sodium hydroxide. The mixture was heated at 75-80 C. for 30 minutes in order to obtain a complete solution. Analysis of this solution showed that 3.5 moles of formaldehyde had reacted with the guanamine.
Example 4.Penrafluoropropioguanamine (I? F 20 F3 The methyl pentafluoropropionate used in this example was prepared by adding dropwise 34 parts (1.06 moles) of methyl alcohol to a mixture of 49 parts (0.5 mole) of concentrated sulfuric acid and 164 parts (1.0 mole) of pentafluoropropionic acid at 0 C. After refluxing for 19 hours, the product was distilled twice in the presence of phosphoric anhydride. The distillate, boiling at 60- 61.5 C., weighed 107 parts (60.9% of theory).
To a solution of 15.1 parts (0.15 mole) of biguanide in 48 parts of absolute methanol at 35 C., there was added portionwise with stirring 30.8 parts (0.173 mole) of methyl pentafluoropropionate. After stirring for 3 hours at room temperature, the reaction mixture was cooled and the precipitate was filtered off. The product, after washing with a little methanol and drying, weighed 25 parts (72.7% of theory) and melted at 255-257 C.
Crystallization of the product from methanol did not result in a higher melting point. (In another preparation by the same method, the yield was of theory.)
Example 5.-P0lymethyl0l Pentafluoropropioguanamine Example 6 .H eptafluorobuiyroguanam inc The methyl heptafiuorobutyrate used in this example was prepared by adding a mixture of 64 parts (2 moles) of methanol and parts (1.1 moles) of concentrated sulfuric acid at 5 C. to 214 parts (1.0 mole) of heptafiuorobutyric acid also at -5 C. The reaction mixture was stirred while allowing to warm to room temperature and for an additional 4 hours at room temperature, followed by standing overnight. After refiuxing for 2 hours, distillation of this material gave 210.5 g. of liquid boiling at 70-80 C. The product, after redistilling in the presence of phosphoric anhydride, weighed 196 g. and boiled at 80-81 C.
68.4 parts (03 mole) of methyl heptafiuorobutyrate was added to a solution of 26.2 parts (0.26 mole) of biguanide in 68 parts of absolute methanol at 35 C. The rate of addition was such that a gentle boil was maintained. After stirring for 48 hours at room temperature, the reaction mixture was cooled and the precipitate was filtered oil and dried. The product weighed 45.7 g. and
7 melted at 202-204 C. Concntration of the mother liquor gave an additional amount of 9.0 parts, or a total yield of 75.6% of theory.
Analysis.-Calcd. for C H F N t C, 25.8; H, 1.44; N, 25.1. Found: C, 26.0; H, 1.64; N. 25.2.
Example 7.Plymetlzyl0l Heptafluorobutyroguanamine Example 8 .Perztadecafluorocapryloguanamine 1 F 2) 0O a ('LNH.
The methyl pentadecafluorocaprylate required for this example was prepared by adding 103.5 parts (0.25 mole) of pentadecafluorocaprylic acid portionwise to a mixture of 32 parts (0.326 mole) of concentrated sulfuric acid and 16 parts (0.5 mole) of methanol while keeping the temperature at C. After stirring for two hours at room temperature, the resulting emulsion was allowed to stand overnight and was then refluxed for two hours. On cooling, two layers formed, and the lower layer was separated and distilled in the presence of 16 parts of sulfuric acid. The fraction boiling at 157-160 C. was redistilled in the presence of phosphoric anhydride. The desired ester, boiling at 157-458 C., weighed 56 g. (52.3% of theory).
42.8 parts of methyl pentadecafluorocaprylate (0.1 mole) was added portionwise to a solution of 9.1 parts (0.09 mole) of biguanide dissolved in 32 parts of absolute methanol, with the temperature rising from 35 to 56 C. While cooling in an ice bath. When about one-half of the ester had been added, it was necessary to add 55 parts of methanol in order to maintain a stirrable mixture. After stirring overnight, the precipitate was filtered off, and the filter cake was washed with methanol. The dried product weighed 20.8 parts and melted at 177-179 C. Concentration of the mother liquor gave an additional 5.5 parts, a total yield of 79.5% of theory.
Analysis.Calcd. for C I-I F N C, 25.0; H, 0.80; N, 14.6. Found: C, 25.0; H, 1.37; N, 14.7.
Example 9.N0nadecafluor0capriguanamine (C F 2) s F a This example was carried out as in Example 8, substituting equal moles of nonadecafluorocapric acid for the pentadecafluorocaprylic acid and of methyl nonadecafiuorocaprate for the methyl pentadecafluorocaprylate.
Example 1.0.---Heptaeosaflaoromyristoguanamine (0 F2) 12 C F a As in Example 8, substituting equal moles of heptacosafluoromyristic acid for the pentadecafluorocaprylic acid,
and of methyl heptacosafluoromyristate for the methyl pentadecafiuorocaprylate.
Example 11 .Hexafla0r0glutar0guanamine 5.31 parts (0.0198 mole) of dimethyl hexafluoroglutarate was added at room temperature over a 5-10-minute period to a solution of 3.21 parts (0.32 mole) of biguanide in 40 parts of methanol. Stirring was continued for one hour at room temperature and for 1.5 hours at the reflux temperature. After cooling in an ice-water bath, the white precipitate was filtered off and washed. The product Weighed 5 parts and melted above 320 C.
Example 12.Hexadecaflu0r0sebacoguanamine /C\ /C N/ i if H N( C-NH; H2N(5\ /CNH;
As in Example 11, substituting equal moles of dimethyl hexadecafiuorosebacate for the dimethyl hexafiuoroglutarate.
Example 13.-N-n-Butyl-Triflaoroacetoguanamine C Fa To a solution of 3.86 parts (0.02 mole) of l-n-butylbiguanide hydrochloride and 1.18 parts (0.02 mole) of sodium methoxide in 60 parts of methanol there was added 2.76 parts (0.022 mole) of methyl trifiuoroacetate. After stirring for four days at room temperature, the solution was poured into about parts of water. The precipitate was filtered off, and after drying, it weighed 2.75 parts and melted at 98100 C.
Analysis.Calcd. for C H F N C, 40.9; H, 5.14; N, 29.8. Found: C, 41.1; H, 5.19; N, 29.6.
Example 14.--N-Et/zyl-Trifluoroacetoguanamine N H2N The method of Example 13 is used, substituting 3.30 parts (0.02 mole) of l-ethylbiguanide hydrochloride for the l-n-butylbiguanide hydrochloride.
The method of Example 13 is used, substituting an equivalent quantity of l-n-octadecylbiguanide hydrochloride for the l-n-butylbiguanide hydrochloride.
Example 1 6.-N-Cycl0l7exyl-Tr'ifluoroacetoguanamine N CHr-CH N, 27.4. Found: c, 47.2;1-1, 3.15;N, 27.5.
Example 1 8 .-N,N'-Bis(p-Ch loroplzenyl) Triflrloroacetoguanamine A mixture of 10.8 parts (0.033 M) of 1,5-bis(p-chlorophenyl) biguanide, 8.5 parts (0.066 mole) of methyl trifluoroacetate, 1.6 parts (0.039 mole) of sodium methoxide and 120 parts of methanol was heated at 100 C. in an autoclave for 24- hours. After the reaction mixture was cooled and poured into about 200 parts of Water, the precipitate was separated by filtration and dried. The product, after purification by crystallization from dioxane, melted at 182-185" C.
Analysis.-Calcd. for C H Cl F N C H O C, 49.2; H, 3.75; Cl, 14.5; N, 14.5. Found: C, 49.1; H, 3.55; Cl, 14.6; N, 14.3.
Example 19.N,N"-Di-n-Baiyl-Hexafluoroglularo- This is a known compound and the procedure used in its preparation is found in the literature: Centralblatt 2,
i0 An attempt to prepare this compound by reacting biguanide with tribromoacetate by the procedure outlined in Example 1 was not successful. The products formed were not identified.
Example 21 .-Trichloroacetoguanamine ('3 C13 o t r HgN-C (i-NH;
This compound is known and the procedure used in its preparation is described in British Patent 642,409 (American Cyanamid). An attempt to prepare this compound by reacting biguanide with methyl trichloroacetate by the procedure of Example 1 was not successful. The compounds which were formed were not identified.
THE TREATMENT OF BASES WITH THE PER- FLUOROGUANAMINES OF THIS INVENTION The perfiuoroguanamines of this invention, including the methylolated and alkylated methylolated derivatives thereof, may be applied to suitable bases, primarily those of a protienaceous or cellulosic characteristic, to impart a Wide variety of affects. In general, depending upon the nature of the base and the solubility charactelistic of the guanamine, they may be applied from aqueous, wateralcohol or solvent solutions, or aqueous dispersions by spraying, immersion, dipping, padding, or the like.
In general, the perfluoroguanamines of this invention may be applied to fibers of either a protienaceous or cellulosic origin or the materials formed therefrom, such as textile fabrics, woven or non-Woven, including felted, wood, paper, or cellulosic films.
With respect to protienaceous bases, suitable examples of these include wool fibers and fabrics formed therefrom, furs, feathers, hair, hides and numerous other materials which may be treated alone or blended with nonprotienaceous materials, such as cellulosics, synthetic fibrous materials, such as nylons, acrylics, and the like. In general, the application to protienaceous base materials of the perfluoroguanamines of this invention is for the purpose of imparting insect repellency, grease and oil resistance or repellency thereto.
In general, the application to cellulosic base materials is for the purpose of imparting grease and oil repellency thereto, as well as for the purpose of imparting dimensional stability and crease resistance, as in the case of cellulosic textile materials. Additionally, with respect to textile materials, the perfluoroguanarnines of this invention may be employed as hand modifiers.
For purposes of illustrating certain of the use aspects of the compounds, their methylol derivatives and their alkylated methylol derivatives in accordance with the present invention, the method of imparting some or all of the characteristics identified above to textile materials will be described.
By textile materials as that and similar terms are employed herein, it is meant filaments, yarns, fibers and fabrics, whether the latter be felted, woven or non-Woven or otherwise formed.
By the term cellulosic material as that and similar terms are employed herein, it is meant textile materials containing a substantial portion of cellulosic fibers, preferably at least 50%, such as cotton, regenerated cellulose, such as viscose, rayon, linen, hemp, jute, and the like. Such fibers may be used alone or blended with synthetic or natural textile materials, as for example, the nylons, the acrylic fibers, polyester fibers, wool fibers, silk and the like.
In the application of these resinous compounds to textile bases, they may be applied as solutions or dispersions by any of the several known methods for finishing textile materials. Thus, they may be applied by spraying, im-
and
mersion, dipping, padding, or the like, the latter being the usually preferred and more conventional method. For the unmethylolated guanamines of those thatare waterinsoluble, it is desirable to use an organic solvent, such as dimethyl formamide or methanol or the like, or a mixture of water and dimethyl formamide or an alcohol, such as methanol, ethanol, or mixtures thereof, in order to obtain a solution which may be padded onto the fabric. A1- ternatively, these compounds may be padded or applied from aqueous dispersions. The application baths or treating solutions or dispersions may normally contain from 0.1 to 30% by weight of guanamines solids and preferably from between about 0.5 to about Curing catalysts are normally employed with the methylolated guanamines and their alkylated derivatives to provide a desirable rapid cure of the resins on the fiber. Among the curing catalysts that may be employed are the ammonium salts, such as ammonium chloride, amine salts like triethylamine hydrochloride, alkanolamine salts, like triethanolamine hydrochloride, metal salts, such as magnesium chloride, zinc nitrate or aluminum chloride, and the like, free acids, like oxalic, tartaric, and the like. These materials may be employed singly or in combination with one another. Catalyst concentrations may vary widely, depending upon the effectiveness of the catalyst itself, and the intended use of the resin treated base material. The range may be from about .5 to 25%, and in certain limited instances higher, based on the weight of the resin solids employed. More particularly, with ammonium salts, such as ammonium sulfate, it may vary from about .5 to 7.5%, based on the weight of the resin solids employed; with metal salts such as magnesium chloride, zinc nitrate, amounts of between 8 and 20% based on the weight of the resin solids is a preferred operating range. With amine or alkanolamine salts, such as isopropylamine hydrochloride, from about 1 to 10% catalyst concentration, based on the weight of the resin solids employed, is preferred.
As noted, the preferred method of treating textile materials, and specifically formed fabrics, consists of padding the material through a suitable pad bath, followed by passing the wet material through squeeze rolls adjusted to control the amount of pad bath liquor picked up by the textile material. Thereafter, the treated or impregnated textile material is dried and, if need be, the resin cured.
The drying and curing may be accomplished in separate steps, or in one operation, if this is prefererd. When drying is carried out in a separate step, it may be done at temperatures ranging from about 100 to 250 F. for from about three minutes to about one and one-half minute, respectively. These times and temperatures have been found to be eminently satisfactory, particularly for lightweight cellulosic fabrics. Heavier fabrics may require more time. Generally speaking, the length of time required is inversely proportional to the temperature at which drying is affected. Thus, somewhat longer periods of time will be required when lower temperatures are employed, and somewhat shorter periods of time will be required where higher temperatures are employed. Thereafter, curing of the resin on the treated fabric is carried out. Again, in general, the time required for the cure is inversely proportional to the temperature. The most preferred temperature and time range for the curing of dry fabrics are from about 4 minutes at about 275 F. to about 30 seconds at 450 F. When drying and curing are carried out in a single stage opeartion, times from between about minutes at about 250 F. to about 3 minutes at about 350 F. have been found satisfactory. It should be noted that where the guanamines are unmethylolated, only drying is necessary to remove the carrier or solvent employed.
In general, it has been found that for the moth proofing of wool and related protienaceous materials, and for the imparting of antibacterial properties to cellulosic materials, guanamines containing short perfluoroalkyl groups are best, and it appears that the preferred compound is trifluoroacetoguanamine.
For imparting grease and oil repellency, the guanamines containing long perfluoroalkyl groups appear to be best, and thus the preferred members within the scope of this invention are those having the longest alkyl or alkylene groups.
In order that this aspect of the present invention may be more fully illustrated, the following examples are given primarily by way of illustration. No details or enumerations contained therein should be construed as limitations on the present invention, except insofar as they appear in the appended claims. All parts and percentages are by weight unless specifically designated otherwise.
Example 22.-Applicati0ns 0f Perfluoroguanamines on Wool Solutions of certain of the perfluoroguanamines described in Examples 1-12 and 20 and 21 hereinabove were padded onto wool flanel from a solvent solution so as to impart the solids thereto indicated in Table I below. The fabric was then dried at 225 F.
TABLE I Percent Percent Guanamine Solvent Soln. Solids on Fabric A Trifluoroaceto-(Ex. 1) DMF 2 2 .A-l do DMF 5 5 B Pentailuoropropio-Ex. 4).- DMF 2 2 C do DMF 5 5 D Heptatluorobutyro-(Ex.6) Methanol 5 5 E Pentadeeafluorocaprylo- -do- 5 5 Ex. 8 F Trhehloroaceto-(Ex. 21).. DMF 5 5 G Tribromoaceto-(Ex. 20) DMF 1 5 5 H Aeeto- DMF 5 5 I exafluoroglutaIo-(Ex. 11) DMF 5 5 1 DMF =Dirnethylforrnamide.
MOTHPROOFING TESTS ON \VOOL TREATED WITH PERFLUOROGUANAMINES The testing procedure was that recommended by the American Society of Testing Materials with the following exception: black carpet beetles were of mixed age in the culture and the only practical method of selection was with 16 and 18 mesh U.S. standard sieves as described in the ASTM Manual (ASTM specifies larvae five months old and selected for uniform size by the above described procedure).
Ten larvae of the black carpet beetle (Attagenus piceus) were placed in a 4" petri dish with a 1%" circular disc of wool to be tested. There were four replicates per treatment. The test was held for 28 days at F. and 60% relative humidity with light omitted. The degree of protection was determined by three methods:
(1) Larval mortality observation of number of dead larvae.
(2) Excrement weightthe excrement of the 10 larvae per petri dish was weighed to the nearest tenth milligram; all four replicates averaged, the weight of the excrement depositied by the unfed larvae subtracted and the percent reduction over the untreated wool controls calculated.
(3) Visual observation-all wool samples were observed under a binocular microscope, and the degree of feeding is described as follows:
Trace Feeding on nap only.
Light Feeding on fibers, but none sheared. Moderate Small holes but none larger than Ma. Severe Many and large holes.
The headings A, B, C, etc., are defined in Table I.
33 The results of the impregnation described in Table I were evaluated in accordance with the above test procedure and the data therefrom recorded in Table II.
1 Average of two tests on untreated wool.
2 Unfed larvae.
Fabrics A and A-1 were dry cleaned and wet drycleaned" by the procedures of Example 23, and then tested for insect repeilency in a second series of tests. The results are shown in Table Ila.
Five pe cent solutions of polymethylol perfluoroguanamines in a mixture of ethyl alcohol and water, using sufiicient alcohol to keep the solutions clear (about 45%), were applied to wool flannel. The catalyst used was 35% of ammonium sulfate on the weight of the resin solids in the bath and the pick-up from the pad bath was 100% on the weight of the fabric. This resulted in a 5% application on the weight of the fabric. The fabric was then dried and cured for 6 minutes at 290 F.
The dry cleaning operation was carried out in the Dynamic Absorption Tester described on page 146 of the 1957 edition of the Technical Manual and Yearbook of the American Association of Textile Chemists and Colorists. The cloth to be cleaned (265-g. load) was rotated in the above apparatus with 2,000 ml. of petrolcurn naphtha (Varsol) for 20 minutes. After centrifuging and steaming to remove the solvent, the cloth was pressed.
The wet dry-cleaning operation was carried out in the same apparatus. The cloth to be cleaned was rotated for 20 minutes with 2,300 ml. of petroleum naphtha and 160 ml. of a dry cleaning soap solution, prepared as described on p. 133, note 2, of the above reference. The solvent was drained out of the apparatus and 2,300 ml. of fresh naphtha was added and the rotating was continued for 10 minutes. After centrifuging and steaming to remove the solvent, the cloth was pressed.
id MOTHPROOFING TESTS ON WOOL TREATED WITH POLYMETHYLOL PERFLUOROGUANA- MINES The mothproofing tests were carried out by the procedure of Example 22. The results are shown in Table III below:
A. Polymethylol trifluoroacetoguanarnine (Example B. Polymethylol pentafiuoropropioguanamme (Exam- 10 ple 5).
TABLE III Percent Reduction of Excrement Visual Number of Depositedirom Observation Dry Oleanings Treated Wool of Feeding Over the Damage to Average from Wool Untreated Wool 0 Severe. 78.5 Trace. 76. 0 Do. 76.0 Do. 51. 6 Do. 80. 6 Do.
Wet dry-cleaning.
Example 24.-Applicatz'0n 0f Trifluoroacetoguanamine on Wool Followed by After-Treatment with Melamine Resin Acid Colloid 5.9% solution of triiluoroacetoguanamine in dimethyl formarnide was applied to wool flannel. A pick-up from the pad bath of 85% resulted in a 5% application on the weight of the fabric. After drying the fabric at 225 F. for 2 minutes, the fabric was passed through a pad bath containing 5.9% of an acid colloid of methylolated trirnethylol melamine. The acid colloid was prepared by allowing a solution of 125 parts of methylolated trimethylol melamine and 74 parts of acetic acid in suiiicient water to give a final volume equivalent to 1000 parts of water to stand overnight. With an 85% pick-up, the application of the colloid was 5% on the weight of the fabric. The fabric was dried and cured for 15 minutes at 225 F.
The dry cleaning operation was carried out as described in Example 23.
The mothproofing tests were carried out by the procedure of Example 22. The results are shown in Table IV below.
Example 25.Applz'cati0n of Polymethylol Trifluoroacetoguanamine on Cotton A solution consisting of 5.88 parts of polymethylol trifluoroacetoguanamine, 0.71 part of zinc nitrate, 25 parts of methanol and sufiicient water to make a total of 100 parts was padded onto x 80 cotton percale with pick-up on the weight of the fabric. The
fabric, containing 5% of the resin Was dried at 225 7 F. for 2 minutes and cured at 350 F.for 1.5 minutes.
The wrinkle recovery was measured on a Monsanto Wrinkle Recovery Tester following the tentative test method 664956 described on page 158 of the 1957 Tech- 35 nical Manual and Yearbook of the American Association of Textile Chemists and Colorists, volume 33.
The Washes under Wrinkle Recovery in Table VI were carried out at 212 F. by the procedure described under Test Method 14-1953 on page 123 of the above reference, using a Najort washer.
The yellowing index is calculated by the equation:
, Yellowing index 70(1 R517 where R and R are reflectance values obtained on a recording spectrophotometer, using a magnesium carbonate block as a reference standard, at the wavelengths of 455 mp. and 577 I'll/1., respectively.
The washes referred to under Yellowing Index consisted of a 15-minute wash cycle at 140 F. in a solution containing 0.01% soap and 0.02% available chlorine (Clorax) at a liquor-to-cloth ratio of 7:1 in a Laundromat washer. Following bleaching, the fabrics were rinsed in water at 140 F. for three -minute cycles and then tumble-dried from 140 to 145 F. for 30 minutes.
The results of these tests are shown in Table V.
These results show that cotton fabrics treated with polymethylol trifiuoroacetoguanamine have good wrinkle recovery with no yellowing after repeated washes with chlorine present.
Example 26.Application of Perfluoroguanamines 011 Cotton as Germicides 1% applications of the perfluoroguanamines identified in Table VI were made on 80 X 80 cotton percale from a solution of dimethyl formamide. The fabrics were dried at 225 F.
The treated fabrics Were tested for antibacterial activity by a standard Agar plate method. This test is a convenient method for evaluating the extent of durability of the antibacterial activity of the textile finish, and involves the determination of the inhibition of the bac terial growth on a piece of textile placed on an Agar plate inoculated with various strains of bacteria. The two commonly used strains are E. coli and S. aureus, which are strains usually employed in evaluation of antibacterial agents for various purposes.
Thus, by determining the antibacterial activity of cloth treated by the process of this invention before and after a number of laundering treatments, the effectiveness of the finish may be determined. Durability of the finish is determined by subjecting the treated textile to a series of repeated launderings. The number of times the material may be laundered before antibacterial activity decreases below an effective level will give a measure of the durability of the finish.
In the test for antibacterial activity, discs of treated fabric of a certain size (11.5 millimeters in diameter) are placed on an Agar plate inoculated with the bacterial culture. After two hours contact, the disc is removed and the Agar plate is incubated overnight. The degree of inhibition of growth gives an index of the inhibitory effect of the finish on the cloth. This inhibition is easily observed, since the areas Where the bacterial growth is inhibited remains clear, whereas the remainder of the area where the bacterial growth has taken place becomes cloudy or opaque. The area under the disc is observed, and in addition, the total diameter of the area larger than that occupied by the disc is observed.
Efiective finishes show clear area at least under the If. 5 disc, with more effectively finished areas having a diameter greater than that of the disc itself. If the area of inhibition is greater than the area of the disc, the activity is given as the diameter of the clear area in millimeters. Otherwise, a rating of C denotes complete inhibition of bacterial growth under the disc; a rating of P denotes partial inhibition; and N denotes no inhibition or activity when S and VS denote slight and very slight inhibition. It should be noted that P is at least 50 to 75% inhibition under the test fabric.
The results are shown in Table VI below.
Example 27.Application of Pentadccafluorocapryloguanamine on Cotton for Oil Repellency A 5.88% solution of pentadecafiuorocapryloguanarnine in methanol was padded onto cotton percale with an pick-up on the weight of the fabric. The fabric, containing 5% of the guanamine, was dried at 225 F.
The treated fabric showed oil repellency lasting up to one-half hour. The fabric had a smooth, soft and slightly full hand with no yellowing or other change in color.
Example 28.Applicati0n 0 Polymethylol Pentadecafluorocapiyloguanaminc on Cotton for Oil Repellency A solution consisting of 5.88 parts of polymethylol pentadecafluorocapryloguanamine, 0.71 part of magnesium chloride, 35 parts of ethanol and sufficient water to make a total of parts, was padded onto cotton percale with an 85% pick-up on the weight of the fabric. The fabric, containing 5% of the resin, was dried for 2 minutes at 225 F. and cured for 1.5 minutes at 350 F.
There was initial Water repellency and oil repellency, the latter lasting for 30 minutes (up to 2 hours in some areas of the treated fabric). There was no fire retardancy. The wrinkle resistance (total W-l-F in degrees) was 196".
As illustrated in Example 24, a perfluoroguanamine of this invention may, where desirable, be employed with other conventional textile resins to achieve additional effects. Thus, for example, where the guanamine contains no functional groups capable of reacting with the textile material, it may be desirable to employ the guanamines with other textile finishing resins, and more particularly, aminoplast textile finishing resins.
Prominent among this class of materials are the polymethylolated melamines, including those melamines having having from 2 to 6 moles of combined formaldehyde which may also have been condensed with from 2 to 6 moles of alcohol, preferably methanol. Suitable examples of such polymethylol melamines include trimethylol melamine, trirnethoxymethyl melamine, trimethoxymethyl dimethylol melamine, tetramethylol melamine, and hexamethoxymethyl melamine.
Additionally, these materials may be employed with urea formaldehyde resins including their alkylated derivatives, ethylene urea formaldehyde resins, 1,2-propylene urea formaldehyde resins, 1,3-propylene urea formaldehyde resins, other cyclic ureas of this type, and their alkylated derivatives.
Still further, these materials may be employed with other textile finishing agents not characterized as aminoplast resins, which may be either thermosetting or thermoplastic. Thus, for example, phenol formaldehyde resins, ketone formaldehyde resins, as for example, acetone formaldehyde resins, epoxy resins, as for example, polyglycidyl ethers of polyhydric alcohols, such as the diglycidyl ether of ethylene glycol, and the like.
Among the thermoplastic resins which may be mentioned are monoor homoploymers or copolymers of acrylates, such as methacrylate, ethylacrylate, butylacryllate, methylmethacrylate, butylmethacrylate, or copolymers of these or their equivalents. with styrene, including ring and chain substituted styrenes, acrylonitrile, polyvinyl chloride, polyvinyl acetate, and the like. In addition, the compositions of this invention may obviously be employed with conventional textile treating agents, such as softeners, stiffeners, lubricants, dicyandiamide, and other known treating bath components.
This application is a divisional application of Serial No. 782,640, filed December 24, 1958, now abandoned.
I claim:
1. A guanamine having the formula l z) n a charactertized by having at least 2 but not more than 8 moles of combined formaldehyde as -CH OR groups which are defined hereinafter, wherein m is from 1 to 8 18 inclusive and wherein at least two of the substituents R R is -CH OR Where R is selected from the group consisting of H and lower alkyl containing from 1 to 4 carbon atoms and wherein the remaining substitutents in the Il -R group are selected from the group consisting of H, alkyl from 1l8 carbon atoms cyclohexyl, phenyl, chloro phenyl and CH OR Tetramethylol trifiuoroacetoguanamine. Tetramethylol pentafluoropropioguanamine. Tetramethylol heptafluorobutyroguanamine. Tetramethylol nonadecafiuorocapriguanamine. Octamethylol hexafluoroglutaroguanamine. Octamethylol hexadecafluorosebacognanamine.
References Cited in the file of this patent UNITED STATES PATENTS 2,385,766 Thurston Sept. 25, 1945 2,394,526 Thurston Feb. 5, 1946 2,423,353 Thurston July 1, 1947 2,427,315 Thurston Sept. 9, 1947 2,451,432 Bindler Oct. 12, 1948 2,480,084 Meyer Aug. 23, 1949 2,526,948 Hirnel Oct. 24, 1950 2,535,968 Thurston et al Dec. 26, 1950 2,734,004 Robinson Feb. 7, 1956 2,830,035 Renner et al. Apr. 9, 1958 2,845,421 Grundmann et al June 29, 1958 2,871,145 Hadju Ian. 27, 1959 2,892,810 Albrecht June 30, 1959 OTHER REFERENCES Weddige: Journ. fiir prakt. Chemie, vol. 141, NE 33, pp. 81 and 83 (1886).
Broche: Journ. fiir prakt. Chemie, vol. (II), pp. -106 (1894).
()strogovich: Chemisches Centnalblatt, 1905, II, p. 1359.
Overberger et al.: Iourn. of the Am. Chem. Soc, vol. 76, pp. 1855 to 1858 (1954).
()verberger et al.: J ourn. of the Am. Chem. Soc, vol. 79, pp. 941 to 944 (Feb. 20, 1957).
Cockburn et al.: Canadian Journal of Chemistry, vol. 35, pp. 1285-1292 (October 1957).

Claims (2)

1. A GUANAMINE HAVING THE FORMULA
2. A GUANAMINE HAVING THE FORMULA
US192090A 1958-12-24 1962-05-03 Perfluoroguanamines Expired - Lifetime US3162633A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB43299/59A GB923086A (en) 1958-12-24 1959-12-21 Perfluoroacidoguanamines
US192090A US3162633A (en) 1958-12-24 1962-05-03 Perfluoroguanamines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US78264058A 1958-12-24 1958-12-24
US192090A US3162633A (en) 1958-12-24 1962-05-03 Perfluoroguanamines

Publications (1)

Publication Number Publication Date
US3162633A true US3162633A (en) 1964-12-22

Family

ID=26887714

Family Applications (1)

Application Number Title Priority Date Filing Date
US192090A Expired - Lifetime US3162633A (en) 1958-12-24 1962-05-03 Perfluoroguanamines

Country Status (2)

Country Link
US (1) US3162633A (en)
GB (1) GB923086A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536710A (en) * 1968-06-05 1970-10-27 Du Pont Substituted guanamines and their derivatives
US3687900A (en) * 1968-06-05 1972-08-29 Du Pont Homopolymers of substituted guanamines
US4055720A (en) * 1976-05-25 1977-10-25 The United States Of America, As Represented By The Secretary Of Agriculture Diaminotrihalopropyl triazines: and their methylol derivatives
US4932998A (en) * 1986-09-30 1990-06-12 Idemitsu Kosan Company Limited Triazine derivatives, and herbicides comprising the same as the effective ingredient
WO2023013697A1 (en) * 2021-08-03 2023-02-09 東ソー株式会社 Material for metal patterning, fluoro compound, thin film for metal patterning, organic electroluminescence device, electronic device, and method for forming metal pattern

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2385766A (en) * 1941-08-30 1945-09-25 American Cyanamid Co Guanamines in textile finishing
US2394526A (en) * 1946-02-05 Aliphatic substituted guanamines
US2423353A (en) * 1947-07-01 Polymethylene diguanamines
US2427315A (en) * 1947-09-09 Carboxy polymethylene guanamines
US2451432A (en) * 1948-10-12 High molecular guanamines and a
US2480084A (en) * 1948-03-20 1949-08-23 Dow Chemical Co Protection of cellulosic textile materials
US2526948A (en) * 1945-10-23 1950-10-24 Phillips Petroleum Co Process of treating textiles with half-acid amide derivatives
US2535968A (en) * 1945-04-13 1950-12-26 American Cyanamid Co Heterocyclic guanamines
US2734004A (en) * 1952-08-25 1956-02-07 Water soluble n-methylol polypyrroli-
US2830035A (en) * 1954-07-22 1958-04-08 Ciba Ltd Heat-hardenable aminoplast resin molding compositions, their manufacture and molded articles therefrom
US2845421A (en) * 1958-07-29 Fluorination of chloro triazines with
US2871145A (en) * 1954-05-21 1959-01-27 Hajdu Joseph Process of impregnating textile material to increase its wear resistance
US2892810A (en) * 1954-08-24 1959-06-30 Ciba Ltd New derivatives of aldehyde condensation products of the aminotriazine or urea group and their manufacture and use

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2394526A (en) * 1946-02-05 Aliphatic substituted guanamines
US2423353A (en) * 1947-07-01 Polymethylene diguanamines
US2427315A (en) * 1947-09-09 Carboxy polymethylene guanamines
US2451432A (en) * 1948-10-12 High molecular guanamines and a
US2845421A (en) * 1958-07-29 Fluorination of chloro triazines with
US2385766A (en) * 1941-08-30 1945-09-25 American Cyanamid Co Guanamines in textile finishing
US2535968A (en) * 1945-04-13 1950-12-26 American Cyanamid Co Heterocyclic guanamines
US2526948A (en) * 1945-10-23 1950-10-24 Phillips Petroleum Co Process of treating textiles with half-acid amide derivatives
US2480084A (en) * 1948-03-20 1949-08-23 Dow Chemical Co Protection of cellulosic textile materials
US2734004A (en) * 1952-08-25 1956-02-07 Water soluble n-methylol polypyrroli-
US2871145A (en) * 1954-05-21 1959-01-27 Hajdu Joseph Process of impregnating textile material to increase its wear resistance
US2830035A (en) * 1954-07-22 1958-04-08 Ciba Ltd Heat-hardenable aminoplast resin molding compositions, their manufacture and molded articles therefrom
US2892810A (en) * 1954-08-24 1959-06-30 Ciba Ltd New derivatives of aldehyde condensation products of the aminotriazine or urea group and their manufacture and use

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536710A (en) * 1968-06-05 1970-10-27 Du Pont Substituted guanamines and their derivatives
US3687900A (en) * 1968-06-05 1972-08-29 Du Pont Homopolymers of substituted guanamines
US4055720A (en) * 1976-05-25 1977-10-25 The United States Of America, As Represented By The Secretary Of Agriculture Diaminotrihalopropyl triazines: and their methylol derivatives
US4932998A (en) * 1986-09-30 1990-06-12 Idemitsu Kosan Company Limited Triazine derivatives, and herbicides comprising the same as the effective ingredient
WO2023013697A1 (en) * 2021-08-03 2023-02-09 東ソー株式会社 Material for metal patterning, fluoro compound, thin film for metal patterning, organic electroluminescence device, electronic device, and method for forming metal pattern

Also Published As

Publication number Publication date
GB923086A (en) 1963-04-10

Similar Documents

Publication Publication Date Title
US4127382A (en) Process for the reduction of free formaldehyde on textile fabrics
US4770668A (en) Ethylene urea compositions useful as permanent press promoting chemicals
US3442905A (en) N-methylol-n'-substituted-4,5-dihydroxy-2-imidazolidinones
US3535318A (en) Mono - aromatic - pentaalkyl ethers of hexamethylolmelamine crease-proofing agents
US3162633A (en) Perfluoroguanamines
US2385766A (en) Guanamines in textile finishing
US3885912A (en) Method of rendering textiles flame retardant with phosphorus containing melamine
US3914229A (en) Novel N-hydroxymethyl compounds, compositions containing such compounds and cellulose-containing textile materials treated therewith
US3305390A (en) Process for treating proteinaceous and cellulosic materials with perfluoroguanamines
US2385765A (en) Textile finishing
US4295847A (en) Finishing process for textiles
US2680057A (en) Cyclopropyl quaternary ammonium compounds and process of applying to textiles
US3304312A (en) Imidazolidinones
US2509174A (en) Process of waterproofing textile fabrics
US3082118A (en) Novel mercurated acrylamide compounds and germicidal textile finishes
US4053450A (en) Dialkyl alkyl and cyclic phosphoramidomethyl phosphonates
US2454078A (en) Methylol melamine ethers and their manufacture
US2388676A (en) Synthetic linear polyamides
US4162279A (en) Phosphonoxycarboxamides
US4177300A (en) Phosphonoxycarboxamide flame retarding compositions
US3518043A (en) Hexahydropyrimidone derivatives and a method of finishing textile material
US2371892A (en) Permanent finish for textiles
US3744970A (en) Treating of cellulosic fiber-containing material to impart flame-retardancy thereto
US3143548A (en) Nu, nu'-dimethyl-nu'', nu''-bis (2-hydroxyethyl) melamine
US3749597A (en) Textile finishing compositions