US3304312A - Imidazolidinones - Google Patents

Imidazolidinones Download PDF

Info

Publication number
US3304312A
US3304312A US563708A US56370866A US3304312A US 3304312 A US3304312 A US 3304312A US 563708 A US563708 A US 563708A US 56370866 A US56370866 A US 56370866A US 3304312 A US3304312 A US 3304312A
Authority
US
United States
Prior art keywords
employed
parts
lower alkyl
compounds
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US563708A
Inventor
Michael T Beachem
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Priority to US563708A priority Critical patent/US3304312A/en
Application granted granted Critical
Publication of US3304312A publication Critical patent/US3304312A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/28Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/30Oxygen or sulfur atoms
    • C07D233/40Two or more oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/28Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/30Oxygen or sulfur atoms
    • C07D233/42Sulfur atoms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins

Definitions

  • This invention relates to novel textile finishing agents and more specifically to novel 4,5-dihydroxy or 4,5-dialkoxy derivatives of Z-imidazolidinones or their corresponding thiones. Further, the invention relates to the process of imparting crease resistance by the use of these novel agents and to the crease resistant textile materials produced therewith.
  • this invention relates to novel compounds 'having the following general formula:
  • X is a member selected from the group consisting of oxygen and sulfur
  • R and R are selected from the group consisting of lower alkyl, phenyl and substituted lower alkyl in which the substituting groups are cyano, carboxy, carb(lower) alkoxy or carbamoyl, R and R are lower alkyl provided that when R or R is phenyl or substituted lower alkyl, R and R may be hydrogen to their use as crease-proofing agents for cellulosic textile materials and to the cellulosic textile materials so treated or finished therewith.
  • thermosetting resinous textile finishing agents have been employed on cellulosic textile materials in order to impart crease resistance and dimensional stability thereto.
  • These materials include the reaction products of formaldehyde with various amides such as urea, thiourea, ethylene urea, melamines, guanamines, and the like, whereby compounds containing methylol groups (-CHgOH) are produced.
  • the methylol groups on these compounds provide a means for attachment of the resinous finishing agents with the cellulose molecule and when two or more metrhylol groups are present, crosslinking between chains of cellulose is possible whereby the crease resistance and dimensional stability are imparted to such materials.
  • resins such as those identified above when scorched, as when heated with an iron subsequent to chlorine bleaching, for example chlorine bleaching of the type normally encountered in typical home laundering operations, tend to lose a substantial percentage of their initial tensile strength. This is presumably because of the liberation of retained chlorine and the degradative effect on tensile strength produced by the hydrochloric acid formed therefrom.
  • aminoplast resins are normally manufactured and shipped as aqueous solutions, usually of from between 40 and 70% solid-s, requiring the shipment of substantial amounts of water, frequently over substantial distances. Further, the aminoplast resins of the prior art can, in some instances, cause significant damage to direct dyes on cellulosic fabrics which normally is the result of the presence of free formaldehyde in the resinous products.
  • the absence of free formaldehyde in the textile finishing agents of this invention eliminates the problems caused by formaldehyde, both as to odor and dermatitis, in the manufacture, storage, use and storage of fabrics finished therewith.
  • R and R are selected from the group consisting of lower alkyl, phenyl and substituted lower alkyl and particularly substituted lower alkyls, wherein the substituting group is selected from the group consisting of cyano, carboxy, carb(lower) alkoxy, and carbamoyl, and R and R are lower alkyl, provided that R or R are phenyl or substituted lower alkyl R and R may be hydrogen.
  • lower alkyl as that term is employed herein, it is intended to include alkyl groups containing from 1 to 7 carbon atoms and preferably from 1 to 4 carbon atoms, which groups may be normal or branch chained.
  • unsubstituted lower alkyl radicals the following are illustrative: methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, n-pentyl and the like.
  • Lower alkyl radicals substituted by cyano, carboxy, carb(lower) alkoxy or carbamoyl are typified by such radicals as -CH CH CN, CH CH COOH, CH CH CO-OC H and the 1 e.
  • R and R are hydrogen
  • Compounds of the general formula where the R and R are hydrogen may be prepared by reacting a urea or thiourea with glyoxal under such conditions that both carbonyl groups of the dialdehyde react with amide groups of the urea or thiourea.
  • the ureas and thioureas which may be used include urea, 1,3-dimethylurea, 1,3-diethylurea, 1,3-di-n-propylurea, 1,3-di-n-butylurea, 1-methyl-3-ethylurea, 1,3-di-secbutylurea, l-phenylurea, 1,3-diphenylurea, 1,3-dibenzyl- 3 urea, etc., and the corresponding thioureas.
  • the substituted ureas may have substituents on the alkyl or aryl groups which are nonreactive under the conditions of the reaction.
  • R and R are lower alkyl
  • these are made by reacting the corresponding compounds where R andR are hydrogen, with appropriate lower alkyl alcohols under acidic conditions.
  • Any of the strong acids normally employed in the alkylation oretherification of amideformaldehyde condensates or aminoplast resins may be employed.
  • Such acids include the strong mineral acids, such as sulfuric, hydrochloric, nitric and the like.
  • sufiicient acid is employed to produce a pH below 4.
  • Suitable alcohols may be any of the lower alcohols referred to above and may include methanol, ethanol, the propanols, the butanols and the like.
  • Alkylation is normally carried out at a temperature of between about and about 50 C.
  • the ureas or thioureas and glyoxal are normally reacted in stoichiometric amounts, although slight excesses of either of the reactants may be employed.
  • This reaction may be carried out at room temperature 30 C.) although temperatures from between 0 and 100 C., and preferably 15 70 C., may 'be employed.
  • the reaction may be carried out at atmospheric pressure, subatmospheric pressure or superatmospheric pressure for times sufficient to complete the reaction, which may be determined by free glyoxal determination.
  • R and R radicals are as identified above, i.e., CH CH CN, CH CH COOH, and the like.
  • R and R radicals are as identified above, i.e., CH CH CN, CH CH COOH, and the like.
  • R and R are hydrogens
  • an 05,,8- ⁇ 111Sfltlllflt6d aliphatic nitrile, acid, ester or amide such as acrylonitrile, acrylic acid, acrylamide, methacrylic acid, ethyl acrylate, and the like.
  • R and R it is advantageous for the R and R to be lower alkyl groups.
  • Such reactions are preferably carried out at a temperature of from 45 to 65 (3., though temperatures down to room temperature (30 C.) and lower may be employed with longer reaction times required. Temperatures higher than 65 C. may be employed but polymerization may occur at higher temperatures.
  • Such reactions are usually carried out in an inert solvent and preferably an inert polar solvent such as pyridine, quinoline, dioxane and the like.
  • the principal end use contemplated for the novel agents of this invention is as textile finishing agents to impart wrinkle resistance and dimensional stability to cellulose containing textile materials.
  • the compounds of this invention have demonstrated themselves to be dramatically superior to seemingly closely related homologous compounds, i.e., 4,5-dihydroxW-Z-imidazolidinone (general formula hereinabove wherein all Rs are hydrogen) in chlorine retention and the damage to textile materials resulting therefrom.
  • This aspect of the present invention will be demonstrated more fully hereinafter.
  • cellulose textile material as that term and similar terms are employed herein, it is meant fibers
  • cellulosiic materials may be employed in combination with other non-cellulosic materials, as for example, they may be blended with other natural or synthetic fibers, for example, wool, nylon, acrylic fibers, polyester fibers and the like.
  • the compounds or textile finishing agents of this invention may be applied to cellulosic textile materials by any conventional techniques, such as immersion, padding, spraying and the like, followed where necessary by squeezing, hydroextraction or similar processes in order to afiix the desired amount of solids on the fabric.
  • the method of application should be such that from about 1 to about 25% and in some instances higher amounts of the product of this invention based on the weight of the fabric are deposited thereon. Within certain limits, the amount of agent applied depends upon the particular type of fabric being treated. Thus, when treating fabric consisting of fibrous cellulosic materials, the concentration of the order of about 1 to 25% and more particularly from 3 to 10% solids, based on the dry weight of the fabric, may be employed.
  • the catalyst or accelerator employed is an acidic type catalyst and may be a free acid, acid salt, alkanolamine salt, metal salt and the like of the type well known to those in the textile finishing art.
  • concentration of catalyst employed may range from about 0.1 to about 25% or higher, based on the weight of the solids, depending upon the panticular catalyst type employed. Thus, for example, from between about 0.1% and about 10% of a free acid such as phosphoric, tartaric, oxalic or the like may be employed, while in the case of ammonium chloride amounts of from between 0.5 and about 10% are used.
  • amine salts including alkanolamine salts such as diethanolamine hydrochloride
  • salts such as magnesium chloride amounts of from between about 5 and 25% have been uccessfully employed.
  • magnesium chloride zinc nitrate, aluminum chloride and other known conventional metal salts are normally employed in amounts corresponding to between 5 and 25% based on the weight of the solids.
  • the material is subjected to drying and curing operations in order to effect wrinkle resistance and shrinkage control thereon.
  • the drying and curing operation may be carried out in a single step or in separate steps.
  • the temperatures at which the drying and curing operations are effected vary widely and are influenced to some extent by the type of catalyst employed. Normally, the range of temperature extends from about F. to about 450 F. or even higher.
  • the time of the drying and/or curing operation is inversely proportional to the temperature employed and of course is influenced by whether or not separate or combined drying and curing steps are employed.
  • a time of from about one minute to about 10 minutes may 'be employed at temperatures from 450 to 250 F., respectively.
  • curing times of the order of 5 minutes to about A minute at a temperature of from between 250 and 450 F., respectively have been successfully employed.
  • EXAMPLE 6 4,5-dimethoxy-1,3-aimethyI-Z-imidazolidinone 0 II CHaN N-CHs CH3O-CH HOCHs
  • a solution of 10 parts of l,3-dimethyl-4,5-dihyd-noxy- 2-imidazolidin0ne in 160 parts of methanol is acidified with 1.2 parts of concentrated hydrochloric acid. After the solution has been stirred at 2025 C. for about 5 minutes, :the solution is neutralized by adding about 2 parts of barium hydroxide. The filtered solution is then distilled to remove the alcohol, and the residue is taken up with ether. A fter filtering and evaporating the ether, the residue is distilled in vacuo, and .the product boiling at 8485 C. under a pressure equivalent to 1 mm. of mercury.
  • EXAMPLE 7 4,5 -dieth0xy-1 ,3-dimethyI-Z-imidazolidinone This product may be prepared by the procedure of Example 6 with the substitution of an equal amount of ethanol for the methanol. The product boils at 104 C. under a pressure equivalent to 2 mm. of mercury.
  • EXAMPLE -8 4,5 -diis0pr0poxy-1 ,3-aimethyI-Z-imidazolidinone
  • a slurry of 73 parts (0.5 mole) of 1,3-dimethyl-4,5- dihydroxy-2-imidazolidinone in parts of isopropanol is acidified by the gradual addition of about 3.7 parts of 96% sulfuric acid.
  • the pH of the solution is adjusted to between 7 and 8 with 50% aqueous sodium hydroxide.
  • the solution is filtered and distilled in vacuo. The product boils at about '98105 C. under a pressure equivalent to 0.1 mm. of mercury.
  • EXAMPLE 11 (A) Solutions were prepared containing 1.2%, 3.0%, 6.0%, 9.0% and 12.0% of the product of Example 12. The solutions also contained 10% of zinc nitrate on the lmldazolldmone 15 weight of the resin solids in the bath.
  • the product which separates during the concentration is separated by filtration.
  • the product is washed with methanol and purified by crystallization from methanol.
  • EXAMPLE 13 A solution of 10 parts (0.0847 mole) of 4,5-dihydroxy- Z-imidazolidinone in 160 parts of methanol is acidified.
  • the product of Example 1 produces no significant strength loss due to chlorine retention, while in the case of the product of Example 12 the strength loss due to chlorine retention is extreme. This difference is indeed surprising in view of the close relationship between the two compounds.
  • the wrinkle recovery and tensile'strength of the treated fabrics was measured by the procedure described in be employed with other agents or auxiliaries, as for example, softeners, lubricants, odorants and the like.
  • Example 14 The washes under wrinkle recovery were carried out as in Example 14.
  • R-N N-Rl The chlorine retention tests and the Sanforized washes CH CH were carried out by the procedure described in 10 g Example 14.
  • the textile finishing agents of this invention may be employed alone or in combination with other creaseproofing resins and in particular with aminoplast textile finishing resins, as for example, the melamine-formaldehyde resins, guana-mine-formaldehyde resins, and their alkylated or etherified derivatives.
  • the agents of this invention may be combined with the melamine-formaldehyde resins which are described in US. Patent No. 2,197,357 and US. Patent No. 2,529,856.
  • Suitable guanamine-formaldehyde condensates of the type contemplated for use with the agents of this invention are those described in U.S. Patent No. 2,887,409. Additionally, the agents of this invention may be combined or employed with urons such as are described in US. Patent No. 2,373,135 and various polyepoxide resins having epoxy equivalents greater than 1, as for example those describe-d in US.
  • the textile finishing agents of this invention may of phenyl, lower alkyl, and substituted lower alkyl, wherein the substituting group is cyano, carboxy, carb(lower) alkoxy or carbamoyl, R and R 'are lower alkyl, provided that when R and R are phenyl or substituted lower alkyl, R and R may be hydrogen and X is selected from the group consisting of oxygen and sulfur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

United States Patent Ofifice 3,3fi4,3l2 Patented Feb. 14, 1967 3,304,312 IMIDAZOLIDHNONES Michael T. Beachem, Franklin Township, Somerset County, N..l., assignor to American Cyanamid Company, Stamford, Conn, a corporation of Maine No Drawing. Filed July 8, 1966, Ser. No. 563,708 6 Claims. (Cl. 260309.7)
This application is a continuation-in-part of copending application Serial No. 86,864 filed February 3, 1961, now abandoned.
This invention relates to novel textile finishing agents and more specifically to novel 4,5-dihydroxy or 4,5-dialkoxy derivatives of Z-imidazolidinones or their corresponding thiones. Further, the invention relates to the process of imparting crease resistance by the use of these novel agents and to the crease resistant textile materials produced therewith.
Specifically, this invention relates to novel compounds 'having the following general formula:
where X is a member selected from the group consisting of oxygen and sulfur, R and R are selected from the group consisting of lower alkyl, phenyl and substituted lower alkyl in which the substituting groups are cyano, carboxy, carb(lower) alkoxy or carbamoyl, R and R are lower alkyl provided that when R or R is phenyl or substituted lower alkyl, R and R may be hydrogen to their use as crease-proofing agents for cellulosic textile materials and to the cellulosic textile materials so treated or finished therewith.
As is well known, many thermosetting resinous textile finishing agents have been employed on cellulosic textile materials in order to impart crease resistance and dimensional stability thereto. These materials include the reaction products of formaldehyde with various amides such as urea, thiourea, ethylene urea, melamines, guanamines, and the like, whereby compounds containing methylol groups (-CHgOH) are produced. The methylol groups on these compounds provide a means for attachment of the resinous finishing agents with the cellulose molecule and when two or more metrhylol groups are present, crosslinking between chains of cellulose is possible whereby the crease resistance and dimensional stability are imparted to such materials.
Many of these resins referred to above, sometimes identified as aminoplast resins, are not without certain limitations and drawbacks. Thus, many of these resinous materials contain free formaldehyde during their preparation, storage, usage in textile finishing and in the subsequent storage of finished goods. In addition to the odor problems created by the presence of free formaldehyde, the dermatitic effect of free formaldehyde is also a well known problem.
Additionally, resins such as those identified above, when scorched, as when heated with an iron subsequent to chlorine bleaching, for example chlorine bleaching of the type normally encountered in typical home laundering operations, tend to lose a substantial percentage of their initial tensile strength. This is presumably because of the liberation of retained chlorine and the degradative effect on tensile strength produced by the hydrochloric acid formed therefrom.
Additionally, aminoplast resins are normally manufactured and shipped as aqueous solutions, usually of from between 40 and 70% solid-s, requiring the shipment of substantial amounts of water, frequently over substantial distances. Further, the aminoplast resins of the prior art can, in some instances, cause significant damage to direct dyes on cellulosic fabrics which normally is the result of the presence of free formaldehyde in the resinous products.
Accordingly, it is an object of this invention to provide a novel class of creaseproofing 'agents or textile finishing agents capable of impartingwrinkle resistance which may be characterized as being completely free of formaldehyde. The absence of free formaldehyde in the textile finishing agents of this invention eliminates the problems caused by formaldehyde, both as to odor and dermatitis, in the manufacture, storage, use and storage of fabrics finished therewith.
It is a further object of this invention to provide a novel class of textile finishing agents which are easily purified to crystalline solids and mobile liquids and can therefore be easily transported, thus minimizing or reducing the cost of transporting these agents.
It is a further object of this invention to provide a novel class of textile finishing agents which produce less damage to direct dyes on cellulosic fabrics than is usual with formaldehyde-containing aminoplasts.
It is a special object of this invention to provide a novel class of textile finishing agents which surprisingly produce minimal losses in tensile strength, even when compared with closely related homologous compounds.
These and other objects and advantages of this invention will become more apparent from the detailed description thereof set forth hereinbelow.
In accordance with the present invention, novel compounds of the following general formula are prepared:
where X is a member selected from the group consisting of oxygen and sulfur, R and R are selected from the group consisting of lower alkyl, phenyl and substituted lower alkyl and particularly substituted lower alkyls, wherein the substituting group is selected from the group consisting of cyano, carboxy, carb(lower) alkoxy, and carbamoyl, and R and R are lower alkyl, provided that R or R are phenyl or substituted lower alkyl R and R may be hydrogen.
By lower alkyl, as that term is employed herein, it is intended to include alkyl groups containing from 1 to 7 carbon atoms and preferably from 1 to 4 carbon atoms, which groups may be normal or branch chained. As examples of unsubstituted lower alkyl radicals, the following are illustrative: methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, n-pentyl and the like. Lower alkyl radicals substituted by cyano, carboxy, carb(lower) alkoxy or carbamoyl are typified by such radicals as -CH CH CN, CH CH COOH, CH CH CO-OC H and the 1 e.
Compounds of the general formula where the R and R are hydrogen may be prepared by reacting a urea or thiourea with glyoxal under such conditions that both carbonyl groups of the dialdehyde react with amide groups of the urea or thiourea.
The ureas and thioureas which may be used include urea, 1,3-dimethylurea, 1,3-diethylurea, 1,3-di-n-propylurea, 1,3-di-n-butylurea, 1-methyl-3-ethylurea, 1,3-di-secbutylurea, l-phenylurea, 1,3-diphenylurea, 1,3-dibenzyl- 3 urea, etc., and the corresponding thioureas. Furthermore, the substituted ureas may have substituents on the alkyl or aryl groups which are nonreactive under the conditions of the reaction.
Where, in the compounds of the general formula, R and R are lower alkyl, these are made by reacting the corresponding compounds where R andR are hydrogen, with appropriate lower alkyl alcohols under acidic conditions. Any of the strong acids normally employed in the alkylation oretherification of amideformaldehyde condensates or aminoplast resins may be employed. Such acids include the strong mineral acids, such as sulfuric, hydrochloric, nitric and the like. Normally, sufiicient acid is employed to produce a pH below 4. Suitable alcohols may be any of the lower alcohols referred to above and may include methanol, ethanol, the propanols, the butanols and the like. Alkylation is normally carried out at a temperature of between about and about 50 C. although preferably at between about C. and about 30 C. At temperatures less than 0, the reaction is normally too slow and at temperatures above 50 C. the danger of polymerization is present. The time required for the reaction is in general inversely proportional to the temperature and within the preferred temperature range of from 15 C. to 30 C. Times of from 10 to about 2 minutes will normally be employed. For alkylation it is preferred that at least 2 moles of alcohol be employed if full alkylation is to be effected and substantial excesses are desirable in that they function as solvent for the reaction.
The ureas or thioureas and glyoxal are normally reacted in stoichiometric amounts, although slight excesses of either of the reactants may be employed. This reaction may be carried out at room temperature 30 C.) although temperatures from between 0 and 100 C., and preferably 15 70 C., may 'be employed. The reaction may be carried out at atmospheric pressure, subatmospheric pressure or superatmospheric pressure for times sufficient to complete the reaction, which may be determined by free glyoxal determination.
Those compounds of the general formula in which R and R are lower alkyl substituted by cyano, carboxy, carbalkoxy or carboxamide groups are typified by compounds in which R and R radicals are as identified above, i.e., CH CH CN, CH CH COOH, and the like. These compounds may be prepared by reacting a corresponding compound of the general formula where R and R are hydrogens, with an 05,,8-{111Sfltlllflt6d aliphatic nitrile, acid, ester or amide such as acrylonitrile, acrylic acid, acrylamide, methacrylic acid, ethyl acrylate, and the like. In this reaction it is advantageous for the R and R to be lower alkyl groups. Such reactions are preferably carried out at a temperature of from 45 to 65 (3., though temperatures down to room temperature (30 C.) and lower may be employed with longer reaction times required. Temperatures higher than 65 C. may be employed but polymerization may occur at higher temperatures. Such reactions are usually carried out in an inert solvent and preferably an inert polar solvent such as pyridine, quinoline, dioxane and the like.
As noted above, the principal end use contemplated for the novel agents of this invention is as textile finishing agents to impart wrinkle resistance and dimensional stability to cellulose containing textile materials.
Quite surprisingly, the compounds of this invention have demonstrated themselves to be dramatically superior to seemingly closely related homologous compounds, i.e., 4,5-dihydroxW-Z-imidazolidinone (general formula hereinabove wherein all Rs are hydrogen) in chlorine retention and the damage to textile materials resulting therefrom. This aspect of the present invention will be demonstrated more fully hereinafter.
By the term cellulose textile material, as that term and similar terms are employed herein, it is meant fibers,
yarns, filaments, formed fabrics, whether woven or nonwoven, felted or otherwise formed, containing at least 50% of cellulose fiber prepared from cotton, rayon, linen, flax and other cellulosic materials. These cellulosiic materials may be employed in combination with other non-cellulosic materials, as for example, they may be blended with other natural or synthetic fibers, for example, wool, nylon, acrylic fibers, polyester fibers and the like. The compounds or textile finishing agents of this invention may be applied to cellulosic textile materials by any conventional techniques, such as immersion, padding, spraying and the like, followed where necessary by squeezing, hydroextraction or similar processes in order to afiix the desired amount of solids on the fabric.
The method of application should be such that from about 1 to about 25% and in some instances higher amounts of the product of this invention based on the weight of the fabric are deposited thereon. Within certain limits, the amount of agent applied depends upon the particular type of fabric being treated. Thus, when treating fabric consisting of fibrous cellulosic materials, the concentration of the order of about 1 to 25% and more particularly from 3 to 10% solids, based on the dry weight of the fabric, may be employed.
The catalyst or accelerator employed is an acidic type catalyst and may be a free acid, acid salt, alkanolamine salt, metal salt and the like of the type well known to those in the textile finishing art. The concentration of catalyst employed may range from about 0.1 to about 25% or higher, based on the weight of the solids, depending upon the panticular catalyst type employed. Thus, for example, from between about 0.1% and about 10% of a free acid such as phosphoric, tartaric, oxalic or the like may be employed, while in the case of ammonium chloride amounts of from between 0.5 and about 10% are used. In the case of amine salts including alkanolamine salts, such as diethanolamine hydrochloride, from about 1 to about 10% are most useful, while with respect to salts such as magnesium chloride amounts of from between about 5 and 25% have been uccessfully employed. In addition to magnesium chloride, zinc nitrate, aluminum chloride and other known conventional metal salts are normally employed in amounts corresponding to between 5 and 25% based on the weight of the solids.
Following the application of the agent and curing catalyst to the textile fabric, the material is subjected to drying and curing operations in order to effect wrinkle resistance and shrinkage control thereon. The drying and curing operation may be carried out in a single step or in separate steps. The temperatures at which the drying and curing operations are effected vary widely and are influenced to some extent by the type of catalyst employed. Normally, the range of temperature extends from about F. to about 450 F. or even higher. Generally speaking, the time of the drying and/or curing operation is inversely proportional to the temperature employed and of course is influenced by whether or not separate or combined drying and curing steps are employed. Generally, when drying and curing is carried out in a combined operation a time of from about one minute to about 10 minutes may 'be employed at temperatures from 450 to 250 F., respectively. When the fabric has been dried preliminary to curing, curing times of the order of 5 minutes to about A minute at a temperature of from between 250 and 450 F., respectively, have been successfully employed.
In order that the present invention may be more fully understood, the following examples are given primarily by way of illustration. No specific details or enumerations contained therein should be construed as limitations on the present invention except insofar as they appear in the appended claims. All parts and percentages are by weight unless otherwise specifically designated.
5 EXAMPLE 1 4,5-dihydroxy-L3-dimethyl-Z-imiaazolidinone o I] o OHaN NCH3 HO-CHCHOH A mixture of 105 pants (0.6 mole) of 30% glyoxal, with the pH adjusted to 7.0 by adding sodium hydroxide, and 44 parts (0.5 mole) of 1,3-dimethylurea is stirred at room temperature for several hours. Concentration of the solution in vacuo gives a precipitate which is filtered off and dissolved in methanol. Concentration of this solution gives a precipitate which may be separated by filtration. The product, after purification by dissolving in methanol and adding petroleum ether, has a melting point of about l29-131 C. (decomposition).
Analysis.-Ca.lculated for C H N O /2H O: C, 38.8; H, 7.09; H O, 5.9 Found: C, 38.9; H, 6.91; H O, 6.0.
EXAMPLE 2 4,5-dihydrxy-1,3-di-n-propyl-Z-imidazolidinone 0 I! o CaH1N N'-CaH HOCHCHOH The procedure of Example 1 is followed substituting 72 partsof 1,3-di-n-propylurea for the 44 parts of 1,3-dimethylurea.
EXAMPLE 3 4,5-dihydr0xy-1,3-diis0butyI-Z-imidazolidinone 0 ll C O4Hs-N NC4H9 HOOH- HOH The procedure of Example 1 is followed substituting 86 parts of 1,3-diisobutylurea for the 44 parts of 1,3-dim I a-,..
EXAMPLE 4 4,5 -dihydr oxy:1 ,3-di phenyl-Z -imidazolz'din0ne II C5H5-N N--C5Hs HO-OHCH-OH A reaction mixture of 21.2 parts (0.1 mole) of 1,3-diphenylurea in 200 parts of dioxane and 17.5 par-ts (0.1 mole) of 30% glyoxal of pH 7.0 is stirred at room temperature for about 30 minutes and then is heated at the reflux temperature for about 45 minutes. The reaction solution, after cooling and filtering, is evaporated to dryness and the residue is dissolved in ethanol. The product obtained by cooling the solution is separated by filtration and is purified by crystallization from ethanol.
EXAMPLE 5 4,5 -dihydr0xy-1 ,S-diphenyl-Z-imidazolidinethione 3 II CaHn-N N-CaHs HO--CHCHOH A solution of 22.8 parts (0.1 mole) of thiocarbanilide and 17.6 parts (0.1 mole) of 76% glyoxal in approxir'nately 95 parts of a 50:50 mixture of tetrahydrofuran and water, with the pH adjusted to 7.5 by the addition of sodium hydroxide, is refluxed for 1 hour. The liquid portion of the reaction mixture, after decantation from the solid portion, when cooled deposits the desired product having a melting point of 176l78 C. An additional amount of the product is obtained by crystallization of the solid portion of the reaction mixture from a d-ioxanewater mixture.
Analysis.Calculated for C H N O S: C, 62.9; H, 4.93; N, 9.78. Found: C, 63.0; H, 4.79; N, 9.59.
EXAMPLE 6 4,5-dimethoxy-1,3-aimethyI-Z-imidazolidinone 0 II CHaN N-CHs CH3O-CH HOCHs A solution of 10 parts of l,3-dimethyl-4,5-dihyd-noxy- 2-imidazolidin0ne in 160 parts of methanol is acidified with 1.2 parts of concentrated hydrochloric acid. After the solution has been stirred at 2025 C. for about 5 minutes, :the solution is neutralized by adding about 2 parts of barium hydroxide. The filtered solution is then distilled to remove the alcohol, and the residue is taken up with ether. A fter filtering and evaporating the ether, the residue is distilled in vacuo, and .the product boiling at 8485 C. under a pressure equivalent to 1 mm. of mercury.
Analysis-Calculated for C- H N O C, 48.3; H, 8.1. Found: C, 48.2; H, 8.2.
EXAMPLE 7 4,5 -dieth0xy-1 ,3-dimethyI-Z-imidazolidinone This product may be prepared by the procedure of Example 6 with the substitution of an equal amount of ethanol for the methanol. The product boils at 104 C. under a pressure equivalent to 2 mm. of mercury.
EXAMPLE -8 4,5 -diis0pr0poxy-1 ,3-aimethyI-Z-imidazolidinone A slurry of 73 parts (0.5 mole) of 1,3-dimethyl-4,5- dihydroxy-2-imidazolidinone in parts of isopropanol is acidified by the gradual addition of about 3.7 parts of 96% sulfuric acid. After a 15-minute period of stirring at room temperature, :the pH of the solution is adjusted to between 7 and 8 with 50% aqueous sodium hydroxide. The solution is filtered and distilled in vacuo. The product boils at about '98105 C. under a pressure equivalent to 0.1 mm. of mercury.
Analysis.-Calculated for C H N O C, 57.4; H, 9.55; N, 12.2. Found: C, 57.3; H, 9.30; N, 12.4.
Analysis.Calculated for C H N O OCH 24.6; N, 22.2. Found: OCH 24.7; N. 22.1.
7 8 EXAMPLE 10 With 1.2 parts of concentrated hydrochloric acid. After 1,3-bis(2-carbamoylethyl)-4,5-dime1h x -2- about minutes, the solution is neutralized with about imidazolidinone 1.9 parts of barium hydroxide octahydrate and evaporated O to dryness. The residue is extracted with parts of It 5 hot water, and the resulting solution upon cooling deposits a precipitate of white crystals which melt at 115- HzNCOCHzOHr-N N-CHtGHzOONHz 118 C.
.1 CH3 Analysis.-Calculated for C H N O C, 41.1; H, 6.90. This product is prepared by the procedure of Example Found: 409; 8 by substituting the equivalent amount of acrylarnide 10 EXAMPLE 14 for the acrylonitrile.
EXAMPLE 11 (A) Solutions were prepared containing 1.2%, 3.0%, 6.0%, 9.0% and 12.0% of the product of Example 12. The solutions also contained 10% of zinc nitrate on the lmldazolldmone 15 weight of the resin solids in the bath.
0 (B) Similar solutions were also prepared using the /g\ product of Example 1. I The solutions were applied to 80 X 80 cotton percale CEHaOCOCHEOHrN NuoHaoHzooocgHs by padding with a wet pick-up of approximately 85% OH39 0HCH0CHB on the weight of the fabric. The fabrics were dried at This product is prepared by the procedure of Example 225 F. for 2 minutes and the resin was cured on the 8 by substituting the equivalent amount of ethyl acrylate fabric at 350 F. for 1.5 minutes. The treated fabrics for the acrylonitrile. contained the amount of resin shown in Table I.
Compounds closely related to the novel compounds of The wrinkle recovery of the treated fabric was measthis invention are prepared in accordance with Examples ured on a Monsanto Wrinkle recovery tester following the 12 and 13 hereinafter and subsequently compared theretentative method 66-1959 described on page 171 of the with in application properties in order to point up the 1959 Technical Manual and Yearbook of the American unexpected merit of the compounds of this invention as Association of Textile Chemists and Colourists, vol. 35. textile finishing agents. The chlorine retention test was carried out by the Ten- EXAMPLE 12 tative Test Method 921958 described on page 130 of I the 1959 Technical Manual and Yearbook of the Ameri- 45'd'hydmxyl'z"mldazohdl'wne can Association of Textile Chemists and Colourists,
vol. 0 The Sanforized washes were carried out at 212 F. 35 in an automatic washing machine by the procedure del 1 scribed under Standard Test Method 91-l958 on page HO HCCH OH 133 of the above reference. After the pH of 1070 parts (5.5 moles of 30% aque- The results of the chlorine retention test described ous glyoxal) has been adjusted to 7.0 with aqueous soabove are set forth in Table I hereinbelow.
TABLE I Chlorine Retention Test-Tensile Strength (Lb.)
Percent Resin Solids Initial Tensile on Fabric Strength (Lb.) 5 Sanlorized washes Initial Wrinkle Initial Cl; Scorch Percent Recovery Scorch Loss (W+F) Initial Cl; Percent Loss (B) :03 90 83 s V 93 94 0 181 71 69 67 3 75 72 4 216 69 61 59 3 67 68 0 242 64 64 62 3 64 62 3 256 10 62 61 61 0 66 64 3 256 Untreated Fabric 111 103 105 o 101 57 44 162 dium hydroxide, 500 parts (8.35 moles) of urea are added at room temperature. The resulting solution, after standing at room temperature, is concentrated in vacuo, and
the product which separates during the concentration is separated by filtration. The product is washed with methanol and purified by crystallization from methanol.
EXAMPLE 13 A solution of 10 parts (0.0847 mole) of 4,5-dihydroxy- Z-imidazolidinone in 160 parts of methanol is acidified The product of Example 1 produces no significant strength loss due to chlorine retention, while in the case of the product of Example 12 the strength loss due to chlorine retention is extreme. This difference is indeed surprising in view of the close relationship between the two compounds.
EXAMPLE 15 225 F. for 2 minutes and the resin was cured at 350 F. for 1.5 minutes. The treated fabrics contained the amount of resin shown in Table II.
The wrinkle recovery and tensile'strength of the treated fabrics was measured by the procedure described in be employed with other agents or auxiliaries, as for example, softeners, lubricants, odorants and the like.
I claim: 1. A compound of the formula X Example 14. II
The washes under wrinkle recovery were carried out as in Example 14. R-N N-Rl The chlorine retention tests and the Sanforized washes CH CH were carried out by the procedure described in 10 g Example 14. 033
The results of the tests are shown in Table II. where R and R are selected from the group consisting TABLE II Chlorine Retention Test-Tensile Strength (Lb.)
Percent Resin Solids Initial Tensile on Fabric Strength (Lb.) 5 Sanforized washes Initial Wrinkle Initial C12 Scorch Percent Recovery Scorch Loss (W-I-F) Initial C13 Percent Loss 98 92 91 1 s9 96 0 169 82 71 76 0 80 7s 3 202 77 71 63 11 73 72 1 219 69 71 67 6 75 71 5 239 75 64 68 0 65 67 0 245 B) 5 57 47 0 100 58 0 100 227 Untreated Fabric 111 103 105 0 101 57 44 These results show that surprisingly the product of Example 6 is far superior to the product of Example 13 with respect to the amount of damage caused by chlorine retention.
The textile finishing agents of this invention may be employed alone or in combination with other creaseproofing resins and in particular with aminoplast textile finishing resins, as for example, the melamine-formaldehyde resins, guana-mine-formaldehyde resins, and their alkylated or etherified derivatives. Thus, for example, the agents of this invention may be combined with the melamine-formaldehyde resins which are described in US. Patent No. 2,197,357 and US. Patent No. 2,529,856. Additionally, they may 'be combined with the various cyclic ureas, as for example, ethylene urea, propylene urea, including the 1,2- and 1,3-propylene areas and their homologues and corresponding thio derivatives and the thiobis amides such as are described in US. Patent No. 2,887.408. Suitable guanamine-formaldehyde condensates of the type contemplated for use with the agents of this invention are those described in U.S. Patent No. 2,887,409. Additionally, the agents of this invention may be combined or employed with urons such as are described in US. Patent No. 2,373,135 and various polyepoxide resins having epoxy equivalents greater than 1, as for example those describe-d in US. Patent No. 2,730,427, US. Patent No. 2,752,269 and US. Patent No. 2,794,754. Further, the textile finishing agents of this invention may of phenyl, lower alkyl, and substituted lower alkyl, wherein the substituting group is cyano, carboxy, carb(lower) alkoxy or carbamoyl, R and R 'are lower alkyl, provided that when R and R are phenyl or substituted lower alkyl, R and R may be hydrogen and X is selected from the group consisting of oxygen and sulfur.
2. A compound according to claim 1 in which R and R are phenyl, R and R are hydrogen and X is oxygen.
3. A compound according to claim 1 in which R and R are methyl, R and R are methyl and X is oxygen.
4. A compound according to claim 1 in which R and R are Z-cyanoethyl, R and R are methyl and X is oxygen.
5. A compound according to claim 1 in which R and is oxygen.
References Cited by the Examiner FOREIGN PATENTS 783,051 9/1957 Great Britain.
WALTER A. MODANCE, Primary Examiner. NATALIE TROUSOF, Assistant Examiner.

Claims (1)

1. A COMPOUND OF THE FORMULA
US563708A 1966-07-08 1966-07-08 Imidazolidinones Expired - Lifetime US3304312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US563708A US3304312A (en) 1966-07-08 1966-07-08 Imidazolidinones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US563708A US3304312A (en) 1966-07-08 1966-07-08 Imidazolidinones

Publications (1)

Publication Number Publication Date
US3304312A true US3304312A (en) 1967-02-14

Family

ID=24251573

Family Applications (1)

Application Number Title Priority Date Filing Date
US563708A Expired - Lifetime US3304312A (en) 1966-07-08 1966-07-08 Imidazolidinones

Country Status (1)

Country Link
US (1) US3304312A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442905A (en) * 1966-09-08 1969-05-06 American Cyanamid Co N-methylol-n'-substituted-4,5-dihydroxy-2-imidazolidinones
US3445407A (en) * 1966-10-10 1969-05-20 Nat Provincial Bank Ltd Compositions containing 2-imidazolidinone for sizing textile yarns
FR2378771A1 (en) * 1976-12-22 1978-08-25 Bayer Ag NEW SUBSTITUTED 4,5-DIHYDROXYIMIDAZOLIDINE-2-THIONES, THEIR METHOD OF PREPARATION AND THEIR APPLICATION AS ECTOPARASITICIDES
US4306872A (en) * 1980-01-17 1981-12-22 American Cyanamid Company Imidazolidinones in a durable press process
US4462865A (en) * 1981-09-30 1984-07-31 The Dow Chemical Company Delignification of lignocellulosic materials with 2-imidazolidinones and 2-oxazolidinones
US4578107A (en) * 1982-09-27 1986-03-25 Otsuka Kagaku Kabushiki Kaisha Herbicidal imidazolidine-2-one derivatives
US4596850A (en) * 1983-03-10 1986-06-24 National Starch And Chemical Corporation Imidazolidinone polymers useful as nonwoven binders
US4622374A (en) * 1983-03-10 1986-11-11 National Starch And Chemical Corporation Imidazolidinone polymers useful as nonwoven binders
US5084542A (en) * 1990-05-31 1992-01-28 E. I. Du Pont De Nemours And Company Epoxy/isocyanate crosslinked coatings containing 1,3-disubstituted imidazole-2-thione catalysts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB783051A (en) * 1955-02-08 1957-09-18 Basf Ag Improvements in the production of n-monosubstituted monoureines of glyoxal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB783051A (en) * 1955-02-08 1957-09-18 Basf Ag Improvements in the production of n-monosubstituted monoureines of glyoxal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442905A (en) * 1966-09-08 1969-05-06 American Cyanamid Co N-methylol-n'-substituted-4,5-dihydroxy-2-imidazolidinones
US3488701A (en) * 1966-09-08 1970-01-06 American Cyanamid Co Use of n-methylol-n'-substituted-4,5-dihydroxy - 2-imidazolidinones as textile finishing agents
US3445407A (en) * 1966-10-10 1969-05-20 Nat Provincial Bank Ltd Compositions containing 2-imidazolidinone for sizing textile yarns
FR2378771A1 (en) * 1976-12-22 1978-08-25 Bayer Ag NEW SUBSTITUTED 4,5-DIHYDROXYIMIDAZOLIDINE-2-THIONES, THEIR METHOD OF PREPARATION AND THEIR APPLICATION AS ECTOPARASITICIDES
US4306872A (en) * 1980-01-17 1981-12-22 American Cyanamid Company Imidazolidinones in a durable press process
US4462865A (en) * 1981-09-30 1984-07-31 The Dow Chemical Company Delignification of lignocellulosic materials with 2-imidazolidinones and 2-oxazolidinones
US4578107A (en) * 1982-09-27 1986-03-25 Otsuka Kagaku Kabushiki Kaisha Herbicidal imidazolidine-2-one derivatives
US4596850A (en) * 1983-03-10 1986-06-24 National Starch And Chemical Corporation Imidazolidinone polymers useful as nonwoven binders
US4622374A (en) * 1983-03-10 1986-11-11 National Starch And Chemical Corporation Imidazolidinone polymers useful as nonwoven binders
US5084542A (en) * 1990-05-31 1992-01-28 E. I. Du Pont De Nemours And Company Epoxy/isocyanate crosslinked coatings containing 1,3-disubstituted imidazole-2-thione catalysts

Similar Documents

Publication Publication Date Title
US3260565A (en) Novel imidazolidinones and their use as textile finishing agents
US4345063A (en) Glyoxal/cyclic urea condensates
US4285690A (en) Novel reactants for crosslinking textile fabrics
US4284758A (en) Glyoxal/cyclic urea condensates
US4332586A (en) Novel reactants for crosslinking textile fabrics
US4396391A (en) Treating cellulose textile fabrics with dimethylol dihydroxyethyleneurea-polyol
US4300898A (en) Compositions for treating textile fabrics
US4295846A (en) Process for the production of formaldehyde-free finishing agents for cellulosic textiles and the use of such agents
US3304312A (en) Imidazolidinones
US3827994A (en) Composition for producing wrinkle-free permanently pressed cellulosic textile materials
US2785996A (en) Compositions and method of treating textile materials
US3442905A (en) N-methylol-n'-substituted-4,5-dihydroxy-2-imidazolidinones
US3597380A (en) Modified methylolated aliphatic carbamate permanent press textile resin
US3029164A (en) Production of crease resistance in cellulosic fabrics with the aid of 1, 3-dimethylol-4, 5-bis(alkoxy)-2-imidazolidinones
US3079279A (en) Blends of imidazolidinones and aminoplasts and method for finishing cellulose containing textile material
US3248398A (en) Substituted ureas
US3772292A (en) N-hydroxymethyl compounds,compositions containing such compounds and cellulose-containing textile materials treated therewith
US4295847A (en) Finishing process for textiles
US3014042A (en) Certain 2-(3-methylol imidazolidone-2-yl-1)-ethyl acylates and process
US2654720A (en) Treatment of textiles and n-halogenated amine-aldehyde agents therefor
US3185539A (en) Process of treating cellulose textiles with certain alkylenebis(n-carboxamides) and products produced therefrom
US3112155A (en) Glyoxal-amide reaction products
US2887409A (en) Substituted guanamine-formaldehyde reaction products and the process for treating textiles therewith
US3465036A (en) 2-carboxyethoxymethyl-tris (2-(n-methylolcarbamoyl)-ethoxymethyl) methane
US3378397A (en) Highly alkylolated textile finishing composition and process for treating textile fabric therewith