US3156420A - Method for making molybdenum disulfide - Google Patents

Method for making molybdenum disulfide Download PDF

Info

Publication number
US3156420A
US3156420A US169103A US16910362A US3156420A US 3156420 A US3156420 A US 3156420A US 169103 A US169103 A US 169103A US 16910362 A US16910362 A US 16910362A US 3156420 A US3156420 A US 3156420A
Authority
US
United States
Prior art keywords
particles
microns
smaller
molybdenum disulfide
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US169103A
Inventor
James S Crowl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acheson Industries Inc
Original Assignee
Acheson Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US833926A external-priority patent/US3062741A/en
Application filed by Acheson Industries Inc filed Critical Acheson Industries Inc
Priority to US169103A priority Critical patent/US3156420A/en
Application granted granted Critical
Publication of US3156420A publication Critical patent/US3156420A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides

Definitions

  • the present invention relates to an improved molybdenum disulfide lubricant in particulate form, to the method for making the same and to dispersions containing such improved lubricant.
  • the laminar, plate-like form of particles of molybdenite is known and well understood to render such particles useful as lubricants.
  • 'Molybdenite particles have been commercially used as lubricants by application to the surface to be lubricated in the form of dry powder or as a liquid dispersion. Because of the relatively high den sity of molybdenum disulfide it is extremely difficult to form a stable, non-settling dispersion containing a suiticiently high concentration of molybdenum disulfide particles to be an efficient lubricant.
  • a commercially stable M03 dispersion requires a reduction of the particle size of molybdenite from the conventional 100 to 200 screen mesh size to a substantially smaller size range, for example, l050 microns.
  • size reduction customarily has been accomplished by grinding the molybdenite commercial product in a ball mill.
  • Reducing the particle size by conventional ball milling procedures is expensive, time-consuming and undesirably limited in the degree of particle size reduction which is obtained in an economic time period.
  • Another important object of this invention is to provide an improved method for making finely-divided molybdenum disulfide.
  • a further object of this invention is to confer improved lubricating ability to particulate molybdenum disulfide and dispersions made therefrom, and to provide dispersions which are more economic to use, have improved stability and utility in a wider range of lubricating applications than heretofore known molybdenum disul fide lubricants.
  • the improved product of this invention contains not more than 0.1%, by weight, of particles larger than 32 microns in diameter and the mass mean diameter of the particles is in the range of about 0.45 micron to about 2.0 microns.
  • the method or this invention is based on the discovery that grinding the molybdenite in the presence ofcertain grindingaids is effective in reducing the particle size of molybdenite to the desired micron range and producingthe desired distributionof sizes'of particles in greatly reduced time relative to grinding tional methods.
  • the molybdenum disulfide starting material may be any of the commercially available purified and finely powdered naturally occurring molybdenites, e.g., the froth flotation purified natural molybdenum disulfide ground to an average particle size of about 100 Tyler screen mesh.
  • the grinding aid must be effective to improve the rate of particle size decrease without reacting in any way with the molybdenum disulfide particles to convert them to a non-lubricating or water soluble form, and additionally must be easily separable or removable from the finish ground material by sublimation or dissolution in a commercially available solvent, e.g., isopropyl alcohol, followed by filtration. Either of these methods permits by conveneconomic recovery of the grinding aid by condensing the sublimed vapors, or crystallizing the grinding aid from the filtrate by boiling off the solvent which is recaptured by condensing and is also available for re-use.
  • a commercially available solvent e.g., isopropyl alcohol
  • Salicylic acid and phthalic anhydride have been found to possess all the necessary characteristics for this use, and it is believed that the ability to sublime without chemically reacting with the molybdenum disulfide is the characteristic that is common to these two materials to make them functionally suitable for this use.
  • Salicylic acid is slightly more effective than phthalic anhydride in improving the rate of decrease in size of the molybdenum sulfide particles, is easier to separate from the finish ground material, particularly by sublimation, and is preferred.
  • the product of this invention is improved in the respect that the average particle size is finer than heretofore known molybdenum sulfide powders and additionally contains a significantly decreased proportion of large parti cles.
  • molybdenite powder ball milled for 72 hours in the absence of a grinding aid of this invention contains about 10%, by weight of particles larger than 7.5 microns.
  • Molybdenite powder ball milled for 24 hours in the same ball mill containing salicylic acid crystals as the grinding aid produced a product'containing only 1.8% by weight, of particles larger than 7.5 microns while 60 hours of ball milling in the presence of salicylic acid produced a product having only about 0.15%, by
  • the product should not contain more than 0.1% of particles, by weight, having a size greater than 32 microns in diameter and that at least about onehalf of the particles,by weight, should have a diameter below a diameter which is in the range of'about 0.45 micron to about 2.0 microns.
  • mass mean diameter the product of this'invention contains particles having a mass mean diameter in the range of about 0.45 microns to about 2.0 microns and lower limit and contain a maximum of 0.1%, by Weight,
  • the particle count procedure involves adding a weighed sample of the product to a measured quantity of water and adding a small quantity of acid, such as nitric, to make the solution electrically conductive.
  • a sample is placed in the counter which has been previously calibrated with known size particles and a series of counts are made at a series of threshold settings.
  • the counter counts all of theiparticles equivalent to and larger than particles equivalent to the threshold setting and the difference in the countsobtained at adjacent threshold settings is the number of particles having sizes between the sizes represented by the threshold settings.
  • the particle size between 1 micron and microns was measured in not less than 10 increments spaced in geometric progression, for example, in 12 increments spaced from the threshold settings betweenwhich' the number of particles were counted. Since the total'weightof particles was originally measured, the percentage of thetotal represented by each differential particle count is easily determined, and the successive determinations enables the establishment of the size at which one-half of the particles, by weight, are above that size and the other half are below that size, or in other words the mass mean diameter of the particles in the sample. 1
  • Themethod of the invention involves the steps of placing dry or dried molybdenite to be comminuted in the grinding vessel, preferably a ball mill using steel balls, pebbles or the like having diameters for example of about W /z to about 2 and adding the grinding aid crystals to the mill.
  • the weight ratio of grinding aid to molybdenum disulfide which is employed may satisfactorily vary from about 0.111 to about 3:1 and especially good results have been obtained at a ratio of about 2:1. No particular advantage is gained by using a greater excess of grinding aid thanabout 3:1 since greater quantities do not destroy the benefits. but rather only increase the expense and problemsof recovery and re-useof the A steel ball mill having a volume of 4.82 gallons, a.
  • the ground material was spread in a thin layer on pans and the salicylic acid was removed by sublimation at a temperature of about 200 F.-250 F. in about 30 minutes.
  • Aparticle size count sample was prepared from the dried filter cake by adding 12 grams of the ground powder to 16 grams of water in the presence of 4 grams of dextrin, This material was placed in a shot mill and milled for 15 minutes and an additional 50 grams of water was then added. Samples of the shot milled material were then further diluted with a 0.05 N to 0.075 N nitric acid solution. A. 'sufiicient quantity of thenitric acid solution was added to insure that the maximum particle count would remain below the maximum particle count of which the counter was capable, in this case about 50,000 particles.
  • the ball mill is rotated for thedesired time period, for example, one-half to two days, or longer if desired, and the ground molybdenum is then separated from the grinding aid.
  • the preferred'procedure is to slurry the finish grind with alcohol, preferably isopropyl alcohol, and filter the slurry through a filter to separate themolybdenum sulfide from the alcohol solution containing the dissolved grinding aid..
  • the filter cake contains the product of this invention and may be converted I into a dispersion-before drying, or may be. dried, for
  • the grinding aid may beremoved from the finish ground material by sublimation at a temperature of about 170. F.,-250, F. for sali-,
  • the vapors from the finish grind may be collected and reconverted to crystalline form forte-use.
  • Liquid dispersions which have excellent stability characteristics are formed from thefilter cakematerial by tional counts were made by decreasing the threshold setting each time by a factor equal to the square root of 2. The results of the particle count indicated that the finely ground material had ,a mass mean diameter of 1.86
  • microns and contained 0.1%, by weight, of particles having a diameter greater than 15 microns. 98.8%, by weight, of the particles were smaller than 8 microns; 98% of the particles were smaller than 7 microns; 96% of' the particles were smaller than 6 microns; 80% of the particles were smaller than 3 microns; 68% of the particles were smaller than 2.5 microns; 55% of the particles were smaller than 2.0 microns; 30% of the particles were smaller than 1.25 microns; 20% of the particles were smaller than 1.0 micron; 11% of the particles 'were smaller than 0.8 micron; and, 7% of the particles were smaller than 0.67 micron.
  • massmea'n diameter of the particles in the sample was 1.38-microns and the sample contained a maximum of 0.1% of particles larger than 16 microns.
  • thermosettableand thermoplastic resin carriersk 30%, by weight, of the particlesgwere smallerthan 0.8 micron; 40% of the particles were smaller than 1.0 micron; 70% of the particles were smaller than 2.0 microns; of the particles were smaller than 2.5 microns; and, 87% of the particles were smaller than 3.0 microns.
  • wAnother' sample of the same starting material was 7 ground in the presence of a similarquantity of salicylic acid for-48 hours and a particle size determination showed the sample tocontain the following particle size distribution.
  • v The sample had a mass mean diameter of 0.8 micron and contained a maximumof 0.1% of particles larger'fthan.12.7 microns. 6 0%, by weight, of the parntioles were smaller than 1.0 micron; 68% of the particles were smaller than 1.25 microns; 82% of the particles were sm'aller than 2.0 microns; 88% of the particles were smaller ithan 2.5 microns; 93% of j'the ⁇ . particles 1 were smaller than 3.0 microns; and, 96% of the particles were smaller than 3.9 microns.
  • Another sample of the same material was ground under similar conditions for 60 hours and a particle size count showed the finely ground material to have the following particle size distribution.
  • the mass mean diameter was 0.45 micron and this sample contained a maximum of 0.1% of particles greater than microns in diameter. 72% of the particles were smaller than 0.8 micron; 80% of the particles were smaller than 1.0 micron; 85% of the particles were smaller than 1.25 microns; 93% of the particles were smaller than 2.0 microns; 95.5% of the particles were smaller than 2.5 microns; and, 97.5% of the particles were smaller than 3.0 microns.
  • Example ll 12 lbs. of technical grade molybdenum disulfide having an average particle size of about 100 Tyler screen mesh was charged into the ball mill described in Example I and the ball mill was rotated at 50 r.p.m. for 72 hours.
  • the ground material was removed from the ball mill and prepared for a particle size distribution count in accordance with the procedure described in Example I.
  • the particle size count showed that the material had a mass mean diameter of 2.5 microns and contained a maximum of 0.1% of particles larger than 44 microns.
  • a dispersion was prepared from the product of grinding of Example I for 60 hours, using oil as the carrier and containing approximately 10% M08 solids. This dispersion was compared in ball bearing lubrication tests with another commercial oil dispersion containing a similar quantity of molybdenum disulfide having a particle size in the 10 to 50 micron size range and with a dispersion formed from the product of Example II. The results showed the dispersion of Example I to have better covering power and longer life than either of the other two dispersions.
  • Example III The ball mill described in Example I was filled with 6 lbs. of technical grade molybdenum disuliide having an average particle size of about 100 Tyler screen mesh and 6 lbs. of technical grade salicylic acid and the mill was rotated at 50 r.p.m. for 72 hours.
  • Example I The salicylic acid was removed by sublimation in the manner described in Example I. i
  • a particle size count sample was prepared using the procedure of Example I and a particle size determination was made and showed the following particle size distribution.
  • the mass mean diameter of the particles in the sample was 0.83 micron and the sample contained a maximum 0.1%, by weight, of
  • Example II 6.:lbs. of technical grade molybdenum disulfide having an average particle size of about 100 Tyler screen mesh and 6 lbs. of technical grade phthalic anhydride and the mill The phthalic anhydride was removed by sublimation in the maner described in Example I. A particle size count sample was prepared using the procedure of Example I and a particle size determination was made and showed the following particle size distribution.
  • the mass mean diameter of the particles in the sample was 0.96 micron and the sample contained a maximum 0.1%, by weight, of particles larger than 16 microns; 42%, by weight, of the particles were smaller than 0.82 micron; 48% of the particles were smaller than 0.94 micron; 53% of the particles were smaller than 1.0 micron; 62% of the particles were smaller than 1.25 microns; 7 0% of the particles were smaller than 1.6 microns; 78% of the particles were smaller than 2.0 microns; of the particles were smaller than 2.5 microns; and, 91% of the particles were smaller than 3.13 microns.
  • a method for making finely divided molybdenum disulfide which comprises the steps of grinding molybdenum disulfide in the presence of a compatible grinding aid selected from the group consisting of salicylic acid and phthalic anhydride.
  • a method for making finely divided molybdenum disulfide which comprises the steps of grinding molybdenum disulfide in the presence of salicylic acid, said salicylic acid being present in a ratio to said molybdenum disulfide, by weight, in the range of about 0.1:1 to about 3:1.
  • a method for making finely divided molybdenum disulfide which comprises the steps of grinding molybdenum disulfide in the presence of phthalic anhydride, said phthalic anhydride being present in a ratio to said molybdenum disulfide, by weight, in the range of about 0.111 to about 3:1.
  • a method for making finely divided molybdenum disulfide which comprises the steps of grindingmolybdenurndisulfide in the presence of salicylic acid, said salicylic acid being present in a ratio to said molybdenum disulfide, by weight, in a ratio of about 2: 1.
  • a method for making finely divided molybdenum disulfide which comprises the steps of grinding molybdenum disulfide in the presence of phthalic anhydride, said phthalic anhydride being present in a ratio to said molybdenum disulfide, by weight, in a ratio of about 2: 1.
  • a method for making finely divided molybdenum disulfide which comprises the steps of ball milling molybdenum disul-fide in the presence of salicylic acid in a weight ratio to molybdenum disulfide in the range of 0.1 :1 to 3: 1, and continuing said grinding until the molybdenum disulfide is a finely divided particulate form having a mass mean diameter in therange of about 0.45 micron to about 2.0 microns and containing a maximum of 0. l%,
  • a method for making finely divided molybdenum "disulfide which comprises the steps of ball milling molyba mass mean diameter in the range of about 0.45 micron to about 2.0 microns and containing a maximumof 0.1%, by weight, of particles larger than 32 microns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)

Description

United States Patent 3,156,420 METHOD FUR MAKHJG MOLYBDENUM DESULFHDE James S. @rowi, Port Huron, Mich, assignor to Acheson Industries, Inc, iort Huron, Mich, a corporation of Michigan No Drawing. ()riginal application Aug. 17, 1959, Ser. No. 833,926, new Patent No. 3,062,741, dated Nov. 6, 1962. Divided and this application Ian. 26, 1962, Ser. No. 169,103
7 Ciaims. (Cl. 241-16) The present invention relates to an improved molybdenum disulfide lubricant in particulate form, to the method for making the same and to dispersions containing such improved lubricant.
The laminar, plate-like form of particles of molybdenite is known and well understood to render such particles useful as lubricants. 'Molybdenite particles have been commercially used as lubricants by application to the surface to be lubricated in the form of dry powder or as a liquid dispersion. Because of the relatively high den sity of molybdenum disulfide it is extremely difficult to form a stable, non-settling dispersion containing a suiticiently high concentration of molybdenum disulfide particles to be an efficient lubricant. The formation of a commercially stable M03 dispersion requires a reduction of the particle size of molybdenite from the conventional 100 to 200 screen mesh size to a substantially smaller size range, for example, l050 microns. Such size reduction customarily has been accomplished by grinding the molybdenite commercial product in a ball mill. Reducing the particle size by conventional ball milling procedures is expensive, time-consuming and undesirably limited in the degree of particle size reduction which is obtained in an economic time period. As a result of these limitations the particle size of molybdenum disulfide in dispersions has been close to the maximum size which could be maintained in the dispersion, and such dispersions suffer from the disadvantages of having low covering power and being unsuitable for use in many lubricating applications, particularly those requiring a lubricating film between tightly fitting, relatively moving parts and those in which one surface rolls against another, etc.
It is the primary object of this invention to provide a new and improved molybdenum .disulfide' product in particulate form. 7
Another important object of this invention is to provide an improved method for making finely-divided molybdenum disulfide.
A further object of this invention is to confer improved lubricating ability to particulate molybdenum disulfide and dispersions made therefrom, and to provide dispersions which are more economic to use, have improved stability and utility in a wider range of lubricating applications than heretofore known molybdenum disul fide lubricants.
In accordance with this invention it has been found that a product having improved covering power and inbricating characteristics is obtained when both the maximum particle size is controlled and the proportion of sizes of particles which constitute the product are established and maintained within certain limits. Generally stated, the improved product of this invention contains not more than 0.1%, by weight, of particles larger than 32 microns in diameter and the mass mean diameter of the particles is in the range of about 0.45 micron to about 2.0 microns. The method or this invention is based on the discovery that grinding the molybdenite in the presence ofcertain grindingaids is effective in reducing the particle size of molybdenite to the desired micron range and producingthe desired distributionof sizes'of particles in greatly reduced time relative to grinding tional methods.
The molybdenum disulfide starting material may be any of the commercially available purified and finely powdered naturally occurring molybdenites, e.g., the froth flotation purified natural molybdenum disulfide ground to an average particle size of about 100 Tyler screen mesh.
The grinding aid must be effective to improve the rate of particle size decrease without reacting in any way with the molybdenum disulfide particles to convert them to a non-lubricating or water soluble form, and additionally must be easily separable or removable from the finish ground material by sublimation or dissolution in a commercially available solvent, e.g., isopropyl alcohol, followed by filtration. Either of these methods permits by conveneconomic recovery of the grinding aid by condensing the sublimed vapors, or crystallizing the grinding aid from the filtrate by boiling off the solvent which is recaptured by condensing and is also available for re-use. The solid reaction products of ammonia, carbon dioxide and Water, for example, ammonium carbonate and ammonium bicarbonate apparently react W-ith the molybdenum disulfide particles to detrimentally affect the lubricating properties and are thus unsatisfactory. Salicylic acid and phthalic anhydride have been found to possess all the necessary characteristics for this use, and it is believed that the ability to sublime without chemically reacting with the molybdenum disulfide is the characteristic that is common to these two materials to make them functionally suitable for this use. Salicylic acid is slightly more effective than phthalic anhydride in improving the rate of decrease in size of the molybdenum sulfide particles, is easier to separate from the finish ground material, particularly by sublimation, and is preferred.
The product of this invention is improved in the respect that the average particle size is finer than heretofore known molybdenum sulfide powders and additionally contains a significantly decreased proportion of large parti cles. To illustrate, molybdenite powder ball milled for 72 hours in the absence of a grinding aid of this invention contains about 10%, by weight of particles larger than 7.5 microns. Molybdenite powder ball milled for 24 hours in the same ball mill containing salicylic acid crystals as the grinding aid produced a product'containing only 1.8% by weight, of particles larger than 7.5 microns while 60 hours of ball milling in the presence of salicylic acid produced a product having only about 0.15%, by
weight, of particles larger than 7.5 microns. As the proportion of fine particles in the product increases, particularly the proportion of extremely fine particles, i.e., smaller than about 2.0 microns in diameter, andthe proportion of larger particles decreases the lubricating ability and the range of lubricating uses of the product increases. It has been foundthat the product should not contain more than 0.1% of particles, by weight, having a size greater than 32 microns in diameter and that at least about onehalf of the particles,by weight, should have a diameter below a diameter which is in the range of'about 0.45 micron to about 2.0 microns. Expressed in terms of mass mean diameter, the product of this'invention contains particles having a mass mean diameter in the range of about 0.45 microns to about 2.0 microns and lower limit and contain a maximum of 0.1%, by Weight,
of particles larger than about 15 microns. The sizes and proportion of particles expressed herein and in the apipended claims refer tosizes and proportions determined by the use of the apparatus disclosed in U.S. Patent 2,656,508, commercially known as the Coulter counter,
. Patented Nov. 10,. 1964.
by specifically following the method of its use described therein.
Briefly stated, the particle count procedure involves adding a weighed sample of the product to a measured quantity of water and adding a small quantity of acid, such as nitric, to make the solution electrically conductive. A sample is placed in the counter which has been previously calibrated with known size particles and a series of counts are made at a series of threshold settings. The counter counts all of theiparticles equivalent to and larger than particles equivalent to the threshold setting and the difference in the countsobtained at adjacent threshold settings is the number of particles having sizes between the sizes represented by the threshold settings. In making the particle size determinations to establish the mass mean diameters hereinabove given, the particle size between 1 micron and microns was measured in not less than 10 increments spaced in geometric progression, for example, in 12 increments spaced from the threshold settings betweenwhich' the number of particles were counted. Since the total'weightof particles was originally measured, the percentage of thetotal represented by each differential particle count is easily determined, and the successive determinations enables the establishment of the size at which one-half of the particles, by weight, are above that size and the other half are below that size, or in other words the mass mean diameter of the particles in the sample. 1
Themethod of the invention involves the steps of placing dry or dried molybdenite to be comminuted in the grinding vessel, preferably a ball mill using steel balls, pebbles or the like having diameters for example of about W /z to about 2 and adding the grinding aid crystals to the mill. The weight ratio of grinding aid to molybdenum disulfide which is employed may satisfactorily vary from about 0.111 to about 3:1 and especially good results have been obtained at a ratio of about 2:1. No particular advantage is gained by using a greater excess of grinding aid thanabout 3:1 since greater quantities do not destroy the benefits. but rather only increase the expense and problemsof recovery and re-useof the A steel ball mill having a volume of 4.82 gallons, a. diameter of 11", a length of 11 /2" and containing a steel ball charge of 111.1 lbs. of' diameter balls was loaded with 4 lbs. of technical grade molybdenum disulfide having an average particle size of about 100 Tyler screen mesh. 8 lbs. of technical grade salicylic acid was charged into the mill and the mill was rotated at 50 rpm. for 24 hours.
The ground material was spread in a thin layer on pans and the salicylic acid was removed by sublimation at a temperature of about 200 F.-250 F. in about 30 minutes. Aparticle size count sample was prepared from the dried filter cake by adding 12 grams of the ground powder to 16 grams of water in the presence of 4 grams of dextrin, This material was placed in a shot mill and milled for 15 minutes and an additional 50 grams of water was then added. Samples of the shot milled material were then further diluted with a 0.05 N to 0.075 N nitric acid solution. A. 'sufiicient quantity of thenitric acid solution was added to insure that the maximum particle count would remain below the maximum particle count of which the counter was capable, in this case about 50,000 particles. With the counter set at a threshold value sufiiciently high to count the maximum size particles, :1 first count was taken and a series of addigrinding aid. The ball mill is rotated for thedesired time period, for example, one-half to two days, or longer if desired, and the ground molybdenum is then separated from the grinding aid. The preferred'procedure is to slurry the finish grind with alcohol, preferably isopropyl alcohol, and filter the slurry through a filter to separate themolybdenum sulfide from the alcohol solution containing the dissolved grinding aid.. The filter cake contains the product of this invention and may be converted I into a dispersion-before drying, or may be. dried, for
7 example, in a nonroxidizing atmosphere at a temperature below about 250 F. Alternatively, the grinding aid may beremoved from the finish ground material by sublimation at a temperature of about 170. F.,-250, F. for sali-,
cylic acid cr -about 265? F. to 300 F. for phthalic anhydride. The vapors from the finish grind may be collected and reconverted to crystalline form forte-use.
Liquid dispersions which have excellent stability characteristics are formed from thefilter cakematerial by tional counts were made by decreasing the threshold setting each time by a factor equal to the square root of 2. The results of the particle count indicated that the finely ground material had ,a mass mean diameter of 1.86
microns and contained 0.1%, by weight, of particles having a diameter greater than 15 microns. 98.8%, by weight, of the particles were smaller than 8 microns; 98% of the particles were smaller than 7 microns; 96% of' the particles were smaller than 6 microns; 80% of the particles were smaller than 3 microns; 68% of the particles were smaller than 2.5 microns; 55% of the particles were smaller than 2.0 microns; 30% of the particles were smaller than 1.25 microns; 20% of the particles were smaller than 1.0 micron; 11% of the particles 'were smaller than 0.8 micron; and, 7% of the particles were smaller than 0.67 micron.
Another sample of the same material was inserted in the same ball mill in the presence of a similar quantity of salicylic acid and the operation was repeated except that the ball milling time was 40 hours. At the end of the 40 hours a sample of the finely ground material was prepared for counting in a manner, identical to that de scribed above and particle size determination was made and showed the following particle size distribution. The
massmea'n diameter of the particles in the sample was 1.38-microns and the sample contained a maximum of 0.1% of particles larger than 16 microns.
incorporating therewith the now conventional dispersingcarriers,.stabilizers and the like includingfoil, water,
Excellent lubricating results arelobtained from awater or oil dispersion containing forjexample; about 1'0%. to about 40%,- by weight, .of the product of this invention.
I alcohol and mixtures thereof as well'as resin solutions including thermosettableand thermoplastic resin carriersk 30%, by weight, of the particlesgwere smallerthan 0.8 micron; 40% of the particles were smaller than 1.0 micron; 70% of the particles were smaller than 2.0 microns; of the particles were smaller than 2.5 microns; and, 87% of the particles were smaller than 3.0 microns.
wAnother' sample of the same starting material was 7 ground in the presence of a similarquantity of salicylic acid for-48 hours and a particle size determination showed the sample tocontain the following particle size distribution. vThe sample had a mass mean diameter of 0.8 micron and contained a maximumof 0.1% of particles larger'fthan.12.7 microns. 6 0%, by weight, of the parntioles were smaller than 1.0 micron; 68% of the particles were smaller than 1.25 microns; 82% of the particles were sm'aller than 2.0 microns; 88% of the particles were smaller ithan 2.5 microns; 93% of j'the}. particles 1 were smaller than 3.0 microns; and, 96% of the particles were smaller than 3.9 microns.
Another sample of the same material was ground under similar conditions for 60 hours and a particle size count showed the finely ground material to have the following particle size distribution. The mass mean diameter was 0.45 micron and this sample contained a maximum of 0.1% of particles greater than microns in diameter. 72% of the particles were smaller than 0.8 micron; 80% of the particles were smaller than 1.0 micron; 85% of the particles were smaller than 1.25 microns; 93% of the particles were smaller than 2.0 microns; 95.5% of the particles were smaller than 2.5 microns; and, 97.5% of the particles were smaller than 3.0 microns.
Example ll 12 lbs. of technical grade molybdenum disulfide having an average particle size of about 100 Tyler screen mesh was charged into the ball mill described in Example I and the ball mill was rotated at 50 r.p.m. for 72 hours. The ground material was removed from the ball mill and prepared for a particle size distribution count in accordance with the procedure described in Example I. The particle size count showed that the material had a mass mean diameter of 2.5 microns and contained a maximum of 0.1% of particles larger than 44 microns. 25%, by weight, of the particles were smaller than 1.38 microns; 38% of the particles were smaller than 1.82 microns; 42% of the particles were smaller than 2.0 microns; 58% of the particles were smaller than 3.0 microns; 76% of the particles were smaller than 5.0 microns; 83% of the particles were smaller than 6.0 microns; 88% of the particles were smaller than 7.0 microns.
A dispersion was prepared from the product of grinding of Example I for 60 hours, using oil as the carrier and containing approximately 10% M08 solids. This dispersion was compared in ball bearing lubrication tests with another commercial oil dispersion containing a similar quantity of molybdenum disulfide having a particle size in the 10 to 50 micron size range and with a dispersion formed from the product of Example II. The results showed the dispersion of Example I to have better covering power and longer life than either of the other two dispersions.
Example III The ball mill described in Example I was filled with 6 lbs. of technical grade molybdenum disuliide having an average particle size of about 100 Tyler screen mesh and 6 lbs. of technical grade salicylic acid and the mill was rotated at 50 r.p.m. for 72 hours.
The salicylic acid was removed by sublimation in the manner described in Example I. i A particle size count sample was prepared using the procedure of Example I and a particle size determination was made and showed the following particle size distribution. The mass mean diameter of the particles in the sample was 0.83 micron and the sample contained a maximum 0.1%, by weight, of
particles greater than 11.5 microns in diameter. 48%,
by weight, of the particles were smaller than 0.82 micron;
53% of the particles were smaller than 0.94 micron; 60% of the'particles were smaller than 1.1 microns; 70% of the particles were smaller than 1.3 microns; 78% of the particles were smaller than 1.6 microns; 84% of the particles were smaller than 2.0 microns; 90% of theparticles were smaller than 2.5 microns; 94% of the particles were smaller than 3.13 microns; and, 96.5% of the particles were smaller than 3.9 microns.
6.:lbs. of technical grade molybdenum disulfide having an average particle size of about 100 Tyler screen mesh and 6 lbs. of technical grade phthalic anhydride and the mill The phthalic anhydride Was removed by sublimation in the maner described in Example I. A particle size count sample was prepared using the procedure of Example I and a particle size determination was made and showed the following particle size distribution. The mass mean diameter of the particles in the sample was 0.96 micron and the sample contained a maximum 0.1%, by weight, of particles larger than 16 microns; 42%, by weight, of the particles were smaller than 0.82 micron; 48% of the particles were smaller than 0.94 micron; 53% of the particles were smaller than 1.0 micron; 62% of the particles were smaller than 1.25 microns; 7 0% of the particles were smaller than 1.6 microns; 78% of the particles were smaller than 2.0 microns; of the particles were smaller than 2.5 microns; and, 91% of the particles were smaller than 3.13 microns.
This application is a division of application Serial No. 833,926, filed August 17, 1959, now United States Patent No. 3,062,741.
What is claimed is:
1. A method for making finely divided molybdenum disulfide which comprises the steps of grinding molybdenum disulfide in the presence of a compatible grinding aid selected from the group consisting of salicylic acid and phthalic anhydride.
2. A method for making finely divided molybdenum disulfide which comprises the steps of grinding molybdenum disulfide in the presence of salicylic acid, said salicylic acid being present in a ratio to said molybdenum disulfide, by weight, in the range of about 0.1:1 to about 3:1.
3. A method for making finely divided molybdenum disulfide which comprises the steps of grinding molybdenum disulfide in the presence of phthalic anhydride, said phthalic anhydride being present in a ratio to said molybdenum disulfide, by weight, in the range of about 0.111 to about 3:1.
4. A method for making finely divided molybdenum disulfide which comprises the steps of grindingmolybdenurndisulfide in the presence of salicylic acid, said salicylic acid being present in a ratio to said molybdenum disulfide, by weight, in a ratio of about 2: 1.
5. A method for making finely divided molybdenum disulfide which comprises the steps of grinding molybdenum disulfide in the presence of phthalic anhydride, said phthalic anhydride being present in a ratio to said molybdenum disulfide, by weight, in a ratio of about 2: 1.
6. A method for making finely divided molybdenum disulfide which comprises the steps of ball milling molybdenum disul-fide in the presence of salicylic acid in a weight ratio to molybdenum disulfide in the range of 0.1 :1 to 3: 1, and continuing said grinding until the molybdenum disulfide is a finely divided particulate form having a mass mean diameter in therange of about 0.45 micron to about 2.0 microns and containing a maximum of 0. l%,
by weight, of particles larger than 32 microns. I
. 7. A method for making finely divided molybdenum "disulfide which comprises the steps of ball milling molyba mass mean diameter in the range of about 0.45 micron to about 2.0 microns and containing a maximumof 0.1%, by weight, of particles larger than 32 microns.
References Cited in the file of this patent UNITED STATES PATENTS 2,386,885 Downs Oct. 16, 1945 2,892,741. Spengler Iune30, 1959 i FOREIGN PATENTS I 569,402 Great Britain May 22, 1945

Claims (1)

1. A METHOD FOR MAKING FINELY DIVIDED MOLYBDENUM DISULFIDE WHICH COMPRISES THE STEPS OF GRINDING MOLYBDENUM DISULFIDE IN THE PRESENCE OF A COMPATIBLE GRINDING AID SELECTED FROM THE GROUP CONSISTING OF SALICYLIC ACID AND PHTHALIC ANHYDRIDE.
US169103A 1959-08-17 1962-01-26 Method for making molybdenum disulfide Expired - Lifetime US3156420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US169103A US3156420A (en) 1959-08-17 1962-01-26 Method for making molybdenum disulfide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US833926A US3062741A (en) 1959-08-17 1959-08-17 Molybdenum disulfide lubricant and method for making same
US169103A US3156420A (en) 1959-08-17 1962-01-26 Method for making molybdenum disulfide

Publications (1)

Publication Number Publication Date
US3156420A true US3156420A (en) 1964-11-10

Family

ID=26864764

Family Applications (1)

Application Number Title Priority Date Filing Date
US169103A Expired - Lifetime US3156420A (en) 1959-08-17 1962-01-26 Method for making molybdenum disulfide

Country Status (1)

Country Link
US (1) US3156420A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243553A (en) * 1979-06-11 1981-01-06 Union Carbide Corporation Production of improved molybdenum disulfide catalysts
US4243554A (en) * 1979-06-11 1981-01-06 Union Carbide Corporation Molybdenum disulfide catalyst and the preparation thereof
US4715972A (en) * 1986-04-16 1987-12-29 Pacholke Paula J Solid lubricant additive for gear oils
US5799882A (en) * 1996-02-21 1998-09-01 Klimpel; Richard R. Hydroxy-carboxylic acid grinding aids
US6135372A (en) * 1996-02-21 2000-10-24 Klimpel; Richard R. Hydroxy-carboxylic acid grinding aids
US8507090B2 (en) 2011-04-27 2013-08-13 Climax Engineered Materials, Llc Spherical molybdenum disulfide powders, molybdenum disulfide coatings, and methods for producing same
US8808661B2 (en) 2011-02-04 2014-08-19 Climax Molybdenum Company Molybdenum disulfide powders having low oil number and acid number

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB569402A (en) * 1943-11-22 1945-05-22 John Lewis Moilliet Grinding pigments
US2386885A (en) * 1941-03-08 1945-10-16 Sherwin Williams Co Pigments and process of making the same
US2892741A (en) * 1954-09-01 1959-06-30 Alpha Molykote Corp Method of preparing lubricative crystalline molybdenum disulfide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386885A (en) * 1941-03-08 1945-10-16 Sherwin Williams Co Pigments and process of making the same
GB569402A (en) * 1943-11-22 1945-05-22 John Lewis Moilliet Grinding pigments
US2892741A (en) * 1954-09-01 1959-06-30 Alpha Molykote Corp Method of preparing lubricative crystalline molybdenum disulfide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243553A (en) * 1979-06-11 1981-01-06 Union Carbide Corporation Production of improved molybdenum disulfide catalysts
US4243554A (en) * 1979-06-11 1981-01-06 Union Carbide Corporation Molybdenum disulfide catalyst and the preparation thereof
US4715972A (en) * 1986-04-16 1987-12-29 Pacholke Paula J Solid lubricant additive for gear oils
US5799882A (en) * 1996-02-21 1998-09-01 Klimpel; Richard R. Hydroxy-carboxylic acid grinding aids
US6135372A (en) * 1996-02-21 2000-10-24 Klimpel; Richard R. Hydroxy-carboxylic acid grinding aids
US8808661B2 (en) 2011-02-04 2014-08-19 Climax Molybdenum Company Molybdenum disulfide powders having low oil number and acid number
US9878332B2 (en) 2011-02-04 2018-01-30 Climax Molybdenum Company Methods of producing molybdenum disulfide powders
US10549286B2 (en) 2011-02-04 2020-02-04 Climax Molybdenum Company Apparatus for producing molybdenum disulfide powders
US8507090B2 (en) 2011-04-27 2013-08-13 Climax Engineered Materials, Llc Spherical molybdenum disulfide powders, molybdenum disulfide coatings, and methods for producing same
US8956724B2 (en) 2011-04-27 2015-02-17 Climax Engineered Materials, Llc Spherical molybdenum disulfide powders, molybdenum disulfide coatings, and methods for producing same

Similar Documents

Publication Publication Date Title
US3062741A (en) Molybdenum disulfide lubricant and method for making same
CA1036302A (en) Production of aqueous calcium carbonate suspensions
US3156420A (en) Method for making molybdenum disulfide
Farnand et al. Spherical agglomeration of solids in liquid suspension
CA1192744A (en) Process for producing a slurry of a pulverized carbonaceous material
JPS55164253A (en) Novel scaly metal powder pigment
GB327979A (en) Improvements in or relating to the treatment of carbon black and other fine powderous materials
US4108679A (en) Pigment composition containing elemental carbon and process of making the same
US2280451A (en) Fertilizer and process for making the same
CN105536960B (en) A kind of preparation system and preparation method thereof of the ultra-fine molybdenum disulfide of hypoxemia
US3121623A (en) Method of making crystalline alumina lapping powder
US4267065A (en) Dispersants for a ceramic slurry
US2864765A (en) Dewatering ore concentrates
JPH0727813B2 (en) Magnetic fluid composition
US2975123A (en) Dewatering metal ore concentrates
US4548642A (en) Process for preparing zinc powder for alkaline batteries (V)
US4301020A (en) Process of slurrying and spray drying ceramic oxides with polyethyleneimine dispersants
US3090567A (en) Size reduction of metal particles
US3370017A (en) Microcrystalline corundum powder, sols thereof, and processes for preparing both
US2689649A (en) Concentration of sylvite ores
US2978428A (en) Aqueous suspensions of colloidal graphite and their preparation
Freundlich et al. The plasticity of powdered slate from Solnhofen and the thixotropic behaviour of its suspensions
US2879133A (en) Anticaking-agent for ammonium nitrate
US4023935A (en) Method of making finely particulate ammonium perchlorate
US3061412A (en) Preparation of mercuric sulfide