US3150972A - Zirconium alloy - Google Patents

Zirconium alloy Download PDF

Info

Publication number
US3150972A
US3150972A US236422A US23642262A US3150972A US 3150972 A US3150972 A US 3150972A US 236422 A US236422 A US 236422A US 23642262 A US23642262 A US 23642262A US 3150972 A US3150972 A US 3150972A
Authority
US
United States
Prior art keywords
zirconium
alloy
calcium
remainder
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US236422A
Inventor
Rosler Ulrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schuckertwerke AG
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of US3150972A publication Critical patent/US3150972A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • My invention relates to zirconium alloys and, in a more particular aspect, to alloys suitable as structural material for use in nuclear reactors, such as for the envelopes or cans of nuclear fuel elements.
  • Structural materials in the interior of nuclear reactors are required to meet essentially the following four requirements:
  • zirconium alloys have been found to be well suitable, particularly in reactors using water as coolant.
  • Preferably employed has been the alloy known under the trade name Zircaloy-Z which, aside from zirconium, contains about 1.5% tin, 0.15% iron, 0.1% chromium and 0.05% nickel. (All percentages given in this specification are by weight.)
  • These alloying additions counteract the impairment in corrosion resistance of pure zirconium due to contaminating traces of other elements, mainly nitrogen.
  • a zirconium-base alloy with an amount of 0.005 to 1.0%, preferably 0.01 to 0.5%, calcium, as well as one or more of the elements columbiuin (niobium), tin, iron, chromium, nickel, molybdenum, copper, tungsten, vanadium, tanta lum and palladium, each in a quantity of 0.01 up to about 5%, the remainder of the alloy being zirconium, inclusive of impurities.
  • the above-mentioned additional elements are preferably present in a total quantity of less than about so that the remainder consists of more than zirconium.
  • the zirconium remainder was not less than about and contained 0.1 to 5%, preferably 0.3 to 2.5%, colurnbium in addition to the above-mentioned amount of calcium.
  • the zirconium alloy contains columbiuin as well as calcium and it may also contain the alloying addition known for this type of alloy, namely tin, iron, chromium, nickel, molybdenum, copper, tungsten, vanadium, tantalum and palladium which have been found to afford a further improvement in corrosion resistance and/ or the mechanical properties of zirconiumbase alloys.
  • alloying addition known for this type of alloy, namely tin, iron, chromium, nickel, molybdenum, copper, tungsten, vanadium, tantalum and palladium which have been found to afford a further improvement in corrosion resistance and/ or the mechanical properties of zirconiumbase alloys.
  • the preferred alloys according to the invention aside from containing 0.1 to 5 preferably 0.3 to 2.5% columbium and 0.005 to 1.9%, preferably 0.01 to 0.5%, calcium, may contain at least one of the abovementioned additions within the following quantity ranges:
  • zirconium should constitute the greatly preponderant proportion, namely more than 90% and preferably more than 95% of the total alloy.
  • the improved corrosion properties of the alloys according to the invention are exemplified by test results reported in the following tables.
  • the zircon alloys investigated were produced from zirconium sponge (reactor grade) and the alloying elements, by melting them together in an electric arc furnace under argon at a pressure of about 200 mm. Hg.
  • each alloy was twice re-melted.
  • the alloy was subjected to cold rolling down to a sheet thickness of 0.7 mm.
  • Specimens were produced of about 3 cm. size. These were etched in the usual manner.
  • Employed as etching agent was the following composition: 45 volumetric percent HNO (65% concentration) 10 volumetric percent HF (40% concentration) 45 volumetric percent H O.
  • alloys according to my invention are well suitable as canning or envelope material for nuclear fuel elements or generally for use as structural materials in the interior of nuclear reactors, particularly those that opcrate with super-heated steam as coolant.
  • a zirconium alloy consisting substantially of 0.005 to 1.0% calcium and at least one element selected from the group consisting of columbium, tin, vanadium, tantalum, palladium, copper, chromium, molybdenum, tungsten, iron and nickel in a quantity up to about 5% for each but amounting to a total less than 10%, the remainder being substantially all of zirconium.
  • a zirconium alloy consisting substantially of 0.1 to 5% columbium, 0.005 to 1.0% calcium, and a remainder substantially all of zirconium.
  • a zirconium alloy consisting substantially of 0.3 to 2.5% columbium, 0.01 to 0.5% calcium, and a remainder substantially all of zirconium.
  • a zirconium alloy for use as structural material in nuclear reactors comprising 0.3 to 2.5 columbium, 0.01 to 0.5% calcium, and at least one of the following additions:
  • a zirconium alloy consisting substantially of copper and calcium each in an amount of about 0.5 to about 1%, the remainder being substantially zirconium.
  • a zirconium-alloy consisting substantially of about 0.5% copper, about 0.5% iron, about 0.02 to about 0.5% calcium, the remainder being substantially zirconium.
  • a zirconium alloy consisting substantially of about 1% columbium, about 1% copper, 0.002% up to about 0.5% calcium, the remainder being substantially zirconium.
  • a zirconium alloy consisting substantially of about 0.5 to about 1% of columbium, more than 0.002% up to about 0.5% calcium, the remainder being substantially zirconium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

United States Patent 3,150,972 ZIRCONIUM ALLOY Ulrich Rosier, Erlangen, Germany, assignor to Siemens- Schuckertwerlre Alrtiengesellschaft, Berlin-Siemensstatlt, Germany, a corporation of Germany No Drawing. Filed Nov. 3, 1962, Ser. No. 236,422 Claims priority, application Germany Dec. 27, 1961 10 Claims. (Cl. 75-177) My invention relates to zirconium alloys and, in a more particular aspect, to alloys suitable as structural material for use in nuclear reactors, such as for the envelopes or cans of nuclear fuel elements.
Structural materials in the interior of nuclear reactors, particularly canning materials for fuel elements, are required to meet essentially the following four requirements:
(1) Lowest feasible absorption cross section for thermal neutrons,
(2) High corrosion resistance relative to liquid or gaseuos reactor coolants,
(3) Sufiicient mechanical strength and ductility, and
(4) lnsensitivity to neutron irradiation.
As regards these requirements, zirconium alloys have been found to be well suitable, particularly in reactors using water as coolant. Preferably employed has been the alloy known under the trade name Zircaloy-Z which, aside from zirconium, contains about 1.5% tin, 0.15% iron, 0.1% chromium and 0.05% nickel. (All percentages given in this specification are by weight.) These alloying additions counteract the impairment in corrosion resistance of pure zirconium due to contaminating traces of other elements, mainly nitrogen.
Nuclear reactors equipped with fuel-element cans and structural parts of Zircaloy-Z or Zircaloy-4, the latter being nickel-free Zircaloy-2, can be operated with water temperatures only up to about 350 C. above which the materials are no longer sufficiently corrosion resistant. These temperatures do not afford employing in the reactor plant the improved, modern turbines of increased efficiency, because these turbines would make it desirable to convert to operation with superheated steam at temperatures between 400 and 500 C. and more. Recently there have become known zirconium-columbium (niobium) alloys with promising improved corrosion resistance in the just-mentioned temperature range as compared with Zircaloy-Z and Zircaloy-4.
It is an object of my invention to provide zirconium alloys, preferably for the above-mentioned use in nuclear reactor plants, which afford achieving a considerably higher corrosion resistance than heretofore attained with the known zirconium-columbium alloys.
I have discovered, and it is a feature of my invention, that such improvement is achieved by providing a zirconium-base alloy with an amount of 0.005 to 1.0%, preferably 0.01 to 0.5%, calcium, as well as one or more of the elements columbiuin (niobium), tin, iron, chromium, nickel, molybdenum, copper, tungsten, vanadium, tanta lum and palladium, each in a quantity of 0.01 up to about 5%, the remainder of the alloy being zirconium, inclusive of impurities. However, in order to obtain most favorable properties, the above-mentioned additional elements are preferably present in a total quantity of less than about so that the remainder consists of more than zirconium. In the most favorable alloys according to the invention, the zirconium remainder was not less than about and contained 0.1 to 5%, preferably 0.3 to 2.5%, colurnbium in addition to the above-mentioned amount of calcium.
For best results, therefore, the zirconium alloy contains columbiuin as well as calcium and it may also contain the alloying addition known for this type of alloy, namely tin, iron, chromium, nickel, molybdenum, copper, tungsten, vanadium, tantalum and palladium which have been found to afford a further improvement in corrosion resistance and/ or the mechanical properties of zirconiumbase alloys. In this respect, reference may be had to the following literature:
R. S. Ambartsumyan et al.: Mechanical Properties and Corrosion Resistance of Zirconium and its Alloys in Water, Steam and Gases at Elevated Temperatures, 2nd Geneva Conference (1958), 15/1 /2044.
I. P. Pemsler: The Corrosion of Zirconium Alloys in 900 F. Steam, NMI-1208 (1958).
SB. Dalgaard: The Corrosion Resistance of Zr-No and Zr-Nb-Sn Alloys in High-Temperature Water and Steam, AECL-993 (1960).
J. N. Wanklyn, J. T. Demant and D. Jones: The Corrosion of Zirconium and its Alloys by High Temperature Steam. Part I: The Effect of Alloy Composition, AERER3655 (1961).
In general, the preferred alloys according to the invention, aside from containing 0.1 to 5 preferably 0.3 to 2.5% columbium and 0.005 to 1.9%, preferably 0.01 to 0.5%, calcium, may contain at least one of the abovementioned additions within the following quantity ranges:
0.2 to 1% Sn 0.1 to 1.5% Fe 0.1 to 1.5% Cr 0.1 to 1.5% Ni 0.5 to 1% M0 0.5 to 1.5% Cu 0.5 to 1% W 0.2 to 1% V As mentioned, however, the remainder of zirconium should constitute the greatly preponderant proportion, namely more than 90% and preferably more than 95% of the total alloy.
The improved corrosion properties of the alloys according to the invention are exemplified by test results reported in the following tables. The zircon alloys investigated were produced from zirconium sponge (reactor grade) and the alloying elements, by melting them together in an electric arc furnace under argon at a pressure of about 200 mm. Hg. For securing homogeneous concentration of the alloy, each alloy was twice re-melted. The alloy was subjected to cold rolling down to a sheet thickness of 0.7 mm. Specimens were produced of about 3 cm. size. These were etched in the usual manner. Employed as etching agent was the following composition: 45 volumetric percent HNO (65% concentration) 10 volumetric percent HF (40% concentration) 45 volumetric percent H O. Approximately 25 microns thickness were eliminated by etching. The specimens were then subjected for respective periods of 8, 32 and 64 days to the effect of hot steam at 500 C. under a The last column in Table 1 indicates the increase in weight after 8 days of steam treatment as a measure of the amount of corrosion. A comparison of alloy specimens 1 and 2 shows that the calcium-containing alloy 2 exhibited a reduction in corrosion relative to the calcium-free alloy 1. The other series of tests exhibited analogous results.
The specimens 12 to 17 listed in the following Table II and the comparative specimens 18, 19 listed in Table III were subjected simultaneously to the same tests.
Table II Composition of alloy Weight increase after N0.
Ob, Ca, Zr 32 days, 61 days, percent percent lug/(1m. mg. dm.
0. 5 0.02 Remaindcr 305 579 0. 5 0.1 do 312 600 0. 5 0. 5 do 187 349 1.0 0.02 do 200 467 1.0 0.1 do 230 513 1.0 0.5 -do 305 638 Table III Composition Weight increase after- Oh, Zr 8 days, 32 days, 64 days, percent mg./dm. img./dm.'- mg./drn.
18 1 Remainder.. 218 760 1, 345 19 Zircaloy- 238 1, 110 2, 460
It will be noted that the calcium-free specimens according to Table III, tested together with the calcium-containing specimens 12 to 17 of Table II exhibited considerably higher increases in weight due to corrosion.
A comparison of the values for the alloy 18 (1% Cb, remainder Zr) with alloy (1.0% Cb and 0.02% Ca, remainder Zr) shows that very slight additions of calcium can eifect a reduction of the Weight increase down to approximately one-fourth of the original value, the particular composition at which minimum weight in crease is achieved being also determined by the other constituents of the alloy. A similar behavior with respect to corrosion is also observable with heat-treated zirconium alloys.
It has also been found that the addition of calcium considerably increases the mechanical strength of the zirconium alloys. It is known that zirconium and zirconium alloys embrittle due to ingress of hydrogen with corrosion caused by water or steam. Such impairment is counteracted to a great extent by the calcium additions. The bending angles listed in Table IV were determined up to occurrence of the first fissures after bending the identified specimens over a bending mandrel of 3.5 mm. di-
ameter. The specimens were previously subjected to corrosion in steam at 500 C. for 32 days.
Table IV Composition Binding angle, No. On, Ca, Zr degrees percent percent 0.5 Remainder 72 0.5 01 0.5 180 0.5
As mentioned, alloys according to my invention, and especially those of the above-listed compositions that exhibit minimum susceptibility to corrosion, are well suitable as canning or envelope material for nuclear fuel elements or generally for use as structural materials in the interior of nuclear reactors, particularly those that opcrate with super-heated steam as coolant.
I claim:
1. A zirconium alloy consisting substantially of 0.005 to 1.0% calcium and at least one element selected from the group consisting of columbium, tin, vanadium, tantalum, palladium, copper, chromium, molybdenum, tungsten, iron and nickel in a quantity up to about 5% for each but amounting to a total less than 10%, the remainder being substantially all of zirconium.
2. A zirconium alloy containing 0.01 to 0.5%calciurn and at least one element selected from the group consisting of Cb, Sn, V, Ta, Pd, Cu, Cr, Mo, W, Fe and Ni in a total quantity between about 0.1' and about 5%, the remainder being substantially all of zirconium.
3. A zirconium alloy consisting substantially of 0.1 to 5% columbium, 0.005 to 1.0% calcium, and a remainder substantially all of zirconium.
4. A zirconium alloy consisting substantially of 0.3 to 2.5% columbium, 0.01 to 0.5% calcium, and a remainder substantially all of zirconium.
5. A zirconium alloy containing 0.1 to 5% columbium, 0.005 to 1.0% calcium, and at least one of the following additions:
0.2 to 1% Sn 0.5 to 1% M0 0.1 to 1.5% Fe 0.5 to 1.5% Cu 0.1 to 1.5% Cr 0.5 to 1% W 0.1 to 1.5% Ni 0.2 to 1% V and a remainder substantially all of zirconium.
6. A zirconium alloy for use as structural material in nuclear reactors, comprising 0.3 to 2.5 columbium, 0.01 to 0.5% calcium, and at least one of the following additions:
0.2 to 1% Sn 0.5 to 1% M0 0.1 to 1.5% Fe 0.5 to 1.5% Cu 0.1 to 1.5% Cr 0.5 to 1% W 0.1 to 1.5% Ni 0.2 to 1% V the maximum amount of said additions being about 5%, and the remainder of the alloy being substantially all of zirconium.
7. A zirconium alloy consisting substantially of copper and calcium each in an amount of about 0.5 to about 1%, the remainder being substantially zirconium.
8. A zirconium-alloy consisting substantially of about 0.5% copper, about 0.5% iron, about 0.02 to about 0.5% calcium, the remainder being substantially zirconium.
9. A zirconium alloy consisting substantially of about 1% columbium, about 1% copper, 0.002% up to about 0.5% calcium, the remainder being substantially zirconium.
10. A zirconium alloy consisting substantially of about 0.5 to about 1% of columbium, more than 0.002% up to about 0.5% calcium, the remainder being substantially zirconium.
No references cited.

Claims (1)

1. A ZIRCONIUM ALLOY CONSISTING SUBSTANTIALLY OF 0.005 TO 1.0% CALCIUM AND AT LEAST ONE ELEMENT SELECTED FROM THE GROUP CONSISTING OF COLUMBIUM, TIN, VANADIUM, TANTALUM, PALLADIUM, COPPER, CHROMIUM, MOLYBDENUM, TUNGSTEN, IRON AND NICKEL IN A QUANTITY UP TO ABOUT 5% FOR EACH BUT AMOUNTING TO A TOTAL LESS THAN 10%, THE REMAINDER BEING SUBSTANTIALLY ALL OF ZIRCONIUM.
US236422A 1961-12-27 1962-11-08 Zirconium alloy Expired - Lifetime US3150972A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DES77300A DE1241998B (en) 1961-12-27 1961-12-27 Zirconium alloy

Publications (1)

Publication Number Publication Date
US3150972A true US3150972A (en) 1964-09-29

Family

ID=7506719

Family Applications (1)

Application Number Title Priority Date Filing Date
US236422A Expired - Lifetime US3150972A (en) 1961-12-27 1962-11-08 Zirconium alloy

Country Status (3)

Country Link
US (1) US3150972A (en)
DE (1) DE1241998B (en)
GB (1) GB999367A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2607141A1 (en) * 1975-02-25 1976-09-02 Gen Electric PROCESS FOR HEAT TREATMENT OF OBJECTS MADE OF ZIRCONALIZATION AND DEVICE FOR CARRYING OUT THE PROCESS
DE2626941A1 (en) * 1975-06-26 1977-01-20 Gen Electric CORROSION-RESISTANT ZIRCONIUM ALLOY COMPONENTS AND PROCESS FOR THEIR PRODUCTION
US4197145A (en) * 1974-12-23 1980-04-08 General Electric Company Zirconium-base alloy structural component for nuclear reactor and method
US4212686A (en) * 1978-03-03 1980-07-15 Ab Atomenergi Zirconium alloys
US4724016A (en) * 1985-09-19 1988-02-09 Combustion Engineering, Inc. Ion-implantation of zirconium and its alloys
US4839085A (en) * 1987-11-30 1989-06-13 Ergenics, Inc. Method of manufacturing tough and porous getters by means of hydrogen pulverization and getters produced thereby
FR2702776A1 (en) * 1993-03-19 1994-09-23 Commissariat Energie Atomique Corrosion resistant zirconium alloys, especially for use in water reactors.
FR2730089A1 (en) * 1995-01-30 1996-08-02 Framatome Sa ZIRCONIUM ALLOY TUBE FOR COMBUSTIBLE NUCLEAR REACTOR ASSEMBLY AND METHOD FOR MANUFACTURING SUCH TUBE
US20120201341A1 (en) * 2011-02-04 2012-08-09 Battelle Energy Alliance, Llc Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3431104A (en) * 1966-08-08 1969-03-04 Atomic Energy Commission Zirconium base alloy
US5196163A (en) * 1986-07-29 1993-03-23 Mitsubishi Materials Corporation Highly corrosion-resistant zirconium alloy for use as nuclear reactor fuel cladding material
JPH076019B2 (en) * 1986-07-29 1995-01-25 三菱マテリアル株式会社 Zr alloy with excellent corrosion resistance for reactor fuel cladding
ES2027026T3 (en) * 1987-08-24 1992-05-16 Framatome PROCEDURE FOR THE MANUFACTURE OF A SEPARATE GRID FOR A FUEL ASSEMBLY OF A NUCLEAR REACTOR.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2702239A (en) * 1952-05-27 1955-02-15 Henry L Gilbert Process of arc melting zirconium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197145A (en) * 1974-12-23 1980-04-08 General Electric Company Zirconium-base alloy structural component for nuclear reactor and method
DE2607141A1 (en) * 1975-02-25 1976-09-02 Gen Electric PROCESS FOR HEAT TREATMENT OF OBJECTS MADE OF ZIRCONALIZATION AND DEVICE FOR CARRYING OUT THE PROCESS
DE2626941A1 (en) * 1975-06-26 1977-01-20 Gen Electric CORROSION-RESISTANT ZIRCONIUM ALLOY COMPONENTS AND PROCESS FOR THEIR PRODUCTION
US4268586A (en) * 1975-06-26 1981-05-19 General Electric Company Corrosion resistant zirconium alloy structural components and process
US4212686A (en) * 1978-03-03 1980-07-15 Ab Atomenergi Zirconium alloys
US4724016A (en) * 1985-09-19 1988-02-09 Combustion Engineering, Inc. Ion-implantation of zirconium and its alloys
US4839085A (en) * 1987-11-30 1989-06-13 Ergenics, Inc. Method of manufacturing tough and porous getters by means of hydrogen pulverization and getters produced thereby
FR2702776A1 (en) * 1993-03-19 1994-09-23 Commissariat Energie Atomique Corrosion resistant zirconium alloys, especially for use in water reactors.
WO1994021834A1 (en) * 1993-03-19 1994-09-29 Commissariat A L'energie Atomique Corrosion-proof zirconium alloys, in particular for water reactors
FR2730089A1 (en) * 1995-01-30 1996-08-02 Framatome Sa ZIRCONIUM ALLOY TUBE FOR COMBUSTIBLE NUCLEAR REACTOR ASSEMBLY AND METHOD FOR MANUFACTURING SUCH TUBE
WO1996024140A1 (en) * 1995-01-30 1996-08-08 Framatome Zirconium alloy tube for a nuclear reactor fuel assembly, and method for making same
US5887045A (en) * 1995-01-30 1999-03-23 Framatome Zirconium alloy tube for a nuclear reactor fuel assembly, and method for making same
US20120201341A1 (en) * 2011-02-04 2012-08-09 Battelle Energy Alliance, Llc Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods
US8831166B2 (en) * 2011-02-04 2014-09-09 Battelle Energy Alliance, Llc Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

Also Published As

Publication number Publication date
GB999367A (en) 1965-07-21
DE1241998B (en) 1967-06-08

Similar Documents

Publication Publication Date Title
US3150972A (en) Zirconium alloy
US3261682A (en) Zirconium alloys containing cerium and yttrium
US4212686A (en) Zirconium alloys
US5211774A (en) Zirconium alloy with superior ductility
US5023048A (en) Rod for a fuel assembly of a nuclear reactor resisting corrosion and wear
US5832050A (en) Zirconium-based alloy, manufacturing process, and use in a nuclear reactor
WO1994014990A1 (en) Zirconium alloy with improved post-irradiation properties
EP0532830A2 (en) Zirconium alloy with superior ductility
US5278882A (en) Zirconium alloy with superior corrosion resistance
JP2583488B2 (en) Manufacturing method of zirconium alloy cladding for nuclear reactor with excellent corrosion resistance
US4963323A (en) Highly corrosion-resistant zirconium alloy for use as nuclear reactor fuel cladding material
US3677723A (en) Composite material of vanadium alloys and iron or nickel alloys
GB1561826A (en) Hot strength of zinconium and its alloys
US5972288A (en) Composition of zirconium alloy having high corrosion resistance and high strength
JPS6325062B2 (en)
US5622574A (en) Product externally alloyed with ZR, method for manufacture of same, and use of same
CN109022915A (en) A kind of high-performance zirconium-base alloy and preparation method thereof containing molybdenum element
JPH10513262A (en) Zirconium-based alloy tubes for nuclear reactor fuel assemblies and process for making such tubes
US2987394A (en) Iron-aluminum base alloys
EP0735151B2 (en) Alloy for improved corrosion resistance of nuclear reactor components
JPH0660364B2 (en) Corrosion resistant zirconium alloy containing bismuth
US5122334A (en) Zirconium-gallium alloy and structural components made thereof for use in nuclear reactors
US6325966B1 (en) Zirconium alloy having high corrosion resistance and high strength
JP2687538B2 (en) Zr alloy for nuclear reactor fuel assemblies
CN102251149A (en) Zirconium-tin-niobium zirconium alloy for can material of nuclear reactor