US3145586A - Process for making a tungsten carbide die - Google Patents

Process for making a tungsten carbide die Download PDF

Info

Publication number
US3145586A
US3145586A US16134161A US3145586A US 3145586 A US3145586 A US 3145586A US 16134161 A US16134161 A US 16134161A US 3145586 A US3145586 A US 3145586A
Authority
US
United States
Prior art keywords
blocks
die
hard metal
channel
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Donald W Brearley
Donald K Rex
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US16134161 priority Critical patent/US3145586A/en
Priority to GB4663762A priority patent/GB950921A/en
Application granted granted Critical
Publication of US3145586A publication Critical patent/US3145586A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/20Making tools by operations not covered by a single other subclass
    • B21D37/205Making cutting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/20Making tools by operations not covered by a single other subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S76/00Metal tools and implements, making
    • Y10S76/11Tungsten and tungsten carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/929Tool or tool with support
    • Y10T83/9411Cutting couple type
    • Y10T83/9423Punching tool
    • Y10T83/9437Shear-type female tool

Definitions

  • the present invention relates to dies such as form part of the die and punch combinations employed in business machines for punching holes into cards, tapes and the like.
  • a specific object of the invention is to provide a die having precisely dimensioned rectangular die holes, Whose shearing surfaces are formed by a tungsten carbide.
  • Yet another specific object of the invention is to provide a practical and simple process for producing a die whose shearing surfaces are formed by a tungsten carbide.
  • An additional object of the invention is to provide a process for producing a die for use in punching precisely dimensioned holes in cards, tapes and the like, whose shearing edges are formed by a tungsten carbide.
  • FIG. 1 is a plan view of a die embodying our invention
  • FIG. 2 is a fragmentary exploded perspective of the components employed in the construction of the die shown in FIG. 1;
  • FIG. 3 is a side elevation of one of the components shown in FIG. 2;
  • FIG. 4 is a cross-section through the components shown in FIG. 2 in properly assembled condition
  • FIG. 5 is a cross-section through the assembled die similar to FIG. 4, taken along lines 5-5 of FIG. 1 and viewed in the direction of the arrows associated with said line.
  • the reference numeral 10 designates a suitable die base which may be made of steel.
  • a longitudinally extending shallow groove or channel 12 Machined into the surface of said baseis a longitudinally extending shallow groove or channel 12, and drilled into the fiat floor 13 of said groove is a series of longitudinally equi-spaced circular holes 14 (FIGURES 2 and 5) that pass through the bottom surface of the base and which serve as ejection channels for the punched-out card fragments during practical use of the finished die.
  • rectangular blocks 16 of a hard tungstencarbide are silver-brazed or'copper-welded upon a bar 18 of steel at equal intervals 20 to form a structure 22 that has somewhat the appearance of a comb or pinion rack as best apparent from FIG. 3.
  • the block ends 24 which define the intervals 20, are now ground by means of silicon-carbide or diamond-impregnated wheels to make these intervals of precisely the length which the finished die holes are to have.
  • the bar 18 may have rounded recesses 26 between the butts 27 to which the blocks 16 are secured, as likewise best apparent from FIG. "3.
  • the opposite sides 28a and 28b of the blocks 16 are also ground so that all the -blocks may have very precisely the thickness or width which the holes in the completed die are to have.
  • the floor of the channel 12 in base 10 is now provided with a suitable cement indicated with exaggerated thickness at 30 in FIGURES 4 and 5, such as for instance the epoxy adhesive known under'the trade name Epon 6.
  • Epon 6 the epoxy adhesive known under'the trade name 6
  • the rack-shaped component 22 is inserted into the groove 12 with'its teeth 16 pointingdownwardly with the holes 14 in the floor of the groove and the blocks 16 at'the ends of its teeth rest'upon the areas'between and adjacent to said holes.
  • tungsten carbidebars 32a and 32b are tungsten carbidebars 32a and 32b, respectively, of a (vertical) thickness about equal to the (vertical) thickness of the blocks 16.
  • the transverse width of the channel 12 andof bars 321: and 32b is so chosen that thechannel is notc'ompletely-filled by the rack 22 and the bars 32a and 32b in juxtaposition; and into the remaining space between one of said bars and the adjacent sidewall of the channel is forced a barshaped wedge 34 of a soft metal, such as brass to hold the rack 22 and the bars at either side of said rack securely in their proper position relative to each other and relative to the holes 14 in the floor of channel 12.
  • a barshaped wedge 34 of a soft metal such as brass
  • the described assembly is now subjected to elevated temperatures depending upon the nature of the cement employed, to cure the cement and in this manner secure the bars 32a and 32b and the blocks 16 of rack 22 firmly to the floor of the channel.
  • the back of the rack 22, i.e., the steel bar 18 is removed in any suitable manner 3 such as by grinding, and the outer surfaces of the remaining blocks 16 and the side bars 32a and 321) may be ground until they are precisely flush with each other and all form a completely flat surface.
  • the die is now ready for use.
  • All the shearing surfaces of the finished die are formed by tungsten carbide, namely the blocks 16 and the bars 32a and 32b, and the die holes defined by said shearing surfaces are of precisely the required dimensions. These dimensions are determined by the transverse thickness of the blocks 16 and the distances between the confronting end surfaces 24 of adjacent blocks which were ground to precisely the required dimension before the die was assembled and while the surfaces to be ground were still readily accessible.
  • Dies constructed in accordance with our invention are as accurate in operation as steel dies, but will outlast comparable steel dies by a factor of more than 10. They do not require repair or replacement during the lifetime of the machines in which they are employed, yet they are of a relatively simple construction, and are easy to manufacture and of reasonable cost. Furthermore, the corners of the holes formed by the carbide pieces are sharp and have no radius or fillet. As far as it is known it is impossible to obtain this by any known method of producing present steel dies.
  • the method of producing a die having shearing surfaces formed by a hard metal such as tungsten carbide which comprises forming an aperture in a base of a softer metal than said hard metal, securing a pair of blocks of said hard metal in spaced relation onto a bar of a softer metal than said hard metal, grinding the confronting end surfaces of said blocks to produce an interval of precisely predetermined size, placing the resultant component onto said base with said blocks thereof resting upon said base at opposite sides of said aperture thereof, placing bars of said hard metal onto said base at opposite sides of and in close contact with said blocks, securing said component and said bars permanently in their proper positions and removing the bar of said component.
  • a hard metal such as tungsten carbide
  • the method of producing a die having shearing surfaces formed by a hard metal such as tungsten carbide which comprises forming a channel into a base of a softer metal than said hard metal, forming an aperture into the floor of said channel, securing a pair of rectangular blocks of said hard metal in spaced relation onto a bar of a softer metal than said hard metal, grinding the confronting end surfaces and the side surfaces of said blocks to make the interval between and the transverse thickness of said blocks of precisely the required dimensions, placing the resultant component into said channel with said blocks located at opposite sides of said aperture, placing bars of said hard metal into said channel at opposite sides of and in close contact with said blocks, securing said component and said bars in their proper positions relative to each other and to said channel, and removing the bar of said component.
  • a hard metal such as tungsten carbide
  • the method of producing a die having a rectangular hole with shearing surfaces formed by a hard metal such as tungsten carbide which comprises forming a channel into a base of a softer metal than said hard metal, forming an aperture into the floor of said channel, securing rectangular blocks of said hard metal in spaced relation onto a bar of a softer metal than said hard metal, grinding the confronting end surfaces of said blocks and the side surfaces of said blocks to make the interval between said blocks and the transverse thickness of said blocks of precisely the required dimensions, placing the resultant component into said channel with said blocks thereof resting upon the channel floor at opposite sides of said aperture, placing bars of said hard metal into said channel onto said floor thereof at opposite sides of and in close contact with the side surfaces of said blocks, driving a wedge between one of said side bars and the adjacent side wall of said channel to hold said side bars and the blocks of said component in their proper positions relative to each other and to said channel, and removing the back bar of said component by grinding.
  • a hard metal such as tungsten carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

Aug. 25, 1964 D. w. BREARLEY ETAL 3,145,586
PROCESS FOR MAKING A TUNGSTEN CARBIDE DIE 2 Sheets-Sheet 1 Filed Dec. 19, 1961 m m0 S W W mm mm DDM Y B United States Patent Oflice 3,145,586 Patented Aug. 25, 1964 3,145,586 PRGCESS FUR MAKING A TUNGSTEN I canrsma DIE Donald W. Brearley, Vestal, N.Y., and Donald K. Rex,
San Jose, Calif assignors to International Business Machines Corporation, New York, N.Y., a corporation of New York Filed Dec. 19, 1961, Ser. No. 161,341 4 Claims. (#Cl. '76107) The present invention relates to dies such as form part of the die and punch combinations employed in business machines for punching holes into cards, tapes and the like.
In machines of this type such die and punch combinations are subjected to extreme conditions of wear. They are operated in rapid succession, sometimes several thousand times per minute, they must at all times remain at peak efliciency, i.e., operate smoothly without sticking or breaking down, and always provide clearly cut holes without fuzzy edges, and they should last as long as the machine in which they operate because repair or replacements would not only be costly, but also require that operation of the machine be suspended for a substantial period of time with resultant loss of the revenues received for their use.
For dies to meet such extraordinary requirements as to efficiency, wear and durability, it is necessary that their shearing surfaces be made of extremely hard material. In the past they have usually been made from hardened steels, but under the above described conditions of wear dies made from hardened steels of the best quality last rarely longer than a year when they have to be replaced, while machines of the type here under consideration are expected to last at least ten years before any substantial repairs become necessary.
It has, of course, been known that sintered carbides and especially the tungsten carbides are of much greater hardness than the best of hardened steel and it has previously been proposed to use tungsten carbides in the construction of dies. It is difficult, however, on account of the extreme hardness of tungsten carbides and their brittleness, to produce die holes of precise dimensions, especially when the holes are to be relatively small and are to have precisely parallel sides and rectangular corners. The slightest departure of the die holes from a perfect fit with their cooperating punches will not only result in inaccurate and fuzzy punch holes in the processed cards during practical operation of the die and punch combination, but will also cause the punch or the die to chip and thus destroy the punch or the die,or both.
It is an object of ourinvention to provide a die having precisely dimensioned, rectangular die holes, that is capable of withstanding the above described extreme conditions of wear for extended periods of time.
More particularly, it is an object of the invention to provide a die'for use in punching relatively small, precisely rectangular holes, that may be exposed for many years to extreme conditions'of wear in business machines, of thetype referred to, without deterioration in the quality of the holes produced therewith.
A specific object of the invention is to provide a die having precisely dimensioned rectangular die holes, Whose shearing surfaces are formed by a tungsten carbide.
Yet another specific object of the invention is to provide a practical and simple process for producing a die whose shearing surfaces are formed by a tungsten carbide.
An additional object of the invention is to provide a process for producing a die for use in punching precisely dimensioned holes in cards, tapes and the like, whose shearing edges are formed by a tungsten carbide.
These and other objects of the present invention will be apparent from the following description of the accompanying drawings which illustrate certain preferred embodiments thereof, and wherein:
FIG. 1 is a plan view of a die embodying our invention;
FIG. 2 is a fragmentary exploded perspective of the components employed in the construction of the die shown in FIG. 1;
FIG. 3 is a side elevation of one of the components shown in FIG. 2;
FIG. 4 is a cross-section through the components shown in FIG. 2 in properly assembled condition;
FIG. 5 is a cross-section through the assembled die similar to FIG. 4, taken along lines 5-5 of FIG. 1 and viewed in the direction of the arrows associated with said line.
In FIGURES 1 and 2, the reference numeral 10 designates a suitable die base which may be made of steel. Machined into the surface of said baseis a longitudinally extending shallow groove or channel 12, and drilled into the fiat floor 13 of said groove is a series of longitudinally equi-spaced circular holes 14 (FIGURES 2 and 5) that pass through the bottom surface of the base and which serve as ejection channels for the punched-out card fragments during practical use of the finished die.
To construct the actual die upon the base 10, rectangular blocks 16 of a hard tungstencarbide are silver-brazed or'copper-welded upon a bar 18 of steel at equal intervals 20 to form a structure 22 that has somewhat the appearance of a comb or pinion rack as best apparent from FIG. 3. The block ends 24 which define the intervals 20, are now ground by means of silicon-carbide or diamond-impregnated wheels to make these intervals of precisely the length which the finished die holes are to have. To facilitate this operation by providing adequate space for the grinding wheels, the bar 18 may have rounded recesses 26 between the butts 27 to which the blocks 16 are secured, as likewise best apparent from FIG. "3.
The opposite sides 28a and 28b of the blocks 16 are also ground so that all the -blocks may have very precisely the thickness or width which the holes in the completed die are to have.
The floor of the channel 12 in base 10 is now provided with a suitable cement indicated with exaggerated thickness at 30 in FIGURES 4 and 5, such as for instance the epoxy adhesive known under'the trade name Epon 6. Thereupon, the rack-shaped component 22 is inserted into the groove 12 with'its teeth 16 pointingdownwardly with the holes 14 in the floor of the groove and the blocks 16 at'the ends of its teeth rest'upon the areas'between and adjacent to said holes. Likewise-inserted into the groove at either side of the rack bar 22 are tungsten carbidebars 32a and 32b, respectively, of a (vertical) thickness about equal to the (vertical) thickness of the blocks 16. The transverse width of the channel 12 andof bars 321: and 32b is so chosen that thechannel is notc'ompletely-filled by the rack 22 and the bars 32a and 32b in juxtaposition; and into the remaining space between one of said bars and the adjacent sidewall of the channel is forced a barshaped wedge 34 of a soft metal, such as brass to hold the rack 22 and the bars at either side of said rack securely in their proper position relative to each other and relative to the holes 14 in the floor of channel 12.
The described assembly is now subjected to elevated temperatures depending upon the nature of the cement employed, to cure the cement and in this manner secure the bars 32a and 32b and the blocks 16 of rack 22 firmly to the floor of the channel. When the curing is completed and the assembly has cooled, the back of the rack 22, i.e., the steel bar 18 is removed in any suitable manner 3 such as by grinding, and the outer surfaces of the remaining blocks 16 and the side bars 32a and 321) may be ground until they are precisely flush with each other and all form a completely flat surface. The die is now ready for use.
All the shearing surfaces of the finished die are formed by tungsten carbide, namely the blocks 16 and the bars 32a and 32b, and the die holes defined by said shearing surfaces are of precisely the required dimensions. These dimensions are determined by the transverse thickness of the blocks 16 and the distances between the confronting end surfaces 24 of adjacent blocks which were ground to precisely the required dimension before the die was assembled and while the surfaces to be ground were still readily accessible.
Dies constructed in accordance with our invention are as accurate in operation as steel dies, but will outlast comparable steel dies by a factor of more than 10. They do not require repair or replacement during the lifetime of the machines in which they are employed, yet they are of a relatively simple construction, and are easy to manufacture and of reasonable cost. Furthermore, the corners of the holes formed by the carbide pieces are sharp and have no radius or fillet. As far as it is known it is impossible to obtain this by any known method of producing present steel dies.
\Vhile we have described our invention with the aid of certain preferred embodiments thereof, it will be understood that our invention is not limited to specific constructional details shown and described by way of example which may be departed from without departing from the scope and spirit of the invention.
We claim:
1. The method of producing a die having shearing surfaces formed by a hard metal such as tungsten carbide, which comprises forming an aperture in a base of a softer metal than said hard metal, securing a pair of blocks of said hard metal in spaced relation onto a bar of a softer metal than said hard metal, grinding the confronting end surfaces of said blocks to produce an interval of precisely predetermined size, placing the resultant component onto said base with said blocks thereof resting upon said base at opposite sides of said aperture thereof, placing bars of said hard metal onto said base at opposite sides of and in close contact with said blocks, securing said component and said bars permanently in their proper positions and removing the bar of said component.
2. The method of producing a die having shearing surfaces formed by a hard metal such as tungsten carbide, which comprises forming a channel into a base of a softer metal than said hard metal, forming an aperture into the floor of said channel, securing a pair of rectangular blocks of said hard metal in spaced relation onto a bar of a softer metal than said hard metal, grinding the confronting end surfaces and the side surfaces of said blocks to make the interval between and the transverse thickness of said blocks of precisely the required dimensions, placing the resultant component into said channel with said blocks located at opposite sides of said aperture, placing bars of said hard metal into said channel at opposite sides of and in close contact with said blocks, securing said component and said bars in their proper positions relative to each other and to said channel, and removing the bar of said component.
3. The method of producing a die having a rectangular hole with shearing surfaces formed by a hard metal such as tungsten carbide, which comprises forming a channel into a base of a softer metal than said hard metal, forming an aperture into the floor of said channel, securing rectangular blocks of said hard metal in spaced relation onto a bar of a softer metal than said hard metal, grinding the confronting end surfaces of said blocks and the side surfaces of said blocks to make the interval between said blocks and the transverse thickness of said blocks of precisely the required dimensions, placing the resultant component into said channel with said blocks thereof resting upon the channel floor at opposite sides of said aperture, placing bars of said hard metal into said channel onto said floor thereof at opposite sides of and in close contact with the side surfaces of said blocks, driving a wedge between one of said side bars and the adjacent side wall of said channel to hold said side bars and the blocks of said component in their proper positions relative to each other and to said channel, and removing the back bar of said component by grinding.
4. The method of producing a multiple die having rec tangular holes with shearing surfaces formed by tungsten carbide, which comprises forming a channel in a base of steel, forming a row of relatively spaced apertures into the floor of said channel, placing a thermo-setting cement onto the floor of said channel, brazing rectangular blocks of tungsten carbide in spaced relation onto a bar of steel to form a rack-shaped component, grinding the confronting end faces and the outer side surfaces of said blocks to make the intervals between, and the transverse thickness of, said blocks of precisely the required dimensions, plac ing the resultant rack-shaped component into said channel with said blocks thereof resting upon the areas of the channel floor between and adjacent said apertures thereof, placing bars of tungsten carbide of a vertical thickness about equal to the depth of said blocks into said channel onto said fioor thereof at opposite sides of and in close contact with said blocks, driving a wedge between one of said side bars and the adjacent side wall of said channel to hold said side bars and the blocks of said rackshaped component in their proper positions relative to each other and to said channel, subjecting the total structure to a heat treatment to cure said cement and thus render the position of said bars and said blocks within said channel permanent, removing the bar of said rackshaped component by grinding, and grinding the thus exposed upper surfaces of said blocks and the upper surfaces of said side bars until they are precisely flush with each other and form a completely fiat surface.
References Cited in the file of this patent UNITED STATES PATENTS 2,378,562 Lahr June 19, 1945 2,442,153 Van der Pyl May 25, 1948 2,568,152 Hermann Sept. 18, 1951 2,882,759 Altwicker Apr. 21, 1959 2,979,973 Brauchler Apr. 18, 1961 2,990,828 Hoerer July 4, 1961 3,063,310 Connoy Nov. 13, 1962 FOREIGN PATENTS 187,849 Australia Nov. 26, 1956

Claims (1)

1. THE METHOD OF PRODUCING A DIE HAVING SHEARING SURFACES FORMED BY A HARD METAL SUCH AS TUNGSTEN CARBIDE, WHICH COMPRISES FORMING AN APERTURE IN A BASE OF A SOFTER METAL THAN SAID HARD METAL, SECURING A PAIR OF BLOCKS OF SAID HARD METAL IN SPACED RELATION ONTO A BAR OF A SOFTER METAL THAN SAID HARD METAL, GRINDING THE CONFRONTING END SURFACES OF SAID BLOCKS TO PRODUCE AN INTERVAL OF PRECISELY PREDETERMINED SIZE, PLACING THE RESULTANT COMPONENT ONTO SAID BASE WITH SAID BLOCKS THEREOF RESTING UPON SAID BASE AT OPPOSITE SIDES OF SAID APERTURE THEREOF, PLACING BARS OF SAID HARD METAL ONTO SAID BASE AT OPPOSITE SIDES OF AND IN CLOSE CONTACT WITH SAID BLOCKS, SECURING SAID COMPONENT AND SAID BARS PERMANENTLY IN THEIR PROPER POSITIONS AND REMOVING THE BAR OF SAID COMPONENT.
US16134161 1961-12-19 1961-12-19 Process for making a tungsten carbide die Expired - Lifetime US3145586A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16134161 US3145586A (en) 1961-12-19 1961-12-19 Process for making a tungsten carbide die
GB4663762A GB950921A (en) 1961-12-19 1962-12-11 Improved die and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16134161 US3145586A (en) 1961-12-19 1961-12-19 Process for making a tungsten carbide die

Publications (1)

Publication Number Publication Date
US3145586A true US3145586A (en) 1964-08-25

Family

ID=22580803

Family Applications (1)

Application Number Title Priority Date Filing Date
US16134161 Expired - Lifetime US3145586A (en) 1961-12-19 1961-12-19 Process for making a tungsten carbide die

Country Status (2)

Country Link
US (1) US3145586A (en)
GB (1) GB950921A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317407A (en) * 1964-01-14 1967-05-02 Teletype Corp Method of making a punch block assemblage
US3319501A (en) * 1965-06-24 1967-05-16 John D Risher Stamping or blanking die
US3941038A (en) * 1974-11-06 1976-03-02 The Deritend Engineering Co. Ltd. Die-cutting
US5095730A (en) * 1988-03-30 1992-03-17 Advanced Composite Materials Corporation Whisker reinforced ceramic material working tools
US5588319A (en) * 1993-12-21 1996-12-31 Livernois Research & Development Company Method and apparatus for making heat exchanger fins
US5682784A (en) * 1995-11-07 1997-11-04 Livernois Research & Development Company Roll forming tool for manufacturing louvered serpentine fins
US5738169A (en) * 1995-11-07 1998-04-14 Livernois Research & Development Co. Heat exchanger with turbulated louvered fin, manufacturing apparatus and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378562A (en) * 1943-10-12 1945-06-19 Western Electric Co Die
US2442153A (en) * 1946-04-23 1948-05-25 Norton Co Band saw with diamond abrasive teeth
US2568152A (en) * 1949-03-18 1951-09-18 Western Electric Co Die for use with a punch
US2882759A (en) * 1957-05-21 1959-04-21 Hubert J Altwicker Die inserts
US2979973A (en) * 1958-08-25 1961-04-18 Canton Drop Forging & Mfg Comp Method of making hard-faced extrusion dies
US2990828A (en) * 1960-09-19 1961-07-04 Super Cut Rotary segmental saw with rim rigidifying and silencing means
US3063310A (en) * 1959-10-15 1962-11-13 Continental Machines Metal cutting saw bands and blades and method of making the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378562A (en) * 1943-10-12 1945-06-19 Western Electric Co Die
US2442153A (en) * 1946-04-23 1948-05-25 Norton Co Band saw with diamond abrasive teeth
US2568152A (en) * 1949-03-18 1951-09-18 Western Electric Co Die for use with a punch
US2882759A (en) * 1957-05-21 1959-04-21 Hubert J Altwicker Die inserts
US2979973A (en) * 1958-08-25 1961-04-18 Canton Drop Forging & Mfg Comp Method of making hard-faced extrusion dies
US3063310A (en) * 1959-10-15 1962-11-13 Continental Machines Metal cutting saw bands and blades and method of making the same
US2990828A (en) * 1960-09-19 1961-07-04 Super Cut Rotary segmental saw with rim rigidifying and silencing means

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317407A (en) * 1964-01-14 1967-05-02 Teletype Corp Method of making a punch block assemblage
US3319501A (en) * 1965-06-24 1967-05-16 John D Risher Stamping or blanking die
US3941038A (en) * 1974-11-06 1976-03-02 The Deritend Engineering Co. Ltd. Die-cutting
US5095730A (en) * 1988-03-30 1992-03-17 Advanced Composite Materials Corporation Whisker reinforced ceramic material working tools
US5588319A (en) * 1993-12-21 1996-12-31 Livernois Research & Development Company Method and apparatus for making heat exchanger fins
WO1997017148A1 (en) * 1995-11-07 1997-05-15 Livernois Research & Development Company Method and apparatus for making heat exchanger fins
US5682784A (en) * 1995-11-07 1997-11-04 Livernois Research & Development Company Roll forming tool for manufacturing louvered serpentine fins
US5738169A (en) * 1995-11-07 1998-04-14 Livernois Research & Development Co. Heat exchanger with turbulated louvered fin, manufacturing apparatus and method

Also Published As

Publication number Publication date
GB950921A (en) 1964-02-26

Similar Documents

Publication Publication Date Title
US3145586A (en) Process for making a tungsten carbide die
US4046303A (en) Method of making needle guide devices for mosaic printers
US2927190A (en) Method of making blanking die assemblies
US2186799A (en) Method of producing die sets
US1995711A (en) Method of securing dies, tools, etc., to mounting plates
US3152492A (en) Method of making steel-rule type piercing and blanking dies
US2323949A (en) Process of making dies
US2801696A (en) Punch and die
US3351003A (en) Stamping tool die matrix with movable actuating head
US1070889A (en) Process of making punches and dies.
GB1157053A (en) Punch Assembly for Perforating Materials
US2545560A (en) Die set for punch presses
US3020785A (en) Dual steel rule blanking die and method of making it
US1070887A (en) Multiple punch and die.
US2439822A (en) Saw-tooth surface broach
US2703022A (en) Die-cutting apparatus and method of producing same
US3151504A (en) Method of making a punch and die assembly
US3059506A (en) Method of making cutting dies
US2776008A (en) Punch and die
US2209407A (en) Strip punching machine
US3682021A (en) Method of manufacturing shear fingers for sickle bars
US3244489A (en) Retainer block and method of making
US1504182A (en) Punch and die
GB927784A (en) A punching die element for use in the punching of rectangular holes in punching cards, and a punching die made from such elements
US2255698A (en) Engraving machine