US3135673A - Process and apparatus for electrolyzing salt solutions - Google Patents
Process and apparatus for electrolyzing salt solutions Download PDFInfo
- Publication number
- US3135673A US3135673A US108061A US10806161A US3135673A US 3135673 A US3135673 A US 3135673A US 108061 A US108061 A US 108061A US 10806161 A US10806161 A US 10806161A US 3135673 A US3135673 A US 3135673A
- Authority
- US
- United States
- Prior art keywords
- compartment
- anode
- cathode
- solution
- diaphragm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 31
- 239000012266 salt solution Substances 0.000 title claims description 18
- 230000008569 process Effects 0.000 title description 18
- 239000012528 membrane Substances 0.000 claims description 38
- 239000002253 acid Substances 0.000 claims description 32
- 239000000243 solution Substances 0.000 claims description 23
- 239000008151 electrolyte solution Substances 0.000 claims description 19
- 239000003014 ion exchange membrane Substances 0.000 claims description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 42
- 150000003839 salts Chemical class 0.000 description 32
- -1 cationic ions Chemical class 0.000 description 27
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 16
- 239000003792 electrolyte Substances 0.000 description 16
- 239000001257 hydrogen Substances 0.000 description 16
- 229910052739 hydrogen Inorganic materials 0.000 description 16
- 229910052938 sodium sulfate Inorganic materials 0.000 description 16
- 235000011152 sodium sulphate Nutrition 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 150000001768 cations Chemical class 0.000 description 14
- 235000011121 sodium hydroxide Nutrition 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 238000005868 electrolysis reaction Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 11
- 229920000297 Rayon Polymers 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 229910052753 mercury Inorganic materials 0.000 description 9
- 239000003518 caustics Substances 0.000 description 8
- 229940021013 electrolyte solution Drugs 0.000 description 8
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 8
- 230000005012 migration Effects 0.000 description 8
- 238000013508 migration Methods 0.000 description 8
- 239000002964 rayon Substances 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 150000001450 anions Chemical class 0.000 description 7
- 238000005341 cation exchange Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 7
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 7
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 229910000000 metal hydroxide Inorganic materials 0.000 description 6
- 150000004692 metal hydroxides Chemical class 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000012527 feed solution Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910001415 sodium ion Inorganic materials 0.000 description 5
- 238000009987 spinning Methods 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910000497 Amalgam Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 235000021110 pickles Nutrition 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- MJGFBOZCAJSGQW-UHFFFAOYSA-N mercury sodium Chemical compound [Na].[Hg] MJGFBOZCAJSGQW-UHFFFAOYSA-N 0.000 description 1
- 150000001457 metallic cations Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003385 sodium Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910001023 sodium amalgam Inorganic materials 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000004758 synthetic textile Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D5/00—Sulfates or sulfites of sodium, potassium or alkali metals in general
- C01D5/02—Preparation of sulfates from alkali metal salts and sulfuric acid or bisulfates; Preparation of bisulfates
Definitions
- the processes of this invention relating to the conversion of soluble salts into their corresponding metal hydroxides and acid salts may be directed in general toward those applications wherein it is desired to recover acid salt and base values from substantially waste salt solutions, in particular, the waste sodium sulfate liquor derived from the neutralization of caustic cellulose acetate in the spinning bath operation of the viscose rayon industry or from pickle liquor of the steel industry.
- Elecetrolytic cells for example caustic-chlorine cells, now commonly employed for salt conversion are of two general types: (1) diaphragm and (2) mercury, and are distinguished chiefly by the purity of the corresponding metal hydroxide produced and production per unit floor space.
- Mercury cells are of such design that the product hydroxide solution is of a high degree of purity, i.e., the hydroxide may have a contaiminating foreign anion concentration of less than about 0.05% of the concentration of the hydroxide, this advantage being the mercury cells principal inducement toward its employement in commercial installations.
- Mercury cells typically employed in the electroysis of waste sodium sulfate spinning liquor consist of an electrolyzing chamber containing a sulfate-resistant alloyed anode and a cathode consisting of a flowing bed or rotating vortex of mercury which reacts with sodium ions to form a sodium amalgam film upon its surface; subsequently this sodium amalgam-mercury composition is withdrawn from the cell and passed through an amalgam decomposing chamber wherein a fiow of water countercurrent to the flow of mercury efiluent converts the amalgam to a substantially pure aqueous solution of sodium hydroxide.
- Diaphragm type electrolytic cells overcome those cited disadvantages to a satisfactory extent. However, they are characterized by the production of a product metal hydroxide solution which has a considerably low degree of purity. Cells of this category employ one or more diaphragms permeable to flow of electrolyte solution, but
- the processes associated with this type of cell comprise the steps transferring from either or both the anode and the center compartment to the cathode compartment by means of permeation through the diaphragm(s) a relatively concentrated adqueous salt solution which is passed into the anode or center compartment at a rate sufilcient to repress the flow of hydroxyl ions toward the anode, thereby producing as a catholyte efiluent the corresponding metal hydroxide and free hydrogen gas; while at the anode, free oxygen gas is produced and, in the case of the original salt solution consisting of sodium sulfate, a mixture at the salt and the corresponding acid.
- trolysis in such a manner that passage of the feed electrolytic solution into the center compartment may be controlled to such a rate that the consequent flow of electrolytic solution through the diaphragm is sufficiently rapid to substantially prevent the undesired migation of hydrogen ions from the anode to the cathode.
- the minimizing of the migration of hydrogen ions toward the cathode by a countercurrent flow of electrolytic solutions is effected substantially by means of a porous nonpermselective diaphragm inserted between the anode and the influent electrolytic solution.
- Another object of this invention is the provision of a method for electrochemical conversion of aqueous electrolyte solutions of high purity products overcoming many of the disadvantages of the prior art.
- Another object of the present invention is to provide an improved process for the regeneration of waste sodium sulfate liquor obtained from the spinning operations in the viscose rayon industry.
- FIGURE 1 is a diagrammatic representation of the electrolytic cell of the present invention in vertical cross section.
- FIGURE 2 is a slight variation of the cell of FIGURE-- 1 wherein the anode is of expanded metal and form the support for the porous diaphragm. 1
- FIGURE 3 is a further representation of the. con figuration of the expanded metal anode of FIGURE 2.
- the anode compartment 8 of cell A contains an acid resistant anode and is provided with outlet 3 for the anolyte efliuent product and outlet 4 for gaseous anode products such as oxygen.
- the anode compartment is separated from the center compartment 5 by means of an acid resistant hydraulically permeable non-permselective diaphragm 6, said center compartment 5 containing an inlet 7 through which the electrolytic feed solution is introduced.
- the cathode compartment 9 is separated from the center compartment by a cationexchange membrane 10 selectively permeable to cations and such cathode compartment is provided with a cathode 11 and conduit 12 through which water is passed into the cathode compartment.
- Outlet 13 serves to withdraw the catholyte efiluent product, and exit pipe 14 removes gaseous cathodic products such as hydrogen.
- the electrolyte solution for example, a nearly saturated solution of sodium sulfate
- the electrolyte solution is introduced into the cell through conduit 7 at a rate and pressure suiiiciently high so that the passage of said electrolyte through the porous diaphragm 6 is at a rate sufficiently rapid to curtail substantially the migration of hydrogen ions from the anode toward the cathode.
- Simultaneously Water is passed into the cathode compartment at a rate corresponding to the concentration of hydroxide desired in the resultant cath'olyte eflluent product, and a direct electric current is impressed upon the cell.
- the cationic constitutents of the electrolytic solution for example, sodium ions
- the electrolytic solution of the center compartment 5 now having been partially depleted of its positive ions passes through the diaphragm into the anode compartment where combination of its free anionic groups with hydrogen ions produced by electrolysis of water at the anode produces the corresponding acid, for example, sulfuric acid, which is withdrawn together with unreacted electrolytic solution through outlet 3 as a mixture of the original salt and its corresponding acid salt, for example, sodium bisulfate.
- the resultant anolyte efiluent product will be a stoichiometric solution of sodium bisulfate, such solution being suitable for use in rayon spinning operations.
- the electrolyte employed may be any water soluble electrolytic material such as inorganic salts, acids and bases and organic salts.
- the processes disclosed herein are applicable toward its purification of ionic impurities; such as cationic impurities, in the instance of the electrolyte being of acidic nature, and anionic impurities in the instance of the electrolyte being of basic character.
- an electrolytic salt whose corresponding acid is weakly ionized, for example, sodium acetate or potassium fluoride, permits, as a result of such anodic formation of the slightly ionized acid a relatively small quantity of free hydrogen ions available for migration to ward 'the cathode, with a corresponding reduction in the flow rate of the feed electrolytic solution to conform to the degree of ionization of the corresponding acid, whereby said reduction in flow rate permits a comparatively high degree of transference of the alkali metal cation into the cathode compartment, and correspondingly, less of the original electrolyte solution passing through the diaphragm into the anolyte compartment.
- the flow rate of the electrolytic solution may be regulated so that the salt content of the analyte product is of a desired value, for example, in the case of sodium sulfate, the flow of an aqueous solution of the same into the center compartment may be regulated so that the anolyte effluent product is solely a solution of sodium bisulfate, i.e., the rate will be controlled so that the equivalents of the original salt entering the anode compartment are equal to the equivalents of sulfuric acid being formed therein.
- the temperature of the electrolytic feed solution and the catholyte influent water may vary from above its freezing point to below its boiling point. However, in general, it is preferred that relatively high temperatures be employed, i.e., above about 60 C., since the impressed voltage requiredv to pass a specific current through an electrolytic cell tends to vary inversely with the temperature of the electrolytic medium.
- the anode employed is of acid-resistant conductive material and may be, for example, of platinum, rhodium or noble metal coated tantalum or titanium.
- the cathode is of conventional construction, being conveniently of steel or a carbonaceous material.
- the electrodes may properly be positioned in either of two methods. An electrode may be fixed to a side of its compartment or suspended in it by conventional means. It may, depending upon the nature of the diaphragm or permselective membrane employed, be necessary or desirable to utilize the electrode as a support for such diaphragm or membrane in which case the electrode is constructed in the form of a screen or expanded metal and positioned contiguous to the partition being supported.
- FIGURE 2 Such a cell incorporating an expanded metal anode is diagrammed in FIGURE 2, and a section of the anode itself in FIGURE 3.
- Expanded metal is available commercially.
- the expanded mesh is made by cutting a series of fine slots in a sheet of the desired metal and pulling the sheet lengthwise, resulting in the expansion of the slots to form triangular diamond-shaped holes.
- the triangular shaped holes (1) can be made in various dimensions so that the total available surface area of the metal (2) will vary correspondingly.
- the expanded material is fabricated from an electrolytic valve metal preferably tantalum, titanium or niobium which is coated with a noble metal such as platinum or rhodium.
- the non-permselective diaphragm is of such design that it will allow passage of electrolyte solution but restrict flow of gaseous products, such as oxygen and is preferably of such suitable microporous materials such as rubber, ceramic, polyethylene, canvas, asbestos, Teflon and other synthetic fabrics.
- the cation permselective membrane is commonly of the type consisting of cation exchange resin prepared in the form of thin sheets; said membranes being substantially impervious to water and to ions carrying a negative charge but permeable to ions carrying a positive charge. Permselectivity toward cations is defined as the membranes possession of a higher transport number for cationsthan that of the solution in which it performs. It is essential that the membrane employed in the processes of the present invention have as high a cation transport number as possible and be substantially non-permeable to anions.
- the art contains many examples of cation exchange materials which can be formed into cation permselective membranes.
- the mechanism underlying the operation of an ion-exchange membrane is determined from its construction which consists of a polymeric structure containing dissoluble ionizable radicals, one ionic compound being fixed into the polymeric matrix, the other a mobile and replaceable ion electrostatically associated with the fixed component.
- the replacement of the mobile ions by ions of like sign in the solution in which the membrane is immersed is the particular property of such membranes which characterizes it as an ion exchange material.
- cation exchange membrane ordinarily affording the highest permselectivity toward cations is that in which carboxylic acid groups are fixed into a polymeric matrix, the preparation of one such preferred type of membrane being described in US. Patent 2,731,408, wherein is disclosed a method for preparing membranes consisting of a matrix of copolymers of divinyl benzene and an olefinic carboxylic compound.
- divinyl benzene and an olefinic carboxylic compound such as an anhydride, ester or chloride derivative of acrylic acid are copolymerized in a suitable solvent.
- the solid polymeric material recovered is then saturated with water or an aqueous solution of an acid or base to convert the anhydridc, ester or acid radicals in the polymeric matrix to their acidic or alkali metal salt form.
- Alternative cation exchange materials may be prepared by the condensation of resorcyclic acid with formaldehyde, by the use of sulfonated or carboxylated humic materials, etc.
- the resinous material is incorporated into a sheetlike reinforcing matrix in order to increase the mechanical strength and heat resistance of the membranes.
- Suitable reinforcing materials include, for example, woven or felted materials such as glass filter cloth, polyvinylidene chloride screen, cellulose paper, asbestos, Teflon or Saran cloth and similar porous materials of adequate strength.
- FIGURE 2 An electrolytic cell as shown in FIGURE 2 was operated to convert an electrolyte of sodium sulfate into sodium hydroxide and its acid salt of sodium bisulfate. It employed a platinized expanded titanium anode 2 on which was supported a .010" microporous polyethylene diaphragm 6. This diaphragm thus defines and separates the anode compartment 8 from the center compartment 5.
- the cathode compartment 9 contained a nickel screen cathode 11 and was separated from the center cell by a self-supporting carboxylic type cation-exchange membrane made as a copolymer of acrylic acid and divinyl benzene. The spacing between electrodes was about A".
- a 10% solution of sodium sulfate was introduced into the center compartment through conduit 7 at such a rate so that the percolation of this electrolyte through the porous diaphragm and expanded anode is sufficient so as to appreciably prevent the migration or diffusion of anodic products into the center compartment. Since the positively charged hydrogen ions formed at the anode surface tend to travel in the direction of the negatively charged cathode, the sodium sulfate electrolyte is allowed to percolate through the microporous diaphragm at a velocity greater than that of the opposing migrating hydrogen ions. The result being that the hydrogen ions are effectively washed back into the anode compartment.
- Water is introduced into the cathode compartment through a conduit 12 at a rate depending upon the caustic concentration desired as the catholyte product.
- the catholyte product and anode product effiuents are recovered from outlets 13 and 3.
- the electrolysis was conducted at a current density of 100 amps per square foot of membrane area.
- the cell voltage was 4.3 volts at a solution temperature of 80 C.
- porous diaphragm effectively prevented the diffusion of these highly corrosive anodic products from entering the center cell and thus not subjecting the cation membrane to chemical and physical oxidation'degradation. Because of the highly corrosive nature of the anolytic solution, an inert porous Teflon diaphragm was used to separate the anode and center compartment.
- the electrolysis of sodium chloride was conducted at a membrane current density of 125 amps per square foot, a cell voltage of 4.2 volts and at a temperature of 95 C.
- the steady state product of the cathode was 15% sodium hydroxide of a purity consistent with rayon grade caustic, representing a current efiiciency of better than 90%.
- An electrolytic cell equivalent in design and function to that described herein is constructed and operated with an electrolytic infiuent feed solution of sodium sulfate, for example, 3 N.
- the catholyte efiiuent product is aqueous sodium hydroxide and the anolyte efiiuent product is sodium bisulfate.
- the anode compartment is also the site for the production of oxygen which 'is passed into the atmosphere of the particular system trolytic cell. Since the sodium sulfate is-thus substantially regenerated, the production of oxygen is dependent wholly upon the electrolysis of water, whose source is ordinarily readily available.
- the method of converting aqueous electrolytic salt solutions to their corresponding acid and base solutions comprising: passing said salt solution into the center compartment of a three-compartment electrolytic cell having a cathode compartment separated from the center compartment by a cation-selective ion exchange membrane and a spaced fluid-permeable diaphragm separating the center compartment from the anode compartment, maintaining a greater pressure in said center compartment than the pressure in the anode compartment to cause said feed salt solution to flow from the center compartment through said porous diaphragm into and out of said anode compartment, introducing an electrolyte solution into said cathode compartment, passing a direct electric current transversely through said compartments, diaphragm, and
- a three compartment electrolytic cell comprising a cathode compartment, a center compartment, and an anode compartment, the cathode compartment being separated from the center compartment by a cation selective ion exchange membrane, the center compartment being separated from the anode compartment by a fluid-permeable diaphragm, the center compartment containing only an inlet for passing a feed salt solution therein, means for maintaining a pressure in said center compartment greater than the pressure in the anode compartment to cause said feed solution to pass from said center compartment into said anode compartment, the anode compartment containing only an outlet for withdrawing a product solution from said compartment, an inlet and outlet in said cathode References Cited in the file of this patent compartment for passing an aqueous electrolyte solution there-through, and an anode and a cathode in the respec- UNITED STATES PATENTS tive end compartments for passing a direct current trans- 2,923,674 Kressman 1960 versely through said compartments, membrane and di
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
June 2, 1964 c. E. TIRRELL ETAL 3,135,67 3
PROCESS AND APPARATUS FOR ELECTROLYZING SALT SOLUTIQNS.
Filed May 5, 1961 .Z J a 3 E F w A M w w fi 2 an 2 01w? m m 21 25 w 7 3 6 WVENTORS Charles E. Tlrrell Edgardo J. Parsi ATTORNEY United States atent O 3,135,673 PROCESS AND APPARATUS FOR ELECTRO- LYZING SALT SOLUTIONS Charles E. Tirrell, Nahant, and Edgardo J. Farsi, Natick, Mass., assignors to Ionics, Incorporated, Cambridge, Mass., a corporation of Massachusetts Filed May 5, 1961, Ser. No. 108,061
7 Claims. (Cl. 204-98) electrolytic salt solution. Tap water or other conducting solutions are passed into the cathode compartment and an electric current is impressed upon the cell causing migration of cationic ions of the electrolyte through the cation permselective membrane into the cathode compartment where combination with hydroxyl ions produced by the electrolysis of water at the cathode produces the corresponding metal hydroxide; and migration of the anionic groups of the electrolyte plus a small portion of the cationic ions of said electrolyte through the hydraulically permeable diaphragm into the anode compartment where combination of the anionic groups of the electrolyte with hydrogen ions produced by the electrolysis of water at the anode produces the corresponding acid which, mixed with the original electrolyte forms an anolyte efiluent product such a product, for example, acid salt.
The processes of this invention relating to the conversion of soluble salts into their corresponding metal hydroxides and acid salts may be directed in general toward those applications wherein it is desired to recover acid salt and base values from substantially waste salt solutions, in particular, the waste sodium sulfate liquor derived from the neutralization of caustic cellulose acetate in the spinning bath operation of the viscose rayon industry or from pickle liquor of the steel industry.
Elecetrolytic cells, for example caustic-chlorine cells, now commonly employed for salt conversion are of two general types: (1) diaphragm and (2) mercury, and are distinguished chiefly by the purity of the corresponding metal hydroxide produced and production per unit floor space. Mercury cells are of such design that the product hydroxide solution is of a high degree of purity, i.e., the hydroxide may have a contaiminating foreign anion concentration of less than about 0.05% of the concentration of the hydroxide, this advantage being the mercury cells principal inducement toward its employement in commercial installations. Mercury cells typically employed in the electroysis of waste sodium sulfate spinning liquor consist of an electrolyzing chamber containing a sulfate-resistant alloyed anode and a cathode consisting of a flowing bed or rotating vortex of mercury which reacts with sodium ions to form a sodium amalgam film upon its surface; subsequently this sodium amalgam-mercury composition is withdrawn from the cell and passed through an amalgam decomposing chamber wherein a fiow of water countercurrent to the flow of mercury efiluent converts the amalgam to a substantially pure aqueous solution of sodium hydroxide. Disadvantages of this process are the high initial capital investment necessitated by the large inventory of mercury required, a relatively high energy consumption, an undesirably high ratio of floor space per unit of product and relatively low power "ice elllciencies resulting from the wider spacing between the electrodes.
Diaphragm type electrolytic cells overcome those cited disadvantages to a satisfactory extent. However, they are characterized by the production of a product metal hydroxide solution which has a considerably low degree of purity. Cells of this category employ one or more diaphragms permeable to flow of electrolyte solution, but
impervious to passage of gas bubbles, thus separating the cell into two or more compartments; for example, a three-compartment cell containing two porous diaphragms is described in US. Patent No. 1,126,627. The processes associated with this type of cell comprise the steps transferring from either or both the anode and the center compartment to the cathode compartment by means of permeation through the diaphragm(s) a relatively concentrated adqueous salt solution which is passed into the anode or center compartment at a rate sufilcient to repress the flow of hydroxyl ions toward the anode, thereby producing as a catholyte efiluent the corresponding metal hydroxide and free hydrogen gas; while at the anode, free oxygen gas is produced and, in the case of the original salt solution consisting of sodium sulfate, a mixture at the salt and the corresponding acid. Employment of dlaphragm-type electrolytic cells achieves relatively high production of products per unit floor space, lower energy requirements and higher current etficiencies but incurs the serious disadvantage of producing as the catholyte efiluent product the hydroxide solution in a very dilute and impure form, i.e., the product may consist of about 12% hydroxide and about 12% of the original salt.- In the use of a saturated NaCl feed solution, concentration and separation of the hydroxide by the use of three-stage evaporators is required wherein the salt crystallizes out, and a final NaOH concentration of about 50% is achieved. The hydroxide obtained using these supplementary and expense-incurring processes is still contaminated by about 1% of the original salt and therefore falls short of the purity achieved in a mercury cell which produces a caustic well within the specification limits of rayon grade caustic soda. It has been a consistent feature of every diaphragm-type electrolytic cell proposed heretofore, that the product hydroxide is characterized by a purity below that value signifying a rayon grade caustic, due to the permeation of the anion groups of the original salt through the non-permselective. diaphragm separating the cathode from the feed electrolyte solution.
It has been proposed in US. Patent No. 2,681,320 that permselective membranes be interposed in an electrolytic cell in place of non-permselective diaphragms in order that such rayon grade" caustic be achieved. However, no provision is made for a three-compartment electrolytic cell containing both a permselective membrane and a nonpermselective diaphragm. In the instance of employment of one or more cation permselective membranes, the hydrogen ions formed by the electrolysis of water at the anode will migrate through the membrane or membranes with the metallic cations to neutralize what hydroxyl ions are being formed at the cathode. In the instance of employment of a three-compartment cell, the center cornpartment of which is bounded on the anode side by an anion permselective membrane and on the cathode side by a cation permselective membrane, the same phenomenon of migration toward the cathode of hydrogen ions formed at the anode through intervening hydrogen ionpermeable barriers will occur due to the inherent ineificiency toward repression of hydrogen ion permeation of those anion permselective membranes known in the art. For example, starting with a 1.0 normal sodium sulfate solution introduced into the center compartment, a compartively high efiicient anion membrane will function in such a manner that about 50% of the current passing selectivity.
'through said membrane is conveyed by the passage of hydrogen ions through said membrane toward the cathode. The efiiciency is lower with higher and commercially more suitable concentrations of salt solution. Consequently, the insertion of an anion permselective membrane in place of a non-permselective diaphragm in this case, is of no value due to the membranes low perm- In US. Patent No. 3,017,338 an electrolytic process and cell for making caustic soda and chlorine are disclosed employing a spaced porous diaphragm and cation exchange membrane defining a three chamber cell. The
trolysis in such a manner that passage of the feed electrolytic solution into the center compartment may be controlled to such a rate that the consequent flow of electrolytic solution through the diaphragm is sufficiently rapid to substantially prevent the undesired migation of hydrogen ions from the anode to the cathode. The minimizing of the migration of hydrogen ions toward the cathode by a countercurrent flow of electrolytic solutions is effected substantially by means of a porous nonpermselective diaphragm inserted between the anode and the influent electrolytic solution.
It has been discovered in accordance with the present invention, that such a three-compartment cell not only prevents substantially the flow of hydrogen ions toward the cathode but also furnishes as the catholyte efiiuent product a rayon grade caustic. The same corresponding purity of product is similarly obtained in the electrolytic conversion of other feed salt electrolyte such as pickle liquor, waste Na SO liquor, etc.
Another object of this invention is the provision of a method for electrochemical conversion of aqueous electrolyte solutions of high purity products overcoming many of the disadvantages of the prior art.
' Another object of the present invention is to provide an improved process for the regeneration of waste sodium sulfate liquor obtained from the spinning operations in the viscose rayon industry.
It is a further object to provide such a process wherein the resultant caustic soda product is of rayon grade purity and the product sodium acid sulfate is of a composition suitable for use in rayon spinning operations. It is a further object to provide a method whereby electrolytic salt solutions can be electrolyzed in such manner as to produce salt-free product hydroxide and the corresponding acid salt.
It is a further object to provide an electrolytic method for the preparation of organic acids and inorganic acids of slight ionization from the corresponding soluble salts.
It is a further object to provide a method for the electrolysis of salt solutions wherein the migration to the cathode of hydrogen ions formed at the anode is effectively prevented.
Still further objects will appear from the following description and appended drawing and claims.
The foregoing'and related objects are accomplished by employment of a three-compartment electrolytic cell containing one ion-exchange membrane selectively permeable to cations and an acid-resistant hydraulically permeable diaphragm, such cells diagrammatically illustrated in vertical cross-section in the drawings which do not in any way represent an attempt to construct the concept of the invention which is sufiiciently broad to permit variations and modifications of such electrolytic cells.
FIGURE 1 is a diagrammatic representation of the electrolytic cell of the present invention in vertical cross section.
FIGURE 2 is a slight variation of the cell of FIGURE-- 1 wherein the anode is of expanded metal and form the support for the porous diaphragm. 1
FIGURE 3 is a further representation of the. con figuration of the expanded metal anode of FIGURE 2.
In FIGURES l to 3 the anode compartment 8 of cell A contains an acid resistant anode and is provided with outlet 3 for the anolyte efliuent product and outlet 4 for gaseous anode products such as oxygen. The anode compartment is separated from the center compartment 5 by means of an acid resistant hydraulically permeable non-permselective diaphragm 6, said center compartment 5 containing an inlet 7 through which the electrolytic feed solution is introduced. The cathode compartment 9 is separated from the center compartment by a cationexchange membrane 10 selectively permeable to cations and such cathode compartment is provided with a cathode 11 and conduit 12 through which water is passed into the cathode compartment. Outlet 13 serves to withdraw the catholyte efiluent product, and exit pipe 14 removes gaseous cathodic products such as hydrogen. Some modifications of this general assembly of apparatus will be described hereinafter.
In the general aspect of operation of this invention, the electrolyte solution, for example, a nearly saturated solution of sodium sulfate, is introduced into the cell through conduit 7 at a rate and pressure suiiiciently high so that the passage of said electrolyte through the porous diaphragm 6 is at a rate sufficiently rapid to curtail substantially the migration of hydrogen ions from the anode toward the cathode.
Simultaneously Water is passed into the cathode compartment at a rate corresponding to the concentration of hydroxide desired in the resultant cath'olyte eflluent product, and a direct electric current is impressed upon the cell. Upon the influence of the impressed electric current, the cationic constitutents of the electrolytic solution for example, sodium ions, pass through the cation permselective membrane into the cathode compartment where combination with hydroxyl ions produced at the cathode by the electrolysis of water produces the corresponding hydroxide, sodium hydroxide, which is withdrawn thorugh outlet 13 in a concentration dependent upon the rate of flow of water into the cathode compartment. The electrolytic solution of the center compartment 5 now having been partially depleted of its positive ions passes through the diaphragm into the anode compartment where combination of its free anionic groups with hydrogen ions produced by electrolysis of water at the anode produces the corresponding acid, for example, sulfuric acid, which is withdrawn together with unreacted electrolytic solution through outlet 3 as a mixture of the original salt and its corresponding acid salt, for example, sodium bisulfate. In the case, for example wherein 50% of the sodium ions of a sodium sulfate solution are effectively transferred to the cathode compartment, the resultant anolyte efiluent product will be a stoichiometric solution of sodium bisulfate, such solution being suitable for use in rayon spinning operations.
The processes may be more clearly understood with reference to the following series of equations wherein the electrolytic salt employed is sodium sulfate.
(1) At the cation exchange membrane 10 Na+ [center compartrnent]- Na+ [cathode compartment] (2) At the cathode ll:
H O. *OH+H+, Na +OH=NaOH (3) At the diaphragm 6: Na l-SO (excess) [center compartment] Na+-i-SO partment] (4) At the anode 2:
The electrolyte employed may be any water soluble electrolytic material such as inorganic salts, acids and bases and organic salts. In the case that the electrolyte is of a basic or acid nature, the processes disclosed herein are applicable toward its purification of ionic impurities; such as cationic impurities, in the instance of the electrolyte being of acidic nature, and anionic impurities in the instance of the electrolyte being of basic character. The employment of an electrolytic salt whose corresponding acid is weakly ionized, for example, sodium acetate or potassium fluoride, permits, as a result of such anodic formation of the slightly ionized acid a relatively small quantity of free hydrogen ions available for migration to ward 'the cathode, with a corresponding reduction in the flow rate of the feed electrolytic solution to conform to the degree of ionization of the corresponding acid, whereby said reduction in flow rate permits a comparatively high degree of transference of the alkali metal cation into the cathode compartment, and correspondingly, less of the original electrolyte solution passing through the diaphragm into the anolyte compartment. Employment of such salts in the process of this invention thereby produces a catholyte efiluent product, of the corresponding caustic at a comparatively high rate and a production of (excess) [anode comanolyte effluent of the corresponding acid, associated with a comparatively small amount of the original electrolytic salt. It is apparent that the processes of this invention thus afiord efficaceous methods for the prepara tion of organic acids and inorganic acids of slight ionization from their corresponding soluble salts.
Application of these processes toward the electrolysis of inorganic salts whose corresponding acids are strongly acidic, for example, sodium sulfate or potassium chloride, results in the production, as the anolyte effluent product, of a mixture of such acid with the original inorganic salt, the ratio between the two constituents being determined by the rate at which the electrolytic solution is introduced into the center compartment. In the case of the electrolyte being a salt of a dibasic or tribasic acid, the anolyte product will be the corresponding acid salt and accompanied to a small degree by some of the original salt. The flow rate of the electrolytic solution may be regulated so that the salt content of the analyte product is of a desired value, for example, in the case of sodium sulfate, the flow of an aqueous solution of the same into the center compartment may be regulated so that the anolyte effluent product is solely a solution of sodium bisulfate, i.e., the rate will be controlled so that the equivalents of the original salt entering the anode compartment are equal to the equivalents of sulfuric acid being formed therein.
The temperature of the electrolytic feed solution and the catholyte influent water may vary from above its freezing point to below its boiling point. However, in general, it is preferred that relatively high temperatures be employed, i.e., above about 60 C., since the impressed voltage requiredv to pass a specific current through an electrolytic cell tends to vary inversely with the temperature of the electrolytic medium.
The anode employed is of acid-resistant conductive material and may be, for example, of platinum, rhodium or noble metal coated tantalum or titanium. The cathode is of conventional construction, being conveniently of steel or a carbonaceous material. The electrodes may properly be positioned in either of two methods. An electrode may be fixed to a side of its compartment or suspended in it by conventional means. It may, depending upon the nature of the diaphragm or permselective membrane employed, be necessary or desirable to utilize the electrode as a support for such diaphragm or membrane in which case the electrode is constructed in the form of a screen or expanded metal and positioned contiguous to the partition being supported.
Such a cell incorporating an expanded metal anode is diagrammed in FIGURE 2, and a section of the anode itself in FIGURE 3.
Expanded metal is available commercially. The expanded mesh is made by cutting a series of fine slots in a sheet of the desired metal and pulling the sheet lengthwise, resulting in the expansion of the slots to form triangular diamond-shaped holes. As seen in FIGURE 3, the triangular shaped holes (1) can be made in various dimensions so that the total available surface area of the metal (2) will vary correspondingly. For use as an anode the expanded material is fabricated from an electrolytic valve metal preferably tantalum, titanium or niobium which is coated with a noble metal such as platinum or rhodium.
Although the use of noble metal coatings of electric valve metals as anodes is well known in the art, the combination of such expanded metals as both anode and a support-media for a porous diaphragm makes it unique. Such support makes it possible to employ diaphragms (less than .010" thick) in electrolytic cells without adding appreciably to the total electrical resistance of the electrolytic cell. Without such support, it is not possible to me thin and fragile diaphragms by themselves. Expanded metal anodes have an advantage over microporous metal or carbonaceous anodes in that disengagement of those gases produced at the anode surface during electrolysis is more readily accomplished.
The non-permselective diaphragm is of such design that it will allow passage of electrolyte solution but restrict flow of gaseous products, such as oxygen and is preferably of such suitable microporous materials such as rubber, ceramic, polyethylene, canvas, asbestos, Teflon and other synthetic fabrics.
The cation permselective membrane is commonly of the type consisting of cation exchange resin prepared in the form of thin sheets; said membranes being substantially impervious to water and to ions carrying a negative charge but permeable to ions carrying a positive charge. Permselectivity toward cations is defined as the membranes possession of a higher transport number for cationsthan that of the solution in which it performs. It is essential that the membrane employed in the processes of the present invention have as high a cation transport number as possible and be substantially non-permeable to anions.
The art contains many examples of cation exchange materials which can be formed into cation permselective membranes. The mechanism underlying the operation of an ion-exchange membrane is determined from its construction which consists of a polymeric structure containing dissoluble ionizable radicals, one ionic compound being fixed into the polymeric matrix, the other a mobile and replaceable ion electrostatically associated with the fixed component. The replacement of the mobile ions by ions of like sign in the solution in which the membrane is immersed is the particular property of such membranes which characterizes it as an ion exchange material. The type of cation exchange membrane ordinarily affording the highest permselectivity toward cations is that in which carboxylic acid groups are fixed into a polymeric matrix, the preparation of one such preferred type of membrane being described in US. Patent 2,731,408, wherein is disclosed a method for preparing membranes consisting of a matrix of copolymers of divinyl benzene and an olefinic carboxylic compound. For example, divinyl benzene and an olefinic carboxylic compound such as an anhydride, ester or chloride derivative of acrylic acid are copolymerized in a suitable solvent. The solid polymeric material recovered is then saturated with water or an aqueous solution of an acid or base to convert the anhydridc, ester or acid radicals in the polymeric matrix to their acidic or alkali metal salt form. Alternative cation exchange materials may be prepared by the condensation of resorcyclic acid with formaldehyde, by the use of sulfonated or carboxylated humic materials, etc.
The resinous material is incorporated into a sheetlike reinforcing matrix in order to increase the mechanical strength and heat resistance of the membranes. Suitable reinforcing materials include, for example, woven or felted materials such as glass filter cloth, polyvinylidene chloride screen, cellulose paper, asbestos, Teflon or Saran cloth and similar porous materials of adequate strength.
The process of this invention relating to the conversion of soluble salts into their corresponding metal hydroxide and acid salts with the recovery of such products are illustrated by the following examples which are not to be construed as limiting.
- Example 1 An electrolytic cell as shown in FIGURE 2 was operated to convert an electrolyte of sodium sulfate into sodium hydroxide and its acid salt of sodium bisulfate. It employed a platinized expanded titanium anode 2 on which was supported a .010" microporous polyethylene diaphragm 6. This diaphragm thus defines and separates the anode compartment 8 from the center compartment 5. The cathode compartment 9 contained a nickel screen cathode 11 and was separated from the center cell by a self-supporting carboxylic type cation-exchange membrane made as a copolymer of acrylic acid and divinyl benzene. The spacing between electrodes was about A". A 10% solution of sodium sulfate was introduced into the center compartment through conduit 7 at such a rate so that the percolation of this electrolyte through the porous diaphragm and expanded anode is sufficient so as to appreciably prevent the migration or diffusion of anodic products into the center compartment. Since the positively charged hydrogen ions formed at the anode surface tend to travel in the direction of the negatively charged cathode, the sodium sulfate electrolyte is allowed to percolate through the microporous diaphragm at a velocity greater than that of the opposing migrating hydrogen ions. The result being that the hydrogen ions are effectively washed back into the anode compartment. Water is introduced into the cathode compartment through a conduit 12 at a rate depending upon the caustic concentration desired as the catholyte product. The catholyte product and anode product effiuents are recovered from outlets 13 and 3. The electrolysis was conducted at a current density of 100 amps per square foot of membrane area. The cell voltage was 4.3 volts at a solution temperature of 80 C. At steady conditionsthe catholyte efiiuent analyzed to be a 2 normal NaOH and the anode efiiuent analyzed to 0.75 normal acid concentration, representing a current efliciency of 90% Example 2 The cell configuration and components were used here as indicated in FIGURE 2, and an aqueous solvent brine solution was employed as the feed electrolyte to the center compartment. During the electrolysis of sodium chloride, the products produced at the cathode were sodium hydroxide and hydrogen gas, and at the anode, hydrochloric acid, chlorine gas and a small amount of sodium hypochlorite. The use of the porous diaphragm effectively prevented the diffusion of these highly corrosive anodic products from entering the center cell and thus not subjecting the cation membrane to chemical and physical oxidation'degradation. Because of the highly corrosive nature of the anolytic solution, an inert porous Teflon diaphragm was used to separate the anode and center compartment.
The electrolysis of sodium chloride was conducted at a membrane current density of 125 amps per square foot, a cell voltage of 4.2 volts and at a temperature of 95 C. The steady state product of the cathode was 15% sodium hydroxide of a purity consistent with rayon grade caustic, representing a current efiiciency of better than 90%.
The above examples represent a few typical methods of operation that can be performed with electrolytic cells of this configuration and as such are not intended to lim t the area of this invention to only such operations.
It is proposed as a novel application of the processes of the present invention that they be directed toward the removal from air or other gases of carbon dioxide,.said application being of particular significance with respect to purification of air in closed systems wherein it is either inconvenient or impossible to introduce a continuingsupply of materials such as carboudioxide absorbing fluids; an example of such a closed system being a submarine.
v This application comprises the following steps and installations: (1) An electrolytic cell equivalent in design and function to that described herein is constructed and operated with an electrolytic infiuent feed solution of sodium sulfate, for example, 3 N. The catholyte efiiuent product is aqueous sodium hydroxide and the anolyte efiiuent product is sodium bisulfate. The anode compartment is also the site for the production of oxygen which 'is passed into the atmosphere of the particular system trolytic cell. Since the sodium sulfate is-thus substantially regenerated, the production of oxygen is dependent wholly upon the electrolysis of water, whose source is ordinarily readily available. I
What we claim is:
l. The method of converting aqueous electrolytic salt solutions to their corresponding acid and base solutions comprising: passing said salt solution into the center compartment of a three-compartment electrolytic cell having a cathode compartment separated from the center compartment by a cation-selective ion exchange membrane and a spaced fluid-permeable diaphragm separating the center compartment from the anode compartment, maintaining a greater pressure in said center compartment than the pressure in the anode compartment to cause said feed salt solution to flow from the center compartment through said porous diaphragm into and out of said anode compartment, introducing an electrolyte solution into said cathode compartment, passing a direct electric current transversely through said compartments, diaphragm, and
membrane and removing the corresponding acid and base solutions from the anode and cathode compartments respectively.
2. The method of claim 1 wherein the solution introduced into said cathode chamber is tap water.
3. The method of claim 1 wherein the feed salt solution is sodium sulfate and the products obtained are essentially solutions of sodium hydroxide and sodium bisulfate.
4. The method of claim 1 wherein the feed salt solution is sodium chloride and the products obtained are essentially solutions of sodium hydroxide and hydrochloric acid.
5. A three compartment electrolytic cell comprising a cathode compartment, a center compartment, and an anode compartment, the cathode compartment being separated from the center compartment by a cation selective ion exchange membrane, the center compartment being separated from the anode compartment by a fluid-permeable diaphragm, the center compartment containing only an inlet for passing a feed salt solution therein, means for maintaining a pressure in said center compartment greater than the pressure in the anode compartment to cause said feed solution to pass from said center compartment into said anode compartment, the anode compartment containing only an outlet for withdrawing a product solution from said compartment, an inlet and outlet in said cathode References Cited in the file of this patent compartment for passing an aqueous electrolyte solution there-through, and an anode and a cathode in the respec- UNITED STATES PATENTS tive end compartments for passing a direct current trans- 2,923,674 Kressman 1960 versely through said compartments, membrane and dia- 5 2,943,668 De Whauey 1950 phragnL 3,017,338 Butler et a1. Jan. 16, 1962 6. The cell of claim 5 wherein the fiuid-permeable dia- FOREIGN PATENTS Phragm an asbfisms shget- 570,265 Canada Feb. 10, 195,
7. The cell of claim 5 wherein the anode consists of expanded metal backed against said diaphragm for physi- 10 570269 Canada 1959 cal support of the latter.
Claims (1)
1. THE METHOD OF CONVERTING AQUEOUS ELECTROLYTIC SALT SOLUTIONS TO THEIR CORRESPONDING ACID AND BASE SOLUTIONS COMPRISING: PASSING SAID SALT SOLUTION INTO THE CENTER COMPARTMENT OF A THREE-COMPARTMENT ELECTROLYTIC CELL HAVING A CATHODE COMPARTMENT SEPARATED FROM THE CENTER COMPARTMENT BY A CATION-SELECTIVE ION EXCHANGE MEMBRANE AND A SPACED FLUID-PERMEABLE DIAPHRAGM SEPARATING THE CENTER COMPARTMENT FROM THE ANODE COMPARTMENT, MAINTAINING A GREATER PRESSURE IN SAID CENTER COMPARTMENT THAN THE PRESSURE IN THE ANODE COMPARTMENT TO CAUSE SAID FEED SALT SOLUTION TO FLOW FROM THE CENTER COMPARTMENT THROUGH SAID POROUS DIAPHRAGM INTO AND OUT OF SAID ANODE COMPARTMENT, INTRODUCING AN ELECTROLYTE SOLUTION INTO SAID CATHODE COMPARTMENT, PASSING A DIRECT ELECTRIC CURRENT TRANSVERSELY THROUGH SAID COMPARTMENTS, DIAPHRAGM, AND MEMBRANE AND REMOVING THE CORRESPONDING ACID AND BASE SOLUTIONS FROM THE ANODE AND CATHODE COMPARTMENTS RESPECTIVELY.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL278049D NL278049A (en) | 1961-05-05 | ||
US108061A US3135673A (en) | 1961-05-05 | 1961-05-05 | Process and apparatus for electrolyzing salt solutions |
US185424A US3222267A (en) | 1961-05-05 | 1962-04-05 | Process and apparatus for electrolyzing salt solutions |
BE617281A BE617281A (en) | 1961-05-05 | 1962-05-04 | Method and apparatus for electrochemical or redox conversion of electrolytic solutions |
GB17119/62A GB963932A (en) | 1961-05-05 | 1962-05-04 | The process and apparatus for electrodialyzing solutions |
FR896595A FR1324549A (en) | 1961-05-05 | 1962-05-05 | Process and installation for the decomposition of aqueous saline solutions by electrolytic means |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US108061A US3135673A (en) | 1961-05-05 | 1961-05-05 | Process and apparatus for electrolyzing salt solutions |
Publications (1)
Publication Number | Publication Date |
---|---|
US3135673A true US3135673A (en) | 1964-06-02 |
Family
ID=22320063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US108061A Expired - Lifetime US3135673A (en) | 1961-05-05 | 1961-05-05 | Process and apparatus for electrolyzing salt solutions |
Country Status (1)
Country | Link |
---|---|
US (1) | US3135673A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3222267A (en) * | 1961-05-05 | 1965-12-07 | Ionics | Process and apparatus for electrolyzing salt solutions |
US3450609A (en) * | 1966-03-14 | 1969-06-17 | Ppg Industries Inc | Electrolytic process for preparing hydrogen fluoride |
US3471384A (en) * | 1965-08-11 | 1969-10-07 | Borg Warner | Electrolytic method of oxygen generation |
US3496077A (en) * | 1967-12-18 | 1970-02-17 | Hal B H Cooper | Electrolyzing of salt solutions |
US3515513A (en) * | 1969-02-03 | 1970-06-02 | Ionics | Carbonation process for so2 removal |
US3523880A (en) * | 1967-12-27 | 1970-08-11 | Ionics | Electrolytic cell for removal and recovery of so2 from waste gases |
US3523755A (en) * | 1968-04-01 | 1970-08-11 | Ionics | Processes for controlling the ph of sulfur dioxide scrubbing system |
US3524801A (en) * | 1968-02-09 | 1970-08-18 | Ionics | Process for producing sulfuric acid from so2 containing waste gas |
US3525643A (en) * | 1966-04-13 | 1970-08-25 | Anita Ryhiner | Process for producing electrical energy in a fuel cell |
US3535217A (en) * | 1966-12-21 | 1970-10-20 | Matsushita Electric Ind Co Ltd | Process for electrolytic deposition of manganese dioxide |
US3623969A (en) * | 1967-10-02 | 1971-11-30 | Sandeigurafe Co Ltd | Portable apparatus for processing water |
US3766049A (en) * | 1971-08-26 | 1973-10-16 | Process Res Inc | Recovery of metal from rinse solutions |
US3884778A (en) * | 1974-01-02 | 1975-05-20 | Hooker Chemicals Plastics Corp | Electrolytic production of hydrogen peroxide and alkali metal hydroxide |
DE2630584A1 (en) * | 1975-07-09 | 1977-01-13 | Asahi Chemical Ind | CATION EXCHANGE MEMBRANES CONTAINING FLUOROCARBON POLYMERISATES, THEIR PRODUCTION AND USE |
US4036717A (en) * | 1975-12-29 | 1977-07-19 | Diamond Shamrock Corporation | Method for concentration and purification of a cell liquor in an electrolytic cell |
DE2747381A1 (en) * | 1976-10-22 | 1978-04-27 | Asahi Denka Kogyo Kk | METHOD OF ELECTROLYZING Aqueous ALKALINE HALOGENIDE SOLUTIONS |
US4129484A (en) * | 1976-05-11 | 1978-12-12 | Kemanord Ab | Process for regeneration of spent reaction solutions |
DE2560151B1 (en) * | 1974-03-07 | 1980-11-27 | Asahi Chemical Ind | Dense cation exchange membrane containing fluorocarbon polymers and functional groups for the electrolysis of an aqueous sodium chloride solution |
US4268366A (en) * | 1979-04-23 | 1981-05-19 | Occidental Research Corporation | Method of concentrating alkali hydroxide in three compartment hybrid cells |
US4961909A (en) * | 1989-11-09 | 1990-10-09 | Comino Ltd. | Process for the manufacture of copper arsenate |
WO1999034895A1 (en) * | 1998-01-09 | 1999-07-15 | Huron Tech Corp. | Electrolytic process for treating aqueous waste streams |
US6375824B1 (en) | 2001-01-16 | 2002-04-23 | Airborne Industrial Minerals Inc. | Process for producing potassium hydroxide and potassium sulfate from sodium sulfate |
US20040104127A1 (en) * | 2002-12-02 | 2004-06-03 | Rojas Juan Luis Araya | Process and composition for obtaining an aqueous chlorine dioxide ready for its use, stabilized in a carbonate buffer, being a powerful disinfecting agent with ecological, non residual non toxic and non phytotoxic cataloging in the concentrations of usage |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA570269A (en) * | 1959-02-10 | T. Miller George | Electrolytic cells and diaphragms therefor | |
CA570265A (en) * | 1959-02-10 | G. Osborne Sidney | Electrolytic cells and diaphragms therefor | |
US2923674A (en) * | 1958-02-03 | 1960-02-02 | Permutit Co Ltd | Process for the removal of dissolved solids from liquids |
US2948668A (en) * | 1957-11-02 | 1960-08-09 | Tno | Electrodialysing apparatus with supported membranes |
US3017338A (en) * | 1958-03-03 | 1962-01-16 | Diamond Alkali Co | Electrolytic process and apparatus |
-
1961
- 1961-05-05 US US108061A patent/US3135673A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA570269A (en) * | 1959-02-10 | T. Miller George | Electrolytic cells and diaphragms therefor | |
CA570265A (en) * | 1959-02-10 | G. Osborne Sidney | Electrolytic cells and diaphragms therefor | |
US2948668A (en) * | 1957-11-02 | 1960-08-09 | Tno | Electrodialysing apparatus with supported membranes |
US2923674A (en) * | 1958-02-03 | 1960-02-02 | Permutit Co Ltd | Process for the removal of dissolved solids from liquids |
US3017338A (en) * | 1958-03-03 | 1962-01-16 | Diamond Alkali Co | Electrolytic process and apparatus |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3222267A (en) * | 1961-05-05 | 1965-12-07 | Ionics | Process and apparatus for electrolyzing salt solutions |
US3471384A (en) * | 1965-08-11 | 1969-10-07 | Borg Warner | Electrolytic method of oxygen generation |
US3450609A (en) * | 1966-03-14 | 1969-06-17 | Ppg Industries Inc | Electrolytic process for preparing hydrogen fluoride |
US3525643A (en) * | 1966-04-13 | 1970-08-25 | Anita Ryhiner | Process for producing electrical energy in a fuel cell |
US3535217A (en) * | 1966-12-21 | 1970-10-20 | Matsushita Electric Ind Co Ltd | Process for electrolytic deposition of manganese dioxide |
US3623969A (en) * | 1967-10-02 | 1971-11-30 | Sandeigurafe Co Ltd | Portable apparatus for processing water |
US3496077A (en) * | 1967-12-18 | 1970-02-17 | Hal B H Cooper | Electrolyzing of salt solutions |
US3523880A (en) * | 1967-12-27 | 1970-08-11 | Ionics | Electrolytic cell for removal and recovery of so2 from waste gases |
US3524801A (en) * | 1968-02-09 | 1970-08-18 | Ionics | Process for producing sulfuric acid from so2 containing waste gas |
US3523755A (en) * | 1968-04-01 | 1970-08-11 | Ionics | Processes for controlling the ph of sulfur dioxide scrubbing system |
US3515513A (en) * | 1969-02-03 | 1970-06-02 | Ionics | Carbonation process for so2 removal |
US3766049A (en) * | 1971-08-26 | 1973-10-16 | Process Res Inc | Recovery of metal from rinse solutions |
US3884778A (en) * | 1974-01-02 | 1975-05-20 | Hooker Chemicals Plastics Corp | Electrolytic production of hydrogen peroxide and alkali metal hydroxide |
DE2560151B1 (en) * | 1974-03-07 | 1980-11-27 | Asahi Chemical Ind | Dense cation exchange membrane containing fluorocarbon polymers and functional groups for the electrolysis of an aqueous sodium chloride solution |
US4357218A (en) * | 1974-03-07 | 1982-11-02 | Asahi Kasei Kogyo Kabushiki Kaisha | Cation exchange membrane and use thereof in the electrolysis of sodium chloride |
DE2510071B2 (en) | 1974-03-07 | 1980-11-27 | Asahi Kasei Kogyo K.K., Osaka (Japan) | Process for the electrolysis of sodium chloride |
DE2630584A1 (en) * | 1975-07-09 | 1977-01-13 | Asahi Chemical Ind | CATION EXCHANGE MEMBRANES CONTAINING FLUOROCARBON POLYMERISATES, THEIR PRODUCTION AND USE |
US4093531A (en) * | 1975-12-29 | 1978-06-06 | Diamond Shamrock Corporation | Apparatus for concentration and purification of a cell liquor in an electrolytic cell |
US4036717A (en) * | 1975-12-29 | 1977-07-19 | Diamond Shamrock Corporation | Method for concentration and purification of a cell liquor in an electrolytic cell |
US4129484A (en) * | 1976-05-11 | 1978-12-12 | Kemanord Ab | Process for regeneration of spent reaction solutions |
DE2747381A1 (en) * | 1976-10-22 | 1978-04-27 | Asahi Denka Kogyo Kk | METHOD OF ELECTROLYZING Aqueous ALKALINE HALOGENIDE SOLUTIONS |
US4268366A (en) * | 1979-04-23 | 1981-05-19 | Occidental Research Corporation | Method of concentrating alkali hydroxide in three compartment hybrid cells |
US4961909A (en) * | 1989-11-09 | 1990-10-09 | Comino Ltd. | Process for the manufacture of copper arsenate |
WO1999034895A1 (en) * | 1998-01-09 | 1999-07-15 | Huron Tech Corp. | Electrolytic process for treating aqueous waste streams |
US6375824B1 (en) | 2001-01-16 | 2002-04-23 | Airborne Industrial Minerals Inc. | Process for producing potassium hydroxide and potassium sulfate from sodium sulfate |
US20040104127A1 (en) * | 2002-12-02 | 2004-06-03 | Rojas Juan Luis Araya | Process and composition for obtaining an aqueous chlorine dioxide ready for its use, stabilized in a carbonate buffer, being a powerful disinfecting agent with ecological, non residual non toxic and non phytotoxic cataloging in the concentrations of usage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3135673A (en) | Process and apparatus for electrolyzing salt solutions | |
US3222267A (en) | Process and apparatus for electrolyzing salt solutions | |
US2967807A (en) | Electrolytic decomposition of sodium chloride | |
US3017338A (en) | Electrolytic process and apparatus | |
US3523880A (en) | Electrolytic cell for removal and recovery of so2 from waste gases | |
US3262868A (en) | Electrochemical conversion of electrolyte solutions | |
US3220941A (en) | Method for electrolysis | |
US5106465A (en) | Electrochemical process for producing chlorine dioxide solutions from chlorites | |
US5092970A (en) | Electrochemical process for producing chlorine dioxide solutions from chlorites | |
US3214362A (en) | Electrolysis of aqueous electrolyte solutions and apparatus therefor | |
US3102085A (en) | Treatment of brine solutions | |
US4172774A (en) | Method and apparatus for lessening ionic diffusion | |
CA1132481A (en) | Process for electrolysis of sodium chloride by use of cation exchange membrane | |
US3524801A (en) | Process for producing sulfuric acid from so2 containing waste gas | |
US3113911A (en) | Process of preparing aluminum chlorhydroxides and aluminum hydroxide | |
US4613416A (en) | Process for the concentration of sulfuric acid | |
US3661762A (en) | Electrolytic cell for removal and recovery of so2 from waste gases | |
US4295950A (en) | Desalination with improved chlor-alkali production by electrolyticdialysis | |
US3347761A (en) | Electropurification of salt solutions | |
US3775272A (en) | Mercury diaphragm chlor-alkali cell and process for decomposing alkali metal halides | |
US5089095A (en) | Electrochemical process for producing chlorine dioxide from chloric acid | |
US4976838A (en) | Method for purification of bases from materials comprising base and salt | |
US3496077A (en) | Electrolyzing of salt solutions | |
US5135626A (en) | Method for purification of bases from materials comprising base and salt | |
US3963567A (en) | Electrolyticdialysis |