US3122462A - Novel pyrotechnics - Google Patents
Novel pyrotechnics Download PDFInfo
- Publication number
- US3122462A US3122462A US154909A US15490961A US3122462A US 3122462 A US3122462 A US 3122462A US 154909 A US154909 A US 154909A US 15490961 A US15490961 A US 15490961A US 3122462 A US3122462 A US 3122462A
- Authority
- US
- United States
- Prior art keywords
- percent
- sodium azide
- weight
- nan
- potassium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B45/00—Compositions or products which are defined by structure or arrangement of component of product
- C06B45/04—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
- C06B45/06—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
- C06B45/10—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B35/00—Compositions containing a metal azide
Definitions
- the present invention relates to novel pyrotechnics, and more particularly a pyrotechnic composition utiliz ing safe-to-handle azides.
- the general purpose of this invention is to provide a pyrotechnic composition which has improved intensity, burning rate, color value and efficiency in light production. Also because pyrotechnic compositions are low explosives and must withstand loading operations, handling, and storage, other important characteristics which this invention provides are insensitivity to static, low impact and friction sensitivity, igniti bility, stability, and low hygroscopicity.
- An object of the present invention is the provision of a pyrotechnic composition which has low sensitivity to impact and is therefore safe to prepare and handle.
- Another object is to provide a pyrotechnic composition which may be used at high altitude, e.g., as an igniter or flare.
- a further object of the invention' is the provision of a pyrotechnic composition which will produce hot metallic compounds that react easily with oxygen or a halogen.
- the initial work which led to the present invention was done with purified sodium azide (NaN and potassium azide (KN intimately mixed with various elements including silicon, boron, aluminum, titanium, zirconium, magnesium. All ignited when touched with a hot wire. Silicon mixtures were found to ignite easily and the reaction sustained itself to apparent completion. Aluminum and sodium azide mixtures, containing as low as 5% sodium azide ignited easier than aluminum alone and the burning sustained itself. The reaction continued at a faster rate than that of aluminum powder alone. As increasing quantities of sodium azide were incorporated, faster ignition and reaction rates were realized.
- the oxygen oxidizer or halogen oxidizer may be part of a polymer or plastic material like Kel-F or Teflon, polyvinylidine fluoride, or copolymer of vinylidine fluoride and perfluoropropylene or other halogen containing polymers.
- Polymers containing oxidizer groups such as polynitroethylene may be used. Examples of typical pyrotechnic formulations of those investigated are as follows:
- Example VIII Silicon (Si) 45 Sodium azide (NaN 45 Barium nitrate [Ba(NO This mixture is difficult to sustain burning.
- Example XI Aluminum (Al) 45 Sodium azide (NaN 45 Potassium perchlorate (KCIO 10 This mixture is fast burning. Examples I-XI were tested at an initial pressure of 705 mm. Hg and at ambient temperatures.
- Example XV Magnesium (Mg) 9.6 Sodium azide (NaN 48.0 Kel-F (powder) 38.5 Binder (Kel-F elastomer) 3.9
- Examples XII through XXI a number of fluorocarbons were used. Among those found satisfactory were Viton A and AHV, Kel-F wax, Kel-F elastomer, Fluorel, Teflon, and Teflon 100.
- Viton is the tradename for a rubbery copolymer of vinylidene fluoride and perfluoropropylene.
- Fluorel is asimilar copolymer of perfluoropropylene and vinylidene fluoride.
- Teflon is the tradename for a homopolymer of tetrafluoroethylene and the same as polytetrafluoroethylene, while Teflon 100 is a copolymer of tetrafluoroethylene and perfluoropropylene.
- Kel-F wax is a homopolymer of chlorotrifluoroethylene and Kel-F elastomer is a copolymer of chlorotrifluoroethylene and vinylidene fluoride.
- Examples XII-XXI not only ignited very rapidly, but burned very rapidly as well. These mixtures are stable to fairly high temperatures, (at least 250 C.) which increases handling safely.
- a pyrotechnic composition consisting essentially of about 9.6 percent by weight magnesium, about 48 percent by weight sodium azide, about 38.5 percent by 5 weight of a homopolymer of chlorotrifluoroethylene and about 3.9 percent by weight of a copolymer of chlorotrifiuoroethylene and vinylidene fluoride.
- a pyrotechnic composition consisting essentially of about 26.5 percent by weight boron, about 53.1 percent by weight sodium azide, and about 20.4 percent by weight of a homopolymer of tetrafluoroethylene.
- a pyrotechnic composition consisting essentially of about 75.1 percent by weight zirconium, about 18 percent by weight sodium azide, and about 6.9 percent by weight of a copolymer of vinylidene fluoride and perfluoropropylene.
- a pyrotechnic composition consisting essentially of about 47.4 percent by weight aluminum, about 38 percent by weight sodium azide, about 9 percent by weight of the copolymer of tetralluoroethylcne and perfluoropropylenc and about 5.6 percent of a homopolymer ot' chlorolrifiuoroethylene.
- a pyrotechnic composition consisting essentially of about 26 to about 75 percent by weight of an element selected from the group consisting of silicon, boron, aluminum, titanium, zirconium and magnesium; about 18 to about 54 percent by weight alkali azide selected from the group consisting of lithium, sodium and potassium azides; and about 14 to about 42 percent by weight of a member selected from the group consisting of a copolymer of vinylidene fluoride and perfluoropropylene, a homopolymer of tetrafiuoroethylene, a copolymer of tetrafluoroethylene and perfluoropropylene; a homopolymer of chlorotrifiuoroethylene, and a copolymer of chlorotrifluoroethylene and vinylidene fluoride and mixtures thereof.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Air Bags (AREA)
Description
as we 3,122,462 NOVEL PYROTECHNICS Martin H. Kaufman, 411-A Nimitz, China Lake, Calif.,
(Granted under Title 35, US. Code (1952), sec. 266) The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
The present invention relates to novel pyrotechnics, and more particularly a pyrotechnic composition utiliz ing safe-to-handle azides.
In the field of pyrotechnics two criteria, rate of reaction and energy liberated per unit weight or volume, are generally of great importance in devising new pyro technics. Although many elements are and have been used as essential ingredients of various pyrotechnics, the use of many reactive elements such as lithium, sodium, potassium, rubidium and cesium has been severly limited because their reactivities are often too great. The present invention is for novel pyrotechnics the composition of which will provide reactive species.
The general purpose of this invention is to provide a pyrotechnic composition which has improved intensity, burning rate, color value and efficiency in light production. Also because pyrotechnic compositions are low explosives and must withstand loading operations, handling, and storage, other important characteristics which this invention provides are insensitivity to static, low impact and friction sensitivity, igniti bility, stability, and low hygroscopicity.
An object of the present invention is the provision of a pyrotechnic composition which has low sensitivity to impact and is therefore safe to prepare and handle.
Another object is to provide a pyrotechnic composition which may be used at high altitude, e.g., as an igniter or flare.
A further object of the invention'is the provision of a pyrotechnic composition which will produce hot metallic compounds that react easily with oxygen or a halogen.
Other objects and many of the attendant advantages of this invention will be readily appreciated as the same becomes better understood by reference to the following detailed description.
The initial work which led to the present invention was done with purified sodium azide (NaN and potassium azide (KN intimately mixed with various elements including silicon, boron, aluminum, titanium, zirconium, magnesium. All ignited when touched with a hot wire. Silicon mixtures were found to ignite easily and the reaction sustained itself to apparent completion. Aluminum and sodium azide mixtures, containing as low as 5% sodium azide ignited easier than aluminum alone and the burning sustained itself. The reaction continued at a faster rate than that of aluminum powder alone. As increasing quantities of sodium azide were incorporated, faster ignition and reaction rates were realized. To test the action in the presence of a minimum of air, a mixture of fine aluminum powder and sodium azide in the ratio of 81 to 65 was packed in an open end cardboard tube 3,122,462 Patented Feb. 25, 1964 Similar reactions may be postulated for other elements. Substituting boron for aluminum in reaction (1) 186 kcal. would be produced or 1.9 kcaL/ gram compared with 1.2 kcal./ gram for aluminum.
As a result of this work it was found feasible to prepare mixtures which when ignited, would produce alkali metal vapors simply by using an excess of alkali azide, e.g., lithium, sodium or potassium azides, and that it was possible to produce an atmosphere of hot oxygen simply by adding to the mixture an excess of oxygen in the form ofa solid oxygen containing oxidizer which decomposes easily at the temperatures reached by these reactions. Oxidizers other than the oxygen containing variety may be incorporated, e.g., halogen containing materials. The oxygen oxidizer or halogen oxidizer may be part of a polymer or plastic material like Kel-F or Teflon, polyvinylidine fluoride, or copolymer of vinylidine fluoride and perfluoropropylene or other halogen containing polymers. Polymers containing oxidizer groups such as polynitroethylene may be used. Examples of typical pyrotechnic formulations of those investigated are as follows:
Example 1 Percent Aluminum (Al) 49.9 Sodium azide (NaN 40.0 Potassium permanganate (KMnO 10.1
This mixture showed fast ignition withhot wire.
Example ll Boron (B) 29.9 Potassium azide (KN 60.1 Potassium permanganate (KMnO 10.0
This mixture showed rapid ignition.
Example Ill Zirconium (Zr) 68.5 Sodium azide.(NaN 16.4 Potassium permanganate (KMnO 15.1
This mixture exhibited rapid ignition.
Example IV Boron (B) 63.75 Sodium azide (NaN 21.25 Barium nitrate [Ba(NO 15.00
, This mixture exhibited very rapid ignition.
Example V Boron (B) 71.25 Sodium azide (NaN 23.75 Potassium perchlorate (KClO 5.0
This mixture exhibited very rapid ignition.
Example VI This mixture was almost immediately explosive.
Example VIII Silicon (Si) 45 Sodium azide (NaN 45 Barium nitrate [Ba(NO This mixture is difficult to sustain burning.
Example IX Magnesium (Mg) 45 Potassium azide (KN 45 Potassium perchlorate (KCIO 10 This mixture is difficult to sustain burning.
Example X Boron (B) 32 Sodium azide (NaN 58 Potassium nitrate (KNO 10 This mixture is fast burning.
Example XI Aluminum (Al) 45 Sodium azide (NaN 45 Potassium perchlorate (KCIO 10 This mixture is fast burning. Examples I-XI were tested at an initial pressure of 705 mm. Hg and at ambient temperatures.
Example XII Boron (B) 27 Potassium perchlorate (KClO 10.1 Sodium azide (NaN 54.9 Binder (Viton A) 8 Example XIII Boron (B) 28.7 Potassium perchlorate (KClO 10.7 Potassium azide (KN 57.3 Binder (Kel-F elastomer) 3.3
Example XIV Boron (B) 19.0 Potassium perchlorate 6.9 Sodium azide (NaN 56.1 Kel-F (powder) 12.5 Binder (Fluorel) 5.5
Example XV Magnesium (Mg) 9.6 Sodium azide (NaN 48.0 Kel-F (powder) 38.5 Binder (Kel-F elastomer) 3.9
Example XVI Aluminum (Al) 38.4 Sodium azide (NaN 38.4 Kel-F (powder) 19.2 Binder (Viton A) 4.0
Example XVII Boron (B) 38 Potassium azide (KN 38 Teflon powder 24 It is postulated that the above reaction may be illustrated by the following equation:
4 Example XVIII Percent Aluminum (Al) 38.4 Sodium azide (NaN 38.4 Binder (fluorocarbon) 23.2 Example XIX Boron (B) 26.5 Sodium azide (NaN 53.1 Teflon (powder) 20.4 Example XX Zirconium (Zr) 75.1 Sodium azide (NaN 18.0 Viton 6.9 Example XXI Aluminum (Al) 47.4 Sodium azide (NaN 38.0 Teflon 100 9.0 Kel-F wax 5.6
In Examples XII through XXI a number of fluorocarbons were used. Among those found satisfactory were Viton A and AHV, Kel-F wax, Kel-F elastomer, Fluorel, Teflon, and Teflon 100.
Viton is the tradename for a rubbery copolymer of vinylidene fluoride and perfluoropropylene. Fluorel is asimilar copolymer of perfluoropropylene and vinylidene fluoride. Teflon is the tradename for a homopolymer of tetrafluoroethylene and the same as polytetrafluoroethylene, while Teflon 100 is a copolymer of tetrafluoroethylene and perfluoropropylene. Kel-F wax is a homopolymer of chlorotrifluoroethylene and Kel-F elastomer is a copolymer of chlorotrifluoroethylene and vinylidene fluoride.
Examples XII-XXI not only ignited very rapidly, but burned very rapidly as well. These mixtures are stable to fairly high temperatures, (at least 250 C.) which increases handling safely.
An additional advantage to safety is the relative stability to impact exhibited by all the mixtures. Examples IV and VI when struck with the flat end of a hammer on a flat piece of steel were almost completely insensitive to such treatment. Example XV which contains no oxygen oxidizer, would not ignite or explode at all regardless of hammer force.
All these pyrotechnic samples (I-XXI) were handmixed by means of mortar and pestle. Only high temperatures above 250 C. set them olf.
Various modifications are contemplated and may obviously be resorted to by those skilled in the art without departing from the spirit and scope of the invention as hereinafter defined by the appended claims.
What is claimed is:
1. A pyrotechnic composition consisting essentially of about 9.6 percent by weight magnesium, about 48 percent by weight sodium azide, about 38.5 percent by 5 weight of a homopolymer of chlorotrifluoroethylene and about 3.9 percent by weight of a copolymer of chlorotrifiuoroethylene and vinylidene fluoride.
2. A pyrotechnic composition consisting essentially of about 26.5 percent by weight boron, about 53.1 percent by weight sodium azide, and about 20.4 percent by weight of a homopolymer of tetrafluoroethylene.
3. A pyrotechnic composition consisting essentially of about 75.1 percent by weight zirconium, about 18 percent by weight sodium azide, and about 6.9 percent by weight of a copolymer of vinylidene fluoride and perfluoropropylene.
4. A pyrotechnic composition consisting essentially of about 47.4 percent by weight aluminum, about 38 percent by weight sodium azide, about 9 percent by weight of the copolymer of tetralluoroethylcne and perfluoropropylenc and about 5.6 percent of a homopolymer ot' chlorolrifiuoroethylene.
5. A pyrotechnic composition consisting essentially of about 26 to about 75 percent by weight of an element selected from the group consisting of silicon, boron, aluminum, titanium, zirconium and magnesium; about 18 to about 54 percent by weight alkali azide selected from the group consisting of lithium, sodium and potassium azides; and about 14 to about 42 percent by weight of a member selected from the group consisting of a copolymer of vinylidene fluoride and perfluoropropylene, a homopolymer of tetrafiuoroethylene, a copolymer of tetrafluoroethylene and perfluoropropylene; a homopolymer of chlorotrifiuoroethylene, and a copolymer of chlorotrifluoroethylene and vinylidene fluoride and mixtures thereof.
References Cited in the file of this patent UNITED STATES PATENTS 1,174,669 Buell Mar. 7, 1916 2,105,674 Sosson Jan. 18, 1938 2,900,242 Williams et al Aug. 18, 1959 2,968,917 Whaley Jan. 24, 1961 2,981,616 Boyer Apr. 25, 1961 2,995,431 Bice Aug. 8, 1961 3,027,283 Bice Mar. 27, 1962
Claims (1)
1. A PYROTECHNIC COMPOSITION CONSISTING ESSENTIALLY OF ABOUT 9.6 PERCENT BY WEIGHT MAGNESIUM, ABOUT 48 PERCENT BY WEIGHT SODIUM AZIDE, ABOUT 38.5 PERCENT BY WEIGHT OF A HOMOPOLYMER OF CHLORITRIFLUOROETHYLENE AND ABOUT 3.9 PERCENT BY WEIGHT OF A COPOLYMER OF CHLOROTRIFLUOROETHYLENE AND VINYLIDENE FLUORIDE.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US154909A US3122462A (en) | 1961-11-24 | 1961-11-24 | Novel pyrotechnics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US154909A US3122462A (en) | 1961-11-24 | 1961-11-24 | Novel pyrotechnics |
Publications (1)
Publication Number | Publication Date |
---|---|
US3122462A true US3122462A (en) | 1964-02-25 |
Family
ID=22553325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US154909A Expired - Lifetime US3122462A (en) | 1961-11-24 | 1961-11-24 | Novel pyrotechnics |
Country Status (1)
Country | Link |
---|---|
US (1) | US3122462A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3463682A (en) * | 1967-02-13 | 1969-08-26 | Joseph T Hamrick | High temperature composite propellant system |
US3475237A (en) * | 1968-07-01 | 1969-10-28 | Dow Chemical Co | Boron fuel-salt smoke-producing compositions |
US3519505A (en) * | 1967-03-01 | 1970-07-07 | Space Ordnance Systems Inc | Ignition material containing tellurium dioxide,boron and fluoropolymeric binder |
US3779823A (en) * | 1971-11-18 | 1973-12-18 | R Price | Abrasion resistant gas generating compositions for use in inflating safety crash bags |
US3785674A (en) * | 1971-06-14 | 1974-01-15 | Rocket Research Corp | Crash restraint nitrogen generating inflation system |
US3833432A (en) * | 1970-02-11 | 1974-09-03 | Us Navy | Sodium azide gas generating solid propellant with fluorocarbon binder |
US3875864A (en) * | 1973-10-04 | 1975-04-08 | Us Army | External tracer projectile |
US3883373A (en) * | 1972-07-24 | 1975-05-13 | Canadian Ind | Gas generating compositions |
US3959043A (en) * | 1966-03-08 | 1976-05-25 | The Secretary Of State For Defence In Her Brittanic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Primary explosives containing nitrated polybasic lead salt and boron |
US3977924A (en) * | 1974-04-01 | 1976-08-31 | The United States Of America As Represented By The Secretary Of The Navy | Coolant additives for nitrogen generating solid propellants |
US3996079A (en) * | 1973-12-17 | 1976-12-07 | Canadian Industries, Ltd. | Metal oxide/azide gas generating compositions |
FR2599361A1 (en) * | 1986-05-27 | 1987-12-04 | Survilliers Nle Cartoucherie | Pyrotechnic composition for an igniter and safety electrical ignition device, igniter and ignition device thus obtained |
USRE32584E (en) * | 1972-05-31 | 1988-01-26 | Talley Industries, Inc. | Method and composition for generating nitrogen gas |
US5401340A (en) * | 1993-08-10 | 1995-03-28 | Thiokol Corporation | Borohydride fuels in gas generant compositions |
US5429691A (en) * | 1993-08-10 | 1995-07-04 | Thiokol Corporation | Thermite compositions for use as gas generants comprising basic metal carbonates and/or basic metal nitrates |
US5439537A (en) * | 1993-08-10 | 1995-08-08 | Thiokol Corporation | Thermite compositions for use as gas generants |
US5462306A (en) * | 1993-01-21 | 1995-10-31 | Trw Inc. | Gas generator for vehicle occupant restraint |
US5472647A (en) * | 1993-08-02 | 1995-12-05 | Thiokol Corporation | Method for preparing anhydrous tetrazole gas generant compositions |
US5500059A (en) * | 1993-08-02 | 1996-03-19 | Thiokol Corporation | Anhydrous 5-aminotetrazole gas generant compositions and methods of preparation |
US5592812A (en) * | 1994-01-19 | 1997-01-14 | Thiokol Corporation | Metal complexes for use as gas generants |
US5672843A (en) * | 1994-10-05 | 1997-09-30 | Ici Americas Inc. | Single charge pyrotechnic |
US5725699A (en) * | 1994-01-19 | 1998-03-10 | Thiokol Corporation | Metal complexes for use as gas generants |
US20050067074A1 (en) * | 1994-01-19 | 2005-03-31 | Hinshaw Jerald C. | Metal complexes for use as gas generants |
US6969435B1 (en) | 1994-01-19 | 2005-11-29 | Alliant Techsystems Inc. | Metal complexes for use as gas generants |
US20150239794A1 (en) * | 2012-08-31 | 2015-08-27 | Armtec Defense Products Co. | Ignition compositions, and preparations and uses thereof |
AU2013206584B2 (en) * | 2012-08-09 | 2018-03-08 | Diehl Defence Gmbh & Co. Kg | High-intensity active composition for a pyrotechnic decoy with a fluorinated carbon compound |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1174669A (en) * | 1913-10-21 | 1916-03-07 | Winchester Repeating Arms Co | Priming charge. |
US2105674A (en) * | 1935-08-29 | 1938-01-18 | Ici Ltd | Delay action detonator and fuse and delay composition for use therein |
US2900242A (en) * | 1958-12-16 | 1959-08-18 | Williams Harry | Igniter for gas generator grains and propellants |
US2968917A (en) * | 1954-05-06 | 1961-01-24 | Ethyl Corp | Method of operating a jet engine and fuel composition |
US2981616A (en) * | 1956-10-01 | 1961-04-25 | North American Aviation Inc | Gas generator grain |
US2995431A (en) * | 1958-06-20 | 1961-08-08 | Phillips Petroleum Co | Composite ammonium nitrate propellants containing boron |
US3027283A (en) * | 1958-12-29 | 1962-03-27 | Phillips Petroleum Co | Solid composite propellant containing halogenated olefin |
-
1961
- 1961-11-24 US US154909A patent/US3122462A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1174669A (en) * | 1913-10-21 | 1916-03-07 | Winchester Repeating Arms Co | Priming charge. |
US2105674A (en) * | 1935-08-29 | 1938-01-18 | Ici Ltd | Delay action detonator and fuse and delay composition for use therein |
US2968917A (en) * | 1954-05-06 | 1961-01-24 | Ethyl Corp | Method of operating a jet engine and fuel composition |
US2981616A (en) * | 1956-10-01 | 1961-04-25 | North American Aviation Inc | Gas generator grain |
US2995431A (en) * | 1958-06-20 | 1961-08-08 | Phillips Petroleum Co | Composite ammonium nitrate propellants containing boron |
US2900242A (en) * | 1958-12-16 | 1959-08-18 | Williams Harry | Igniter for gas generator grains and propellants |
US3027283A (en) * | 1958-12-29 | 1962-03-27 | Phillips Petroleum Co | Solid composite propellant containing halogenated olefin |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3959043A (en) * | 1966-03-08 | 1976-05-25 | The Secretary Of State For Defence In Her Brittanic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Primary explosives containing nitrated polybasic lead salt and boron |
US3463682A (en) * | 1967-02-13 | 1969-08-26 | Joseph T Hamrick | High temperature composite propellant system |
US3519505A (en) * | 1967-03-01 | 1970-07-07 | Space Ordnance Systems Inc | Ignition material containing tellurium dioxide,boron and fluoropolymeric binder |
US3475237A (en) * | 1968-07-01 | 1969-10-28 | Dow Chemical Co | Boron fuel-salt smoke-producing compositions |
US3833432A (en) * | 1970-02-11 | 1974-09-03 | Us Navy | Sodium azide gas generating solid propellant with fluorocarbon binder |
US3785674A (en) * | 1971-06-14 | 1974-01-15 | Rocket Research Corp | Crash restraint nitrogen generating inflation system |
US3779823A (en) * | 1971-11-18 | 1973-12-18 | R Price | Abrasion resistant gas generating compositions for use in inflating safety crash bags |
USRE32584E (en) * | 1972-05-31 | 1988-01-26 | Talley Industries, Inc. | Method and composition for generating nitrogen gas |
US3883373A (en) * | 1972-07-24 | 1975-05-13 | Canadian Ind | Gas generating compositions |
US3875864A (en) * | 1973-10-04 | 1975-04-08 | Us Army | External tracer projectile |
US3996079A (en) * | 1973-12-17 | 1976-12-07 | Canadian Industries, Ltd. | Metal oxide/azide gas generating compositions |
US3977924A (en) * | 1974-04-01 | 1976-08-31 | The United States Of America As Represented By The Secretary Of The Navy | Coolant additives for nitrogen generating solid propellants |
FR2599361A1 (en) * | 1986-05-27 | 1987-12-04 | Survilliers Nle Cartoucherie | Pyrotechnic composition for an igniter and safety electrical ignition device, igniter and ignition device thus obtained |
US5462306A (en) * | 1993-01-21 | 1995-10-31 | Trw Inc. | Gas generator for vehicle occupant restraint |
US5472647A (en) * | 1993-08-02 | 1995-12-05 | Thiokol Corporation | Method for preparing anhydrous tetrazole gas generant compositions |
US5500059A (en) * | 1993-08-02 | 1996-03-19 | Thiokol Corporation | Anhydrous 5-aminotetrazole gas generant compositions and methods of preparation |
US5501823A (en) * | 1993-08-02 | 1996-03-26 | Thiokol Corporation | Preparation of anhydrous tetrazole gas generant compositions |
US5682014A (en) * | 1993-08-02 | 1997-10-28 | Thiokol Corporation | Bitetrazoleamine gas generant compositions |
US5429691A (en) * | 1993-08-10 | 1995-07-04 | Thiokol Corporation | Thermite compositions for use as gas generants comprising basic metal carbonates and/or basic metal nitrates |
US5439537A (en) * | 1993-08-10 | 1995-08-08 | Thiokol Corporation | Thermite compositions for use as gas generants |
US5401340A (en) * | 1993-08-10 | 1995-03-28 | Thiokol Corporation | Borohydride fuels in gas generant compositions |
US5673935A (en) * | 1994-01-19 | 1997-10-07 | Thiokol Corporation | Metal complexes for use as gas generants |
US5592812A (en) * | 1994-01-19 | 1997-01-14 | Thiokol Corporation | Metal complexes for use as gas generants |
US5725699A (en) * | 1994-01-19 | 1998-03-10 | Thiokol Corporation | Metal complexes for use as gas generants |
US5735118A (en) * | 1994-01-19 | 1998-04-07 | Thiokol Corporation | Using metal complex compositions as gas generants |
US6481746B1 (en) | 1994-01-19 | 2002-11-19 | Alliant Techsystems Inc. | Metal hydrazine complexes for use as gas generants |
US20050067074A1 (en) * | 1994-01-19 | 2005-03-31 | Hinshaw Jerald C. | Metal complexes for use as gas generants |
US6969435B1 (en) | 1994-01-19 | 2005-11-29 | Alliant Techsystems Inc. | Metal complexes for use as gas generants |
US20100084060A1 (en) * | 1994-01-19 | 2010-04-08 | Alliant Techsystems Inc. | Metal complexes for use as gas generants |
US9199886B2 (en) | 1994-01-19 | 2015-12-01 | Orbital Atk, Inc. | Metal complexes for use as gas generants |
US5672843A (en) * | 1994-10-05 | 1997-09-30 | Ici Americas Inc. | Single charge pyrotechnic |
AU2013206584B2 (en) * | 2012-08-09 | 2018-03-08 | Diehl Defence Gmbh & Co. Kg | High-intensity active composition for a pyrotechnic decoy with a fluorinated carbon compound |
US20150239794A1 (en) * | 2012-08-31 | 2015-08-27 | Armtec Defense Products Co. | Ignition compositions, and preparations and uses thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3122462A (en) | Novel pyrotechnics | |
US2410801A (en) | Igniting composition | |
US3912561A (en) | Pyrotechnic compositions for gas generation | |
EP0706505B1 (en) | Gas generator autoignition with a chlorate composition | |
US5388519A (en) | Low toxicity primer composition | |
ES2249799T3 (en) | FULMINANT BLENDS. | |
US2740702A (en) | Propellant composition | |
US4390380A (en) | Coated azide gas generating composition | |
US3753811A (en) | Igniter composition | |
WO2000021908A1 (en) | Black body decoy flare compositions for thrusted applications and methods of use | |
US3010815A (en) | Monofuel for underwater steam propulsion | |
US3617403A (en) | Ignition transfer composition comprising fuel, oxidizer and fluoroelastomer | |
US4002514A (en) | Nitrocellulose propellant composition | |
EP0869934A1 (en) | Non-toxic rim-fire primer | |
US3275484A (en) | Percussion sensitive pyrotechnic or pyrophoric alloy-type priming mixture | |
US4130061A (en) | Gun fired projectile having reduced drag | |
US3437534A (en) | Explosive composition containing aluminum,potassium perchlorate,and sulfur or red phosphorus | |
US3773947A (en) | Process of generating nitrogen using metal azide | |
US3111439A (en) | High explosive mixtures | |
US4012244A (en) | High density impulse solid propellant | |
US2970047A (en) | Conductive priming mixture | |
US4874441A (en) | Explosive for warheads and solid rocket propellant | |
US3671341A (en) | Dense propellant composition | |
US3740947A (en) | Hypergolic propellants | |
US6230628B1 (en) | Infrared illumination compositions and articles containing the same |