US3121690A - Nitrogen-containing oxidized oil prod- - Google Patents

Nitrogen-containing oxidized oil prod- Download PDF

Info

Publication number
US3121690A
US3121690A US3121690DA US3121690A US 3121690 A US3121690 A US 3121690A US 3121690D A US3121690D A US 3121690DA US 3121690 A US3121690 A US 3121690A
Authority
US
United States
Prior art keywords
oil
nitrogen
products
fuel
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Publication date
Application granted granted Critical
Publication of US3121690A publication Critical patent/US3121690A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/20Compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/18Ammonia
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/04Oxidation, e.g. ozonisation

Definitions

  • This invention relates broadly to the oxidation of lubricating oils. More particularly, it relates to the oxidation of lubricating oils in the presence of ammonia to form nitrogen-containing oxidized oil products which are useful as addition agents for hydrocarbon lubricating oils and fuels.
  • t is a still further object to provide fuel oils containing these products, said oils having improved anti-clogging properties. It is also an object to provide gasoline compositions containing these products which exhibit improved anti-icing properties.
  • the nitrogen-containing products thereof are prepared by the method which comprises oxidizing a hydrocarbon oil with a free-oxygen containing gas, such as air or oxygen, in the presence of ammonia.
  • a free-oxygen containing gas such as air or oxygen
  • the process is carried out by heating the oil to a temperature of, say, 200 F. to 500 F. and then passing air or oxygen and ammonia simultaneously through the heated oil.
  • This treatment is continued for a thne suflicient to incorporate from about 0.1% to 1.2% nitrogen into the oxidized oil.
  • the treated oil is then filtered to remove insolubles.
  • the time required to attain the required level of nitrogen content in the treated oil will vary in accordance with the conditions used, such as the heating temperature, the rate of introduction of the air and ammonia and the efficiency of the contacting of these gases with the oil.
  • the process was conducted 3 ,121,690 Patented Feb. 18, 1964 in an electrically heated upright glass cylinder, 60 inches long and 3 inches in diameter, equipped with a fritted glass gas disperser at the bottom thereof.
  • the (volume) ratio of the air to'ammonia charged to the oil should be at least about 1:1 and preferably higher. From the examples, it will be seen that ratios of 3 :1 and 10:1 show no appreciable difference in the results obtained, and ratios as high as about 20:1 are considered practical. On the other hand, it has been found that the use of air to ammonia ratios less than 1:1 results in unfeasible low yields of the nitrogen-containing products. 'It will be appreciated that if oxygen is utilized in the process as the oxidizing gas rather than air the proportion of oxygen required will be only about onefifth that of air. Thus, the oxygen to ammonia ratio ranges from about 02:1 to about 4:1.
  • the process of the invention can be applied to all types of lubricating oil stocks, ranging from relatively light stocks having average molecular weights of about 300 up to heavy lube oil stocks having molecular weights of about 1000.
  • the properties of several different types of suitable stocks are given in Table I.
  • Example 1 Two thousand grams of a Mid-Continent type bright stock were charged to an electrically heated glass column ,(60 long and 3" diameter) equ1pped with a gas disperser in the bottom. Streams of air and ammonia at rates of 3.0 l./hr./l00 g. 011 and 0.3 l./hr./l00 g. oil, respectively, were passed simultaneously through the oil heated at 400 F. for 13 hours. The finished product was filtered. Analysis showed the nitrogen content of the product to be 0.48%.
  • A. splash lubrication is used.
  • the operating conditions are as follows: Oil temperature F 2 Jacket temperature F 275 Speed 1 r.p.m 1825 Brake load H.P 1.6
  • the duration of the test is 100 hours.
  • the fuel used is a premium type gasoline composed of thermal, 30% catalytically cracked and 30% straight-run components plus 2.5 cc. TEL/ gal.
  • the fuel used is The results are The duration of the test is hours. a No. 2 fuel oil containing 1% sulfur.
  • the test procedure involved pumping a fuel oil contaminated with grams per 4 liters of a synthetic sludge, composed of 10% carbon, 50% water and fuel oil, through a conventional oil burner screen for two hours.
  • the amount of deposits on the screen at the end of the test is rated on a scale of from 100 to 0, a rating of 100 indicating a perfectly clean screen and a rating of zero representing the sludge deposited by the base fuel containing no additive.
  • the base fuel oil used in the tests comprised 60% catalytically cracked component and 40% straight-run components and had a boiling range of approximately 320 F. to 640 F.
  • the base gasoline employed in the FL2 test comprised 92% thermal reformate and 8% heavy naphtha plus 2.5 cc. TEL.
  • the base gasoline used in the L4 test was a /50 blend of thermal reformate and heavy naphtha containing 3.0 cc. of TEL.
  • Jacket inlet F Jacket outlet F. Speed 2500 rpm. Brake load 4.5 HP.
  • Oil addition Level adjusted every 10 hours.
  • Oil addition Level adjusted every 4 hours.
  • the duration of the test is 36 hours.
  • the engine is dismantled and inspected and cleanliness ratings made in the same manner as in the case of the FL2 test (supra).
  • the temperature is quickly lowered below 32 P. if the ambient temperature is low enough and the fuel is sufficiently volatile. Moisture in the incoming air that comes in contact with these cold parts begins to form a coating of ice. The ice first appears on the throttle plate and carburetor barrel near it. If enough moisture is present in the incoming air, the ice continues to build up on the top and edges of the throttle plate. When the throttle plate is closed, as during idling, the ice chokes off the air flow through the small clearance between the plate and carburetor wall. This causes the engine to stall. The engine can usually be restarted since heat trom the exhaust manifold melts the ice. However, stalling will continue until the engine is warmed up. This may require to minutes under severe conditions. Atmospheric conditions conductive to stalling are ambient temperatures of 30 F. to 60 F. and relative humidity above 65%. The most critical conditions are 35 F. to 40 F. ambient temperature (at 100% relative humidity.
  • the nitrogen-containing oxidized oil products of the present invention have been found to be eifective antistalling agents for gasolines as shown in the following tests.
  • the base fuel used in these tests was comprised of 68% catalytically cracked gasoline, 9% natural gasoline, 8% benzene, 12% toluene and 3% butene. It had a boiling range of 97 F. to 382 "F.
  • test procedure used was as follows: A standard Chevrolet engine, equipped with a Holley single downdraft carburetor, was mounted in a cold room in which the temperature was maintained at 50 F. Fllhe Holley carburetor was used because it has been shown to be very susceptible to icing. A thermocouple was attached to the throttle plate shatt to record the plate temperature. A /2-inch insulating gasket was placed between the carburetor and manifold to prevent heat conduction. An asbestos sheet covered the entire manifold system to shield the carburetor from convection and radiation. A spray chamber was used to saturate the incoming air with moisture before entering an ice tower which cooled the air to about 35 F.
  • Example 5 which is typical of the products of the invention, is an effective anti-icing agent for motor gasoline.
  • the product of Example 5 which is typical of the products of the invention, is an effective anti-icing agent for motor gasoline.
  • the engine stalled in 4 seconds at 40 seconds run-time and immediately at 50 and 60 seconds runtime.
  • the stalling time was extended to over 60 seconds at 4-0 and 50 seconds runtime at the 0.00% additive level.
  • the stalling time was extended to 9 seconds by the use of 0.01% of the additive and again to over 60 seconds by the use of 0.05% of the additive.
  • the products of the invention may be added to a lubricating oil in amounts ranging from about 1.0% to as high as about 20%, by weight, depending upon the requirements of the oil and the application for which it is intended, the usual amount being from about 3% to about 10%.
  • Much smaller amounts are required, however, when the products are employed as anticlogging agents in fuel oils.
  • the additives are added to the fuel oil in amounts ranging from about 10 to about 20 0 pounds per 1000 barrels of the oil, i.e., from about 0.003% to about 0.06%, by weight.
  • anti-stall additives for gasoline the required amounts are also quite small, ranging from about 0.0 1% to about 0.1%, by weight.
  • the products of the invention are actually dilute oil solutions of the nitrogenous compounds termed by the air-ammonia treatment. Accordingly, it is considered feasible to concentrate these solutions, i.e., increase the proportion of the nitrogenous products therein prior to the use thereof as oil additives. Thus, as those skilled in the art will appreciate, this can be accomplished by known techniques, such as solvent-extraction, distillation, chromatographic absorption, etc. It will be understood, however, that if such concentrating techniques are applied to the products of the process, the amounts thereof required for use as add-itives in lubricating oils and fuels will be proportionately less than those recited hereinabove for the unconcertrated products.
  • manufacture of the products of the invention on a commercial basis would involve standardization of process conditions and/ or final adjustment of the concentration of the nitro gen-containing compounds in the product oil solution to some standard level so as to insure uniformity of the products.
  • lubricating oils may contain anti-oxidants,
  • fuel oils can contain antioxidants, burning and ignition quality improvers, foam inhibitors, anti-rust agents, etc.
  • gasolines may also contain anti-knock agents, rust inhibitors, metal deactivators, etc.
  • a nitrogen-containing oxidized mineral oil product produced by the method which comprises heating a mineral oil to a temperature of from about 200 F. to about 500 F., simultaneously introducing air and ammonia gas into the heated oil in a volume ratio of from about 1:1 to about 20:1, for a time surficient to incorporate into the oil from about 0.1% to about 1.2%, by weight, of nitrogen and filtering the treated oil.
  • a method for producing a nitrogen-containing oxidized mineral oil product which comprises heating the mineral oil to a temperature of from about 200 F. to about 500 F., simultaneously introducing air and ammonia gas into the heated oil in a volume ratio of from about 1:1 to about 20:1, for a time sufiicient to incorporate into the oil from about 0.1% to about 1.2%, by weight, of nitorgen and filtering the treated oil.
  • a method for producing a nitrogen-containing oxidized mineral oil product which comprises heating the mineral oil to a temperature of from about 200 F. to about 500 F., simultaneously introducing (a) a free oxygen-containing gas, selected from the group consisting of oxygen and air and (b) ammonia gas, into the heated oil, the volume ratio of said oxidizing gas to ammonia so introduced being from about 0.2:1 to about 4:1 when said free oxygen-containing gas is oxygen and from about 1:1 to about 20:1 when said free oxygen-containing gas is air, for a time sufficient to incorporate into the oil from about 0.1% to about 1.2%, by weight, of nitrogen and filtering the treated oil.
  • a free oxygen-containing gas selected from the group consisting of oxygen and air
  • ammonia gas selected from the group consisting of oxygen and air
  • a mineral lubricating oil, containing a minor amount, sufiicient to improve the detergent characteristics of said oil, of a nitrogen-containing oxidized mineral oil product produced by the method which comprises heating a mineral oil to a temperature of from about 200 F. to about 500 F., simultaneously introducing air and ammonia gas into the heated oil in a volume ratio of from about 1:1 to about 20:1, for a time sufiicient to incorporate into the oil from about 0.1% to about 1.2%, by Weight, of nitrogen and filtering the treated oil.

Description

United States Patent 3,121,690 NITROGEN-(IONTAHNING OXIDEZED OIL PROD- UCTS AND FUEL AND LUBRICATING OIL CQM- POSITEONS CGNTAiNING THE SAME Henry G. Berger, Medford Lake, Ferdinand P. Otto, Woodhury, and John W. Schick, Delaware Township, Camden County, N.J., assignors to Socony Mobil Oil Company, Inc, a corporation of New York No Drawing. Filed Mar. 12, 1959, Ser. No. 798,840 4 Claims. (Cl. 252--51.5)
This invention relates broadly to the oxidation of lubricating oils. More particularly, it relates to the oxidation of lubricating oils in the presence of ammonia to form nitrogen-containing oxidized oil products which are useful as addition agents for hydrocarbon lubricating oils and fuels.
It has been known heretofore to oxidize hydrocarbon oils with air in the presence of metallic bases whereby the products produced are metal salts of the oxidized oil. These metal salts have proved highly useful as additives for petroleum products, particularly as detergents or dispersing agents in crankcase lubricating oils. In modern automotive engines, however, combustion chamber deposits have reduced performance efiiciency. Thus, phenomena, such as pro-ignition, spark plug fouling, wild ping, etc, have been found to be caused by metallic ash deposits which are formed, partly at least, from the metalcontaining detergent additives used in the lube oils. In an effort to reduce these deposits and alleviate these problems, the art has turned to the development of ashless (i.e., non-metal containing) detergents as replacements for the metal-containing detergents. The products provided by the present invention have been found to be excellent ashless detergents for automotive oils. Furthen more, these products have been found to be highly effective additives for fuel oils and gasolines. Thus, they provide excellent anti-clogging properties in fuel oil and are eliective anti-icing agents for gasoline. As far as is known, products of the type provided by the invention have not been made heretofore and they are, therefore, considered to be new compositions of matter. Accordingly, it is the primary object of this invention to provide a new class of nitrogemcontaining oxidized oil products.
it is a further object to provide a method for the preparation of these new nitrogen-containing oxidized oil products. It is another object to provide lubricating oil compositions containing these products as ashless detergents.
t is a still further object to provide fuel oils containing these products, said oils having improved anti-clogging properties. It is also an object to provide gasoline compositions containing these products which exhibit improved anti-icing properties.
In accordance with the invention, the nitrogen-containing products thereof are prepared by the method which comprises oxidizing a hydrocarbon oil with a free-oxygen containing gas, such as air or oxygen, in the presence of ammonia. The process is carried out by heating the oil to a temperature of, say, 200 F. to 500 F. and then passing air or oxygen and ammonia simultaneously through the heated oil. This treatment is continued for a thne suflicient to incorporate from about 0.1% to 1.2% nitrogen into the oxidized oil. The treated oil is then filtered to remove insolubles.
It will be appreciated that the time required to attain the required level of nitrogen content in the treated oil will vary in accordance with the conditions used, such as the heating temperature, the rate of introduction of the air and ammonia and the efficiency of the contacting of these gases with the oil. In all, except one, of the examples presented hereinafter, the process was conducted 3 ,121,690 Patented Feb. 18, 1964 in an electrically heated upright glass cylinder, 60 inches long and 3 inches in diameter, equipped with a fritted glass gas disperser at the bottom thereof. In the one example, it was conducted in a 3-liter, round-bottomed flask equipped with a stirrer and two filter sticks for the airammonia dispersion and a temperature regulator. Using these reactors and employing a heating temperature of 400 R, an air introduction rate of 2 to 3 liters per hour per 100 grams of \oil and an ammonia introduction rate of 0.3 to 0.65 liter per hour per 100 grams of oil, treating times of from about 6 to 25 hours were required to provide the desired level of nitrogen content in the treated oil.
However, it will be appreciated that these conditions will not necessarily hold true when reactors different from those employed in the examples are used. Thus, in operating the process on a commercial scale, it would be expected that reactors designed to give a more eflicient dispersal of the air and ammonia through the oil will be employed and, therefore, much shorter reaction times attained. Likewise, the efliciency of the process could be increased by the use of specially designed pressure reactors. It will be understood that using such reactors the rates of introduction of the reactant gases could vary considerably from those shown in the examples. It will be appreciated, therefore, that the time for completing the process is not subject to numerical definition, but is dependent upon the equipment and other conditions used. The time for completing the process is, therefore, expressed herein as that suflicient to incorporate the required nitrogen content, i.e., from 0.1% to 1.2% in the treated oil product.
From the standpoint of efliciency and economy, experience has shown that the (volume) ratio of the air to'ammonia charged to the oil should be at least about 1:1 and preferably higher. From the examples, it will be seen that ratios of 3 :1 and 10:1 show no appreciable difference in the results obtained, and ratios as high as about 20:1 are considered practical. On the other hand, it has been found that the use of air to ammonia ratios less than 1:1 results in unfeasible low yields of the nitrogen-containing products. 'It will be appreciated that if oxygen is utilized in the process as the oxidizing gas rather than air the proportion of oxygen required will be only about onefifth that of air. Thus, the oxygen to ammonia ratio ranges from about 02:1 to about 4:1.
The precise nature of the nitrogen-containing products normed in the process of the invention is not known. Theoretically, a variety of organic nitrogenous compounds can be formed in the process. Analytical data show that, besides containing nitrogen, the processed oil also contains substantial amounts of oxygen, i.e., from about 1.5 to about 3.0 weight percent, and that the higher nitrogen-content products generally exhibit the highest oxygen contents. Also, perchloric acid titration has shown that about 70% to about of the nitrogencontaining components are non basic compounds. Without intending to limit the invention by theoretical considerations, it is believed that these non-basic components may be complex high molecular weight compounds involving pyrimidine, pyrazine, pyrrole, etc, as parent nuclei.
The process of the invention can be applied to all types of lubricating oil stocks, ranging from relatively light stocks having average molecular weights of about 300 up to heavy lube oil stocks having molecular weights of about 1000. The properties of several different types of suitable stocks are given in Table I.
3 TABLE -I.PHYSICAL PROPERTIES OF HYDRO- CARBON OIL STOCKS 1 A high-boiling hydrocarbon fraction obtained as a lay-product in the manufacture of dodeeyl benzene composed predominantly of alkyl aromatics (GO-80 weight percent), the remainder being non-aromatics. This particular fraction had a boiling range of 502-828" F., an API Gravity f292 and a Flash Point of 370 F. These properties, which are typical of such a by-product fraction, may vary somewhat from batch to batch without effecting the utility of this material in the invention.
-A series of examples, 1-11, illustrating the process of the invention are summarized in Table II. Typical of these examples is Example 1, set forth herebelow.
Example 1.-Two thousand grams of a Mid-Continent type bright stock were charged to an electrically heated glass column ,(60 long and 3" diameter) equ1pped with a gas disperser in the bottom. Streams of air and ammonia at rates of 3.0 l./hr./l00 g. 011 and 0.3 l./hr./l00 g. oil, respectively, were passed simultaneously through the oil heated at 400 F. for 13 hours. The finished product was filtered. Analysis showed the nitrogen content of the product to be 0.48%.
A. splash lubrication is used. The operating conditions are as follows: Oil temperature F 2 Jacket temperature F 275 Speed 1 r.p.m 1825 Brake load H.P 1.6
One-half throttle. 13-l air-fuel ratio. Oil added every 20 hours (one gallon sample used).
The duration of the test is 100 hours. The fuel used is a premium type gasoline composed of thermal, 30% catalytically cracked and 30% straight-run components plus 2.5 cc. TEL/ gal.
CFR Diesel Detergency T est This test determines the effectiveness of the lubricating oil in preventing piston deposits and topring wear. A single cylinder CFR, 4cycle, super-charged, diesel engine is used. The operating conditions are as follows:
The fuel used is The results are The duration of the test is hours. a No. 2 fuel oil containing 1% sulfur.
TABLE II.OXIDATION OF HYDROCARBONS IN THE PRESENCE OF AMMONIA Percent Air Rate, NH Temp, Time, Nitrogen Percent Example Charge Stock 1\ Type Grams l./hr./100 g. l.Ihr./l00 g. F. Hr. Oxygen Total Basic 1 Mid-Cont. 330 Bright 2,000 2. o 0. 05 400 g 2 do 2, 000 2. 0 '0. 400 24 l. 18 3 Mid-Cont. 330 1,000 2.0 0.5 424 26 0.87 4. Mid-Cont. 330 Bright 2, 000 3. 0 0.3 400 13 0. 57 5. 2, 000 3. 0 0.8 400 13 0.61 6- Mid-Cont. 345 Bri 2,000 3. 0 0.3 400 6. 5 0. 19 7.. (l0 2, 000 3.0 0.3 400 14. 0 O. 56 8 d0 2, 000 3.0 0.3 400 21. 0 1.05 39E) Hvy Waxy T 2,000 2. 0 0. 65 400 20.0 0.58 300 Sec. Mid-Cont. Parafli 2,000 3.0 0.3 400 9.0 0.33 7.0 0.30 11 Residue from Dodecyl Benzene Iro- 2, 000 3.0 0.3 400 14. 0 0.55 duction. 21.0 0.75
a The oxidation reaction was carried out, except where noted, in an electrically heated glass column (60" l. x 3 d.) equipped with a fritted glass disperser in bottom.
b The oxidation reaction was carried dispersion) and a temperature regulator.
0 Properties are given in Table I (supra) Evaluation of Products (0) AS LUBRTCATING OIL DETERGENTS Lauson Detergency Test This test determines the effectiveness of the lubricating Oil in preventing fouling as measured by the cleanliness of rings, lands, ring grooves and piston skirts. Cleanliness ratings are based on a scale of from 100 to 0-, a 100 rating signifying a perfectly clean condition and a O rating representing the worst possible deposit condition. A single cylinder, 4-cycle, liquid-cooled Lauson engine with out in a 3 1. round bottom flask equipped with a stirrer, two filter sticks (for air-ammonia reported in terms of piston cleanliness ratings as in the Lauson test.
TABLE III Percent Lauson De Diesel Deter- Iroduct Added ProductIn tergeney Test gency Test Oil Rating Rating b B The base oil is an SAE 20 Grade solvent refined Penna. oil (K.V. at F.=63 cs.', K.V. at 210 F.=8.3 es.) containing 1.0% of a commercial ant1-oxidant (PinenePgSs product).
b The base oil is an SAE 30 Grade solvent refined Mid-Continent oil (K.V. at 100 F.=121 cs.; K.V. at 210 F.=12.2 cs.) containing 1.0% of a commercial anti-oxidant (Pinene-PzSs product).
It will be seen from Table III that the products of the invention are effective detergents for engine oils.
(1)) AS AN ANTI-CLOGGING ADDITIVE IN FUEL OIL As is well known, fuel oils, particularly distillate fuel oils, such as those used as domestic heating oils and diesel fuels have a tendency to deteriorate in storage and form sludge. Also, by the time the fuel oil reaches the consumer it contains small amounts of foreign substances, such as condensed moisture, and particles of rust and dirt, which become entrained in the oil from the tank pipes, etc., of the fuel distribution system. A serious problem encountered with fuel oils arises from their tendency to deposit the formed sludge and foreign bodies on the screens, filters, nozzles, etc., of burners and engines using them. These deposits cause clogging of these elements which in turn necessitates cleaning and repair costs. The art has found that this clogging problem can be substantially alleviated by the addition to the fuel oil of minor amounts of chemical additives known as anticlogging agents, which have the ability to prevent these deposits. The products of the present invention have been found to exhibit excellent anti-clogging action when added to fuel oils, as shown by a series of anti-screen clogging tests, the results of which are presented in Table IV below.
The test procedure involved pumping a fuel oil contaminated with grams per 4 liters of a synthetic sludge, composed of 10% carbon, 50% water and fuel oil, through a conventional oil burner screen for two hours. The amount of deposits on the screen at the end of the test is rated on a scale of from 100 to 0, a rating of 100 indicating a perfectly clean screen and a rating of zero representing the sludge deposited by the base fuel containing no additive. The base fuel oil used in the tests comprised 60% catalytically cracked component and 40% straight-run components and had a boiling range of approximately 320 F. to 640 F.
It will be seen from Table IV that all of the products of the invention exhibited anti-clogging ability, the higher nitrogen-content products being generally more effective than those of lower nitrogen content. Also, the products prepared from residual or bright stocks appear to be more effective than those from lighter stocks (compare Examples 7 and 11).
(0) AS A GASOLINE DETERGENT ADDITIVE With the coming of the modern high compression gasoline engine, fuel as well as lubricating oil problems have arisen. In the case of fuel, one of the main problems in engines has been the development of manifold, valve and piston deposits. To decrease the amount of these deposits, refineries have resorted to additives. The nitrogencontaining products of the present invention have been found to be effective for inhibiting these deposits in low and high temperature operated engines, as shown by the following tests, the results of which are presented in Table V.
The tests used where the FL-Z Chevrolet Engine (low temperature) Test and the L-4 Chevrolet Engine (high temperature) Test. The base gasoline employed in the FL2 test comprised 92% thermal reformate and 8% heavy naphtha plus 2.5 cc. TEL. In the L4 test the base gasoline used was a /50 blend of thermal reformate and heavy naphtha containing 3.0 cc. of TEL. The crankcase oil used in both tests was an SAE 30 grade oil (K.V. at 210 F.=1l cs.) fortified with 3% of a commercial detergent and 1.75% of a combination of commercial anti-oxidant additives.
FLZ Chevrolet Engine Test This test determines the effect of fuels on the formation of engine deposits at low operating temperatures. In this test a standard siX cylinder Chevrolet passenger car engine is operated under the following conditions:
Oil temperature 155 F.
Jacket inlet F. Jacket outlet F. Speed 2500 rpm. Brake load 4.5 HP.
Oil addition Level adjusted every 10 hours.
L-4 Chevrolet Engine Test This test determines the effect of fuels on the formation of engine deposits at low operating temperatures. In this test a standard six cylinder Chevrolet passenger car engine is operated under the following conditions:
Oil temperature 280 F. Jacket temperature 200 F. Speed 3150 rpm. Brake load 30 HP.
Oil addition Level adjusted every 4 hours.
The duration of the test is 36 hours. At the completion of the test the engine is dismantled and inspected and cleanliness ratings made inthe same manner as in the case of the FL2 test (supra).
The results obtained in the several tests are given in Table V.
TABLE V.GASOLINE DETERGENCY TESTS FL-2 Chevrolet L- t Chevrolet Base Base Fuel Base Base Fuel Fuel +0.12% Fuel +0.12%
Ex. 5 Product Ex. 5 Product Piston Rating 5. 5 8. 2 9. 3 9. 5 Inlet Valve Ratiir 7 8 7+ 8+ Overall Rating 86 89 95 94 From Table V, itis seen that when added to the gasoline at 0.12%, by weight, concentration, the additive effected a marked reduction in piston deposits over that obtained with the base fuel in the FL-2 test. Also, it is seen that the inlet valve ratings were improved in both tests. Furthermore, in both tests the good overall engine cleanliness rating, attributable to the detergent-anti-oxidant lubricating oil used, was not elfected.
(cl) AS A GASOLINE ANTI-STALLING AGENT A well known difliculty encountered in the operation of automobile engines in cool and humid weather is that of frequent stalling during the warm-up period. It has now been recognized that the cause of this stalling is ice formation in the carburetor. The trouble has become more prevalent in post-war cars since the use of automatic transmissions and automatic chokes and the elimination of the hand throttle gives the driver less control over the engine during warm-up. In addition to the inconvenience of restarting, this type of stalling is a serious safety hazard. The stalling mechanism is generally agreed to be as follows: As the tuel evaporates, it removes heat from the surrounding metal parts thereby lowering their temperature. The temperature is quickly lowered below 32 P. if the ambient temperature is low enough and the fuel is sufficiently volatile. Moisture in the incoming air that comes in contact with these cold parts begins to form a coating of ice. The ice first appears on the throttle plate and carburetor barrel near it. If enough moisture is present in the incoming air, the ice continues to build up on the top and edges of the throttle plate. When the throttle plate is closed, as during idling, the ice chokes off the air flow through the small clearance between the plate and carburetor wall. This causes the engine to stall. The engine can usually be restarted since heat trom the exhaust manifold melts the ice. However, stalling will continue until the engine is warmed up. This may require to minutes under severe conditions. Atmospheric conditions conductive to stalling are ambient temperatures of 30 F. to 60 F. and relative humidity above 65%. The most critical conditions are 35 F. to 40 F. ambient temperature (at 100% relative humidity.
The nitrogen-containing oxidized oil products of the present invention have been found to be eifective antistalling agents for gasolines as shown in the following tests. The base fuel used in these tests was comprised of 68% catalytically cracked gasoline, 9% natural gasoline, 8% benzene, 12% toluene and 3% butene. It had a boiling range of 97 F. to 382 "F.
The test procedure used was as follows: A standard Chevrolet engine, equipped with a Holley single downdraft carburetor, was mounted in a cold room in which the temperature was maintained at 50 F. Fllhe Holley carburetor was used because it has been shown to be very susceptible to icing. A thermocouple was attached to the throttle plate shatt to record the plate temperature. A /2-inch insulating gasket was placed between the carburetor and manifold to prevent heat conduction. An asbestos sheet covered the entire manifold system to shield the carburetor from convection and radiation. A spray chamber was used to saturate the incoming air with moisture before entering an ice tower which cooled the air to about 35 F.
In conducting a test, the engine was first run tor about 10 minutes at 2500 rpm. to bring the engine temperature to equilibrium. The engine was then shut off. When the throttle shaft temperature rose to 40 F, the engine was restarted and run for a period of from '20 to 60 seconds at 2500 rpm. At the end of the selected run-time, the throttle arm was moved to the idle position, which was set l t 450 =r.p.m. The time required to stall was recorded. Several tests were made at each run-time and averaged.
In evaluating an additive, the base fuel was first tested and subsequent tests were made on blends oi the additive in the base fuel. The system was flushed between tests with the fuel to be run next. Any anti-icing improvement eifected by the additive was reflected by a longer time to stall at idle as compared to the base fuel. The test results are presented in Table VI.
TABLE VI.ANT I-STALLING TESTS 8 It will be seen from Table VI that the product of Example 5, which is typical of the products of the invention, is an effective anti-icing agent for motor gasoline. Thus, it is seen that at run-times sufficient to permit ice formation in the carburetor stalling was encountered in the absence of the additive. Thus, when operated on the base gasoline, the engine stalled in 4 seconds at 40 seconds run-time and immediately at 50 and 60 seconds runtime. However, when operated on the gasoline containing the additive the stalling time was extended to over 60 seconds at 4-0 and 50 seconds runtime at the 0.00% additive level. Also, at 60 seconds run-time, the stalling time was extended to 9 seconds by the use of 0.01% of the additive and again to over 60 seconds by the use of 0.05% of the additive.
When utilized as ashless detergents the products of the invention may be added to a lubricating oil in amounts ranging from about 1.0% to as high as about 20%, by weight, depending upon the requirements of the oil and the application for which it is intended, the usual amount being from about 3% to about 10%. Much smaller amounts are required, however, when the products are employed as anticlogging agents in fuel oils. Thus, for this purpose the additives are added to the fuel oil in amounts ranging from about 10 to about 20 0 pounds per 1000 barrels of the oil, i.e., from about 0.003% to about 0.06%, by weight. As anti-stall additives for gasoline, the required amounts are also quite small, ranging from about 0.0 1% to about 0.1%, by weight. t
l't will be appreciated that the products of the invention are actually dilute oil solutions of the nitrogenous compounds termed by the air-ammonia treatment. Accordingly, it is considered feasible to concentrate these solutions, i.e., increase the proportion of the nitrogenous products therein prior to the use thereof as oil additives. Thus, as those skilled in the art will appreciate, this can be accomplished by known techniques, such as solvent-extraction, distillation, chromatographic absorption, etc. It will be understood, however, that if such concentrating techniques are applied to the products of the process, the amounts thereof required for use as add-itives in lubricating oils and fuels will be proportionately less than those recited hereinabove for the unconcertrated products.
It will be appreciated, furthermore, that manufacture of the products of the invention on a commercial basis would involve standardization of process conditions and/ or final adjustment of the concentration of the nitro gen-containing compounds in the product oil solution to some standard level so as to insure uniformity of the products.
It will be understood that in addition to the products of the pesrent invention, lubricating oils, fuel oils and gasolines may have added thereto other additives designed to improve the properties thereof in various respects. Thus, lubricating oils may contain anti-oxidants,
pour point depressants, viscosity index improvers, ex-
treme, pressure agents, anti-rust agents, etc, as well as other detergents. Likewise, fuel oils can contain antioxidants, burning and ignition quality improvers, foam inhibitors, anti-rust agents, etc. Similarly, gasolines may also contain anti-knock agents, rust inhibitors, metal deactivators, etc.
Although the principles of this invention have been illustrated herein by means of certain specific examples and tests, it is not intended that the scope of the invention be limited thereby, but only as indicated in the following claims.
What is claimed is:
1. As a new composition of matter, a nitrogen-containing oxidized mineral oil product produced by the method which comprises heating a mineral oil to a temperature of from about 200 F. to about 500 F., simultaneously introducing air and ammonia gas into the heated oil in a volume ratio of from about 1:1 to about 20:1, for a time surficient to incorporate into the oil from about 0.1% to about 1.2%, by weight, of nitrogen and filtering the treated oil.
2. A method for producing a nitrogen-containing oxidized mineral oil product which comprises heating the mineral oil to a temperature of from about 200 F. to about 500 F., simultaneously introducing air and ammonia gas into the heated oil in a volume ratio of from about 1:1 to about 20:1, for a time sufiicient to incorporate into the oil from about 0.1% to about 1.2%, by weight, of nitorgen and filtering the treated oil.
3. A method for producing a nitrogen-containing oxidized mineral oil product which comprises heating the mineral oil to a temperature of from about 200 F. to about 500 F., simultaneously introducing (a) a free oxygen-containing gas, selected from the group consisting of oxygen and air and (b) ammonia gas, into the heated oil, the volume ratio of said oxidizing gas to ammonia so introduced being from about 0.2:1 to about 4:1 when said free oxygen-containing gas is oxygen and from about 1:1 to about 20:1 when said free oxygen-containing gas is air, for a time sufficient to incorporate into the oil from about 0.1% to about 1.2%, by weight, of nitrogen and filtering the treated oil.
4. A mineral lubricating oil, containing a minor amount, sufiicient to improve the detergent characteristics of said oil, of a nitrogen-containing oxidized mineral oil product produced by the method which comprises heating a mineral oil to a temperature of from about 200 F. to about 500 F., simultaneously introducing air and ammonia gas into the heated oil in a volume ratio of from about 1:1 to about 20:1, for a time sufiicient to incorporate into the oil from about 0.1% to about 1.2%, by Weight, of nitrogen and filtering the treated oil.
References Cited in the file of this patent UNITED STATES PATENTS UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,121,690 February 18 1964 Henry G. Berger et a1.
It is hereby certified that error appears in the above numbered paten't requiring correction and that the said Letters Patent should read as corrected below.
Columns 3 and 4, TABLE II, under the heading "Percent E I1'.trogen sub- -heading "Basic", line 3 thereof, for "0.62" read 0,26 column 8 line 54, for "pesrent" read present column 9, line 12, for "nitorgen" read nitrogen Signed and sealed this 1st day of December 1964 (SEAL) Attest:
ERNEST Wc SWIDER EDWARD J. BRENNER fiiz icsting Officer 7 Commissioner of Patents

Claims (1)

1. AS A NEW COMPOSITION OF MATTER, A NITROGEN-CONTAINING OXIDIZED MINERAL OIL PRODUCT PRODUCED BY THE METHOD WHICH COMPRISES HEATING A MINERAL OIL TO A TEMPERATURE OF FROM ABOUT 200*F. TO ABOUT 500*F., SIMULTANEOUSLY INTRODUCING AIR AND AMMONIA GAS INTO THE HEATED OIL IN A VOLUME RATIO OF FROM ABOUT 1:1 TO ABOUT 20:1, FOR A TIME SUFFICIENT TO INCORPORATE INTO THE OIL FROM ABOUT 0.1% TO ABOUT 1.2%, BY WEIGHT, OF NITROGEN AND FILTERING THE TREATED OIL.
US3121690D Nitrogen-containing oxidized oil prod- Expired - Lifetime US3121690A (en)

Publications (1)

Publication Number Publication Date
US3121690A true US3121690A (en) 1964-02-18

Family

ID=3452513

Family Applications (1)

Application Number Title Priority Date Filing Date
US3121690D Expired - Lifetime US3121690A (en) Nitrogen-containing oxidized oil prod-

Country Status (1)

Country Link
US (1) US3121690A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544520A (en) * 1968-04-22 1970-12-01 Standard Oil Co Lubricant additives from formaldehyde-polyalkylene polyamine oxidized olefin polymer condensation products
US4068056A (en) * 1975-03-05 1978-01-10 Exxon Research And Engineering Company Aminated polymeric additives for fuel and lubricants
US4317738A (en) * 1980-10-10 1982-03-02 Standard Oil Company (Indiana) Dispersants and dispersant viscosity modifiers from oxidized-sulfurized olefins

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1414227A (en) * 1921-07-11 1922-04-25 Edson L Cannon Lubricating compound
US2162454A (en) * 1937-04-02 1939-06-13 Production Oil Products Inc Cutting compound
US2455670A (en) * 1946-11-26 1948-12-07 Socony Vacuum Oil Co Inc Deodorizing petroleum oils and waxes
US2786803A (en) * 1952-01-03 1957-03-26 Phillips Petroleum Co Oxidation of petroleum
US2793943A (en) * 1954-11-18 1957-05-28 Socony Mobil Oil Co Inc Fuel oil composition containing combination of aliphatic and alkyl amines
US2800450A (en) * 1954-05-10 1957-07-23 Shell Dev Lubricating compositions
US2805998A (en) * 1955-09-14 1957-09-10 Gulf Oil Corp Lubricant compositions
US2852355A (en) * 1956-06-11 1958-09-16 Gulf Research Development Co Hydrocarbon compositions containing the water-insoluble nitric acid oxidation product of hydrocarbons
US2902354A (en) * 1956-06-29 1959-09-01 Socony Mobil Oil Co Inc Anti-stall gasoline
US2924572A (en) * 1956-11-29 1960-02-09 Kendall Refining Company Ammonia or amine modified oxygen and sulfur condensed hydrocarbons
US2934487A (en) * 1960-04-26 Table iii
US2955084A (en) * 1960-10-04 Process of treating hydrocarbons

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2934487A (en) * 1960-04-26 Table iii
US2955084A (en) * 1960-10-04 Process of treating hydrocarbons
US1414227A (en) * 1921-07-11 1922-04-25 Edson L Cannon Lubricating compound
US2162454A (en) * 1937-04-02 1939-06-13 Production Oil Products Inc Cutting compound
US2455670A (en) * 1946-11-26 1948-12-07 Socony Vacuum Oil Co Inc Deodorizing petroleum oils and waxes
US2786803A (en) * 1952-01-03 1957-03-26 Phillips Petroleum Co Oxidation of petroleum
US2800450A (en) * 1954-05-10 1957-07-23 Shell Dev Lubricating compositions
US2793943A (en) * 1954-11-18 1957-05-28 Socony Mobil Oil Co Inc Fuel oil composition containing combination of aliphatic and alkyl amines
US2805998A (en) * 1955-09-14 1957-09-10 Gulf Oil Corp Lubricant compositions
US2852355A (en) * 1956-06-11 1958-09-16 Gulf Research Development Co Hydrocarbon compositions containing the water-insoluble nitric acid oxidation product of hydrocarbons
US2902354A (en) * 1956-06-29 1959-09-01 Socony Mobil Oil Co Inc Anti-stall gasoline
US2924572A (en) * 1956-11-29 1960-02-09 Kendall Refining Company Ammonia or amine modified oxygen and sulfur condensed hydrocarbons

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544520A (en) * 1968-04-22 1970-12-01 Standard Oil Co Lubricant additives from formaldehyde-polyalkylene polyamine oxidized olefin polymer condensation products
US4068056A (en) * 1975-03-05 1978-01-10 Exxon Research And Engineering Company Aminated polymeric additives for fuel and lubricants
US4317738A (en) * 1980-10-10 1982-03-02 Standard Oil Company (Indiana) Dispersants and dispersant viscosity modifiers from oxidized-sulfurized olefins

Similar Documents

Publication Publication Date Title
US4022589A (en) Fuel additive package containing polybutene amine and lubricating oil
US3316177A (en) Functional fluid containing a sludge inhibiting detergent comprising the polyamine salt of the reaction product of maleic anhydride and an oxidized interpolymer of propylene and ethylene
US4039300A (en) Gasoline fuel composition and method of using
US2331386A (en) Modified fuel
CN100357405C (en) Gasoline composition
US4257779A (en) Hydrocarbylsuccinic anhydride and aminotriazole reaction product additive for fuel and mineral oils
EP0034968B1 (en) N-substituted succinimides, their preparation and their use as additives for fuels
US2878109A (en) Liquid fuel composition
CA1142360A (en) Cyclomatic manganese compound with an aliphatic polyamine in fuel for i.c. engines
US3121690A (en) Nitrogen-containing oxidized oil prod-
US3039861A (en) Glycine alkenyl succinamic acids in distillate fuels
US4647292A (en) Gasoline composition containing acid anhydrides
US4133648A (en) Organic synergists for organo-cerium (IV) anti-knock additives in lead-free fuel compositions
US3231347A (en) Gasolene composition containing organometallic orthophosphates
US3121622A (en) Fuel containing nitrogen-containing oxidized oil products
Gibson et al. Combustion-chamber deposition and knock
US3303007A (en) Motor fuel composition
US2760852A (en) Stable fuel oil compositions
Tupa et al. Gasoline and Diesel Fuel Additives for Performance/Distribution Quality—II
US2343766A (en) Modified fuel
US4602919A (en) Gasoline compositions containing malonates
US3909427A (en) Additives for lubricants and motor fuels
US2833635A (en) Gasoline fuel
Tupa et al. Gasoline and diesel fuel additives for performance/distribution/quality
US3502452A (en) Gasoline composition