US3098780A - Curl resistant foil to paper lamination and method of making same - Google Patents

Curl resistant foil to paper lamination and method of making same Download PDF

Info

Publication number
US3098780A
US3098780A US75269358A US3098780A US 3098780 A US3098780 A US 3098780A US 75269358 A US75269358 A US 75269358A US 3098780 A US3098780 A US 3098780A
Authority
US
United States
Prior art keywords
paper
lamination
foil
moisture
moisture content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
James N Krause
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlantic Richfield Co
Original Assignee
Anaconda Aluminum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anaconda Aluminum Co filed Critical Anaconda Aluminum Co
Priority to US75269358 priority Critical patent/US3098780A/en
Application granted granted Critical
Publication of US3098780A publication Critical patent/US3098780A/en
Anticipated expiration legal-status Critical
Assigned to ATLANTIC RICHFIELD COMPANY, A PA CORP. reassignment ATLANTIC RICHFIELD COMPANY, A PA CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ANACONDA COMPANY THE, A DE CORP
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/02Metal coatings
    • D21H19/04Metal coatings applied as foil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31703Next to cellulosic

Definitions

  • This invention relates to metallic foil to paper lamination and processes for producing such laminations, and more particularly to foil to paper laminations which are treated during their manufacture to reduce the tendency of the lamination to curl due to changes in relative humidity in the surrounding atmosphere.
  • the invention is especially directed toward the production of a lamination consisting of a layer of aluminum fioil which is bonded to a paper backing.
  • Laminations of this type are widely used for labels applied to bottles or packages.
  • the drying of the bonding media also dries or shrinks the paper backing.
  • the paper picks up moisture from the atmosphere and swells.
  • the aluminum foil member of the lamination is dimensionally stable to varying moisture conditions, swelling of the paper backing causes the lamination to curl with the foil on the inside of the curl. If the lamination is not properly dried or left too wet, then it gives off moisture to the atmosphere and the paper member shrinks. This causes the lamination to curl in the opposite direction.
  • This problem is particularly acute where the labels are prepared for use in automatic labeling machinery by cutting the labels to size and storing them in stacks.
  • a primary object of my invention is to provide a foil to paper lamination which is resistant to curling over a wide range of relative humidity in the surrounding atmosphere.
  • Another object of my invention is to provide a method for producing a foil to paper lamination which is resistant to curling over a wide range of relative humidity in the surrounding atmosphere.
  • FIG. 1 is a schematic showing of an apparatus for producing a lamination in accordance with the invention.
  • FIG. 2 is an enlarged view of a portion of the apparatus of FIG. 1.
  • one arrangement for producing a curl 3,098,780 Patented July 23, 1963 ice resistant foil to paper lamination includes a supply roll of metallic foil 10 from which a continuous strip of metallic foil is fed to a bonding material applicator station 12.
  • Foil from supply roll 10 is trained over an upper roll 14 at station 12, roll 14 being in rolling contact with a lower roll 16 which is partially submerged in a tank 18- oontaining the bonding material.
  • Bonding material from the tank 18 is trans ferred from the surface of lower roll 16 to the surface of upper roll 14- from which it is applied to the lower surface of the metallic foil sheet.
  • Coated foil from station 12 and a continuous strip of paper from a paper supply roll 24 are fed between upper and lower pressing rolls 20 and 22. As the foil and paper strips pass between rolls 2t) and 22, they are pressed into firm engagement with each other by the pressing rolls and the bonding material applied to the foil at station 12 bonds the paper and foil into a lamination.
  • the lamination is fed from the pressing rolls to a treating station 25 at which the lamination passes between upper and lower rolls 26 and 28 respectively.
  • Lower roll 28 is formed with a surface of a resilient material such as rubber and is mounted to rotate partially submerged within a bath 30 of treating solution.
  • Upper roll 26 is constructed from steel and is located to exert a cushioned squeezing action on the lamination by pressing the lamination firmly against the rubber surface of roll 28.
  • Rotation of roll 28 in the indicated direction carries treating liquid upwardly into contact with the lower or exposed surface of the paper.
  • a blade 32 extends beneath the path of the lamination to act as a dam which maintains a substantial supply of treating solution in position to be contacted by the paper as it passes between rolls 26 and 28 by trapping treating solution squeezed from the paper as the lamination passes between rolls 26 and 28.
  • the lamination is passed through a drying chamber 34 and from drying chamber 34- to a take-up roll 36.
  • An important feature of the process resides in regulating the moisture content of the paper as it passes on to take-up roll 36.
  • an electronic moisture meter 38 is located to measure the moisture content of the paper as it passes from the drying chamber to the take-up roll. Suitable meters of this type are commercially available; one well-known type measures the moisture content by measuring the electrical resistance through the lamination, the electrical resistance varying with the amount of moisture in the paper.
  • the moisture content of the paper should be between 5% and 7% of the weight of the paper as the lamination is passed from drying chamber 34 to take-up roll 36.
  • the moisture content of the paper at this point may be adjusted by observing the moisture content measured by meter 38 and regulating the speed at which the lamination is moved through drying chamber 34 or by adjusting the temperature within chamber 34.
  • composition of treating solution applied to the paper is deter-mined, at least in part, by the use to which the lamination is to be put. Basically, the treating solution is applied for the purpose of reducing the ability of the paper to take up moisture. Many agents for this purpose are commercially available.
  • Treating solutions which are suitable for use in the above-described process may be divided generally into three types: stabilizers, sizers, and humectants.
  • Each of the three diiferent types of treating agents acts to prevent the paper from taking up moisture in a slightly different manner.
  • the actions of the respective .agents may be distinguished by stating that in general stabilizers chemically combine with the paper in a manner which reduces the volume of space within the paper :where moisture may be received.
  • Sizers act to form a Water resistant coating on the surface of the paper and thus prevent moisture from penetrating into the paper.
  • Humectants in general act to attract the moisture to themselves and prevent the moisture from soaking into: the paper fibers.
  • a foil to paper lamination having satisfactory curl resistant tendencies may be manufactured by a process which includes treatment with an agent falling into any one of the above types.
  • the type of agent eventual-ly selected is one whose effects, aside from its moisture control characteristics, on the finished product are of interest. For example, many sizers impart a certain stiffness or rigidity to the finished product. This property is often desirable where relatively thin or light weight paper stock is employed.
  • the sizing agent would be chosen where stiffness or rigidity in the finished product was desirable. If stiffness is undesira'ble in the finished product, the humcct-ant type agent would probably be chosen.
  • the final moisture content of the paper is easily achieved by drying the lamination after the treating solution has been applied to the paper.
  • Paper stock bonded to a thin aluminum foil was treated in the manner described above with a 10% sugar solution.
  • the treated lamination was dried to a moisture content of 6% and subsequently exhibited satisfactory curl resistant properties when exposed to various humidity conditions.
  • the method of making a foil to paper lamination for use as a label or similar article having improved curl resistant properties when stored in stacks comprising the steps of bonding the paper to the foil, treating the exposed suiface of the paper to reduce the ability of the paper to take up moisture, and subsequently adjusting the moisture content of the paper to between 5 and 7% of the Weight of the paper.
  • the method of making a toil to paper lamination for use as a label or similar article having improved curl resistant properties when stored in stacks comprising the steps of bonding the paper to the foil, treating the exposed surface of the paper with a solution containing a treating agent operable to reduce the ability of the paper to take up moisture, and subsequently drying the lamination to reduce the moisture content of the paper to between 5 and 7% of the weight of the paper.
  • the method of making a foil to paper lamination for use as a label or similar article having improved curl resistant properties when stored in stacks comprising the steps of bonding the paper to the foil, treating the exposed surface of the paper with a solution containing a treating agent operable to reduce the ability of the paper to take up moisture, and subsequently drying the lamination to reduce the moisture content of the paper to sub stantially 6% of the Weight of the paper.

Landscapes

  • Laminated Bodies (AREA)

Description

July 23, 1963 J. N. KRAUSE CURL RESISTANT FOIL TO PAPER LAMINATION AND METHOD OF MAKING SAME Filed Aug. 4, 1958 INVENTOR James [\[Krause Unite This invention relates to metallic foil to paper lamination and processes for producing such laminations, and more particularly to foil to paper laminations which are treated during their manufacture to reduce the tendency of the lamination to curl due to changes in relative humidity in the surrounding atmosphere.
The invention is especially directed toward the production of a lamination consisting of a layer of aluminum fioil which is bonded to a paper backing. Laminations of this type are widely used for labels applied to bottles or packages. During the normal process of manufacturing such labels, the drying of the bonding media also dries or shrinks the paper backing. When the lamination is exposed to the atmosphere, as during storage, the paper picks up moisture from the atmosphere and swells. Since the aluminum foil member of the lamination is dimensionally stable to varying moisture conditions, swelling of the paper backing causes the lamination to curl with the foil on the inside of the curl. If the lamination is not properly dried or left too wet, then it gives off moisture to the atmosphere and the paper member shrinks. This causes the lamination to curl in the opposite direction. This problem is particularly acute where the labels are prepared for use in automatic labeling machinery by cutting the labels to size and storing them in stacks.
Previously, the general practice in the industry has been to dry the completed lamination to a point where the moisture content of the paper backing is between 3 and 4 percent of the weight of the paper backing. This practice has been followed to avoid possible corrosive effects to the foil due to the presence of moisture in the paper. A paper backing having a moisture content of between 3 and 4 percent is in moisture equilibrium with the surrounding atmosphere at relative humidities in the range of approximately to percent. Since this particular range of relative humidity is abnormally low, it is apparent that foil to paper laminations are extremely susceptible to swelling by taking up water from the atmosphere when the l-aminations are exposed to relative humidities which ordinarily vary from between 30 to 80 or 90 percent. The swelling of the paper causes the lamination to curl,
as described above, thus rendering the lamination difficult to handle, and in many cases making the lamination unsuitable for use in labeling machines or other types of equipment.
A primary object of my invention is to provide a foil to paper lamination which is resistant to curling over a wide range of relative humidity in the surrounding atmosphere.
Another object of my invention is to provide a method for producing a foil to paper lamination which is resistant to curling over a wide range of relative humidity in the surrounding atmosphere.
Other objects and advantages of the invention will become apparent by reference to the following specification taken in conjunction with the accompanying drawings.
In the drawings:
FIG. 1 is a schematic showing of an apparatus for producing a lamination in accordance with the invention; and
FIG. 2 is an enlarged view of a portion of the apparatus of FIG. 1.
In the drawings, one arrangement for producing a curl 3,098,780 Patented July 23, 1963 ice resistant foil to paper lamination according to the invention includes a supply roll of metallic foil 10 from which a continuous strip of metallic foil is fed to a bonding material applicator station 12. Foil from supply roll 10 is trained over an upper roll 14 at station 12, roll 14 being in rolling contact with a lower roll 16 which is partially submerged in a tank 18- oontaining the bonding material. Bonding material from the tank 18 is trans ferred from the surface of lower roll 16 to the surface of upper roll 14- from which it is applied to the lower surface of the metallic foil sheet.
Coated foil from station 12 and a continuous strip of paper from a paper supply roll 24 are fed between upper and lower pressing rolls 20 and 22. As the foil and paper strips pass between rolls 2t) and 22, they are pressed into firm engagement with each other by the pressing rolls and the bonding material applied to the foil at station 12 bonds the paper and foil into a lamination.
The lamination is fed from the pressing rolls to a treating station 25 at which the lamination passes between upper and lower rolls 26 and 28 respectively. Lower roll 28 is formed with a surface of a resilient material such as rubber and is mounted to rotate partially submerged within a bath 30 of treating solution. Upper roll 26 is constructed from steel and is located to exert a cushioned squeezing action on the lamination by pressing the lamination firmly against the rubber surface of roll 28.
Rotation of roll 28 in the indicated direction carries treating liquid upwardly into contact with the lower or exposed surface of the paper. To completely flood the exposed surfiace of the paper with treating solution, a blade 32 extends beneath the path of the lamination to act as a dam which maintains a substantial supply of treating solution in position to be contacted by the paper as it passes between rolls 26 and 28 by trapping treating solution squeezed from the paper as the lamination passes between rolls 26 and 28.
From the treating station, the lamination is passed through a drying chamber 34 and from drying chamber 34- to a take-up roll 36.
An important feature of the process resides in regulating the moisture content of the paper as it passes on to take-up roll 36. To measure the moisture content, an electronic moisture meter 38 is located to measure the moisture content of the paper as it passes from the drying chamber to the take-up roll. Suitable meters of this type are commercially available; one well-known type measures the moisture content by measuring the electrical resistance through the lamination, the electrical resistance varying with the amount of moisture in the paper.
In accordance with this invention, the moisture content of the paper should be between 5% and 7% of the weight of the paper as the lamination is passed from drying chamber 34 to take-up roll 36. The moisture content of the paper at this point may be adjusted by observing the moisture content measured by meter 38 and regulating the speed at which the lamination is moved through drying chamber 34 or by adjusting the temperature within chamber 34.
The composition of treating solution applied to the paper is deter-mined, at least in part, by the use to which the lamination is to be put. Basically, the treating solution is applied for the purpose of reducing the ability of the paper to take up moisture. Many agents for this purpose are commercially available.
Treating solutions which are suitable for use in the above-described process may be divided generally into three types: stabilizers, sizers, and humectants. Each of the three diiferent types of treating agents acts to prevent the paper from taking up moisture in a slightly different manner. In a simplified manner, the actions of the respective .agents may be distinguished by stating that in general stabilizers chemically combine with the paper in a manner which reduces the volume of space within the paper :where moisture may be received. Sizers act to form a Water resistant coating on the surface of the paper and thus prevent moisture from penetrating into the paper. Humectants in general act to attract the moisture to themselves and prevent the moisture from soaking into: the paper fibers.
In general, a foil to paper lamination having satisfactory curl resistant tendencies may be manufactured by a process which includes treatment with an agent falling into any one of the above types. The type of agent eventual-ly selected is one whose effects, aside from its moisture control characteristics, on the finished product are of interest. For example, many sizers impart a certain stiffness or rigidity to the finished product. This property is often desirable where relatively thin or light weight paper stock is employed. Thus, assuming that agents of each of the three different types mentioned above of equal effectiveness in reducing the ability of the particular paper in question to take up water were available, the sizing agent would be chosen where stiffness or rigidity in the finished product was desirable. If stiffness is undesira'ble in the finished product, the humcct-ant type agent would probably be chosen.
In order to obtain optimum curl resistant characteristics in the completed lamination, it is necessary to adjust or regulate the moisture content of the paper to tall within the range of between and 7% of the weight of the paper at the completion of its manufacture. This particular range is a departure from previous practice in which the completed lamination is conventionally dried to a moisture content of between 3 and 4 percent of the Weight of the paper. A final moisture con-tent of between 3 and 4 percent has been previously thought desirable in order to assure against possible corrosive eflects to the metallic foil because of the presence of the moisture in the paper. Experience 'has proven that the possibility of corrosion is not increased by any practical extent at rnoisture contents of between 5% and 7% It has been found desirable to achieve .a moisture content of at least 5% in the finished lamination since the tendency of the completed lamination to curl increases at moisture contents below 5%.
Since the treating agent is usually applied in the form.
of a water solution the final moisture content of the paper is easily achieved by drying the lamination after the treating solution has been applied to the paper.
The following examples represent typical practices of the process.
(1) Paper stock bonded to a thin aluminum foil was treated in the manner described above with a 10% sugar solution. The treated lamination was dried to a moisture content of 6% and subsequently exhibited satisfactory curl resistant properties when exposed to various humidity conditions.
(2) Paper stock bonded to thin aluminum foil was treated in the manner described above with a 5% Stab-U- Cel solution. Stab-U-Cel is an organic ester manufactured by the Upson Chemical Corporation. After treatment, the lamination was dried to a final moisture content of 6%. Label stock cut from the treated lamination exhibited satisfactory curl resistant properties when tested over relative humidities ranging from 30 to The curl resistant properties were slightly improved over those obtained in Example 1 above.
(3) Paper stock bonded to: thin aluminum foil was treated With a 1% Aqu-apel solution. Aquapel is manufactured by the Hercules Powder Company and is composed of approximately equal parts of stearic acid and palmitic' acid to which an emulsifying agent is added. After treatment the lamination was dried to a moisture content of 6%. Labels out from this stock exhibited satisfactory curl resistant properties slightly improved over those obtained in Example 2 above when exposed to similar humidities.
It should be emphasized that the foregoing examples are merely representative. Basically, the achievement of a metallic foil to paper lamination having satisfactory curl resistant characteristics is dependent upon the combination of a treatment which reduces ability of the paper to take up moisture combined with a subsequent adjustment of the moisture content of the paper to achieve a moisture content of between 5% and 7% of the weight of the paper, the optimum moisture content being 6%.
The foregoing description is to be considered exemplary rather than limiting, and the true scope of my invention is that defined in the following claims.
I claim:
1. The method of making a foil to paper lamination for use as a label or similar article having improved curl resistant properties when stored in stacks comprising the steps of bonding the paper to the foil, treating the exposed suiface of the paper to reduce the ability of the paper to take up moisture, and subsequently adjusting the moisture content of the paper to between 5 and 7% of the Weight of the paper.
2. The method of making a toil to paper lamination for use as a label or similar article having improved curl resistant properties when stored in stacks comprising the steps of bonding the paper to the foil, treating the exposed surface of the paper with a solution containing a treating agent operable to reduce the ability of the paper to take up moisture, and subsequently drying the lamination to reduce the moisture content of the paper to between 5 and 7% of the weight of the paper.
3. The method of making a foil to paper lamination for use as a label or similar article having improved curl resistant properties when stored in stacks comprising the steps of bonding the paper to the foil, treating the exposed surface of the paper with a solution containing a treating agent operable to reduce the ability of the paper to take up moisture, and subsequently drying the lamination to reduce the moisture content of the paper to sub stantially 6% of the Weight of the paper.
References Cited in the file of this patent UNITED STATES PATENTS 1,719,607 Harvey July 2, 1929 2,321,258 Stamm et a1 June 8, 1943 2,544,146 Erikson Mar. 6, 1951 2,778,760 Hurst Jan. 22, 1957

Claims (1)

  1. 3. THE METHOD OF MAKING A FOIL TO PAPER LAMINATION FOR USE AS A LABEL OR SIMILAR ARTICLE HAVING IMPROVED CURL RESISTANT PROPERTIES WHEN STORED IN STACKS COMPRISING THE STEPS OF BONDING THE PAPER TO THE FOIL, TREATING THE EXPOSED SURFACE OF THE PAPER WITH A SOLUTION CONTAINING A TREATING AGENT OPERABLE TO REDUCE THE ABILITY OF THE PAPER TO TAKE UP MOISTURE, AND SUBSEQUENTLY DRYING THE LAMINATION TO REDUCE THE MOISTURE CONTENT OF THE PAPER TO SUBSTANTIALLY 6% OF THE WEIGHT OF THE PAPER.
US75269358 1958-08-04 1958-08-04 Curl resistant foil to paper lamination and method of making same Expired - Lifetime US3098780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US75269358 US3098780A (en) 1958-08-04 1958-08-04 Curl resistant foil to paper lamination and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US75269358 US3098780A (en) 1958-08-04 1958-08-04 Curl resistant foil to paper lamination and method of making same

Publications (1)

Publication Number Publication Date
US3098780A true US3098780A (en) 1963-07-23

Family

ID=25027380

Family Applications (1)

Application Number Title Priority Date Filing Date
US75269358 Expired - Lifetime US3098780A (en) 1958-08-04 1958-08-04 Curl resistant foil to paper lamination and method of making same

Country Status (1)

Country Link
US (1) US3098780A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536551A (en) * 1966-05-18 1970-10-27 Saint Gobain Method of manufacturing composite laminated resinous sheets
US3865664A (en) * 1973-05-31 1975-02-11 Specialty Papers Co Laminated foil candy wrapper and method of preparing
US3933545A (en) * 1973-06-06 1976-01-20 Imperial Chemical Industries Limited Control of lace production
US4262058A (en) * 1980-03-03 1981-04-14 Reynolds Metals Company Curl resistant label and method of making same
US4604998A (en) * 1984-04-11 1986-08-12 Bellina Joseph H Laser surgery drape
US4851069A (en) * 1984-06-20 1989-07-25 Bird Machine Company, Inc. Process for making tissue-absorbent particle laminates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1719607A (en) * 1928-01-11 1929-07-02 Agasote Millboard Co Steel-coated board
US2321258A (en) * 1940-08-26 1943-06-08 Henry A Wallace Process for making an improved plywood
US2544146A (en) * 1949-03-29 1951-03-06 Arabol Mfg Co Adhesive composition for metal foil to paper laminating
US2778760A (en) * 1954-07-08 1957-01-22 Kalamazoo Vegets Le Parchment Moisture proof heat sealable wrapping material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1719607A (en) * 1928-01-11 1929-07-02 Agasote Millboard Co Steel-coated board
US2321258A (en) * 1940-08-26 1943-06-08 Henry A Wallace Process for making an improved plywood
US2544146A (en) * 1949-03-29 1951-03-06 Arabol Mfg Co Adhesive composition for metal foil to paper laminating
US2778760A (en) * 1954-07-08 1957-01-22 Kalamazoo Vegets Le Parchment Moisture proof heat sealable wrapping material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536551A (en) * 1966-05-18 1970-10-27 Saint Gobain Method of manufacturing composite laminated resinous sheets
US3865664A (en) * 1973-05-31 1975-02-11 Specialty Papers Co Laminated foil candy wrapper and method of preparing
US3933545A (en) * 1973-06-06 1976-01-20 Imperial Chemical Industries Limited Control of lace production
US4262058A (en) * 1980-03-03 1981-04-14 Reynolds Metals Company Curl resistant label and method of making same
WO1981002545A1 (en) * 1980-03-03 1981-09-17 Reynolds Metals Co Curl resistant label and method of making same
US4604998A (en) * 1984-04-11 1986-08-12 Bellina Joseph H Laser surgery drape
US4851069A (en) * 1984-06-20 1989-07-25 Bird Machine Company, Inc. Process for making tissue-absorbent particle laminates

Similar Documents

Publication Publication Date Title
JP4983886B2 (en) Oil-resistant sheet
US3865664A (en) Laminated foil candy wrapper and method of preparing
US3793135A (en) Formable barrier packaging material, process therefor and package thereof
US3098780A (en) Curl resistant foil to paper lamination and method of making same
GB1346481A (en) Method and apparatus for finishing cellulose containing textile materials and textile materials thus produced
US2413129A (en) Method of packing leafy vegetables for shipment
US2409785A (en) Method of producing balsa slices
US2830005A (en) Patterned laminated paper product and method of making same
US3188779A (en) Uniformly humidified paper tape
US1992996A (en) Paper and method of making same
US2975094A (en) Laminated paper
US3717540A (en) Tear tape applicator
ES348888A1 (en) Improvements in or relating to Wood Veneer.
US2156083A (en) Adhesive coated tape
US2920979A (en) Paper sized with fluorocarbon agents on one side and coated on the opposite side with thermoplastic materials
US2215446A (en) Method of treating the butt ends of vegetables
US2659683A (en) Method of preparing high-glaze waxed paper
US3850673A (en) Flexible sheet material
US2338432A (en) Lamination of water-sensitive films
US2038118A (en) Decalcomania paper
US2443222A (en) Process for waxing paper
US1957370A (en) Paper manufacture
US2539183A (en) Method of making mositureesistant paper
US2354073A (en) Roll-leaf and method of making the same
US2969291A (en) Coating process

Legal Events

Date Code Title Description
AS Assignment

Owner name: ATLANTIC RICHFIELD COMPANY, A PA CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ANACONDA COMPANY THE, A DE CORP;REEL/FRAME:003992/0218

Effective date: 19820115