US3083017A - Bowling pin spotting machine - Google Patents
Bowling pin spotting machine Download PDFInfo
- Publication number
- US3083017A US3083017A US835810A US83581059A US3083017A US 3083017 A US3083017 A US 3083017A US 835810 A US835810 A US 835810A US 83581059 A US83581059 A US 83581059A US 3083017 A US3083017 A US 3083017A
- Authority
- US
- United States
- Prior art keywords
- pins
- shaft
- frame
- solenoid
- rack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63D—BOWLING GAMES, e.g. SKITTLES, BOCCE OR BOWLS; INSTALLATIONS THEREFOR; BAGATELLE OR SIMILAR GAMES; BILLIARDS
- A63D5/00—Accessories for bowling-alleys or table alleys
- A63D5/08—Arrangements for setting-up or taking away pins
Definitions
- the present invention relates to a mechanism for setting pins in a bowling alley.
- This frame or rack which holds the pins in their proper relative positions, is lowered to the level of the alley at which point the pins are released and are set in their proper positions.
- An object of this invention is to provide setting mechanism for placing bowling pins in preselected position on a bowling alley upon the movement of a pin setting frame from a dwell position above the alley to a lowermost position adjacent thereto, and for releasing pins during the return upward movement of the frame in the event pins were not properly released from the frame at its lowermost position.
- a still further object of this invention is to provide a machine for setting bowling pins, which is less expensive and more efiicient in operation and construction than other machines for similar purposes.
- FIGURES l and 1A illustrate fragmentary side elevations of continuous portions of the machine.
- FIGURE 2 illustrates a fragmentary side elevation of the other side of the machine as shown in FIGURE 1.
- FIGURE 3 shows a side elevation of the sweep mechanism partially shown in FIGURE 1A.
- FIGURE 4 illustrates a front fragmentary elevation of the sweeping element shown in FIGURE 3.
- FIGURE 5 is a fragmentary sectional top view taken substantially along the line 5-5 of FIGURE 1 and FIGURE 1A.
- FIGURE 6 is a front elevation of the hopper element.
- FIGURE 7 is a top plan view of the hopper element.
- FIGURE 8 is a top fragmentary plan view of the rack or frame.
- FIGURES 9 and 10 are fragmentary side elevations of portions of the frame or rack shown in FIGURE 8.
- FIGURE 11 is a fragmentary plan view of the conveyor mechanism.
- FIGURE 12 is a fragmentary plan view of a solenoid operated clutch mechanism.
- FIGURE 13 is a schematic diagram of the electrical system.
- FIGURE 14 is a schematic view of a detail of FIG- URE 13.
- FIGURE 15 is an end partial sectional view of the elevator mechanism.
- This machine is installed at the end of a bowling alley with a portion of the machine in and over the pit and over the end of the alley adjacent the pit.
- a continuously operating conveyor mechanism, generally designated 1 (FIGURE 11) is positioned at the bottom of the pit for conveying balls and pins which have fallen 01' been cleared into the pit rearwardly to an elevator device.
- Ihis conveyor device comprises two pairs of rollers '2 and 3 keyed to the shafts 4 and 5.
- the shafts 4 and 5 are respectively journalled in the bearings 10 and 11 and 12 and 13 which in turn are fixed to the frame members 14.
- a fabric conveyor belt 6 is fixed about these rollers and rotates with them.
- this fabric belt 6 On the inner laps of this fabric belt 6 extending longitudinal of the belt at its center is sewn or otherwise suitably secured a V- shaped belt 7.
- This belt extends around the pulley wheels or sheaves 8 and 9 which are axially mounted on and keyed respectively to the shafts 4 and 5.
- the conveyor is continuously rotated with the upper side moving to the rear of the pit through the sprocket 15 and driving chain 16. During this operation the belt 6 is held in position by the V-shaped belt 7 and will not slip or ride from one end of the shafts towards the other as very often happens in short conveyor belts.
- an elevator system (FIG- URE 15) generally designated 17.
- This elevator device has a horizontal section 18, an inclined section 19 and a vertical section 20 formed by the opposite angle mem bers 21 and 22 (FIGURE 5).
- a pair of continuous conveyor chains 23 and 24 extend through the sections 18, 19 and 20 around three pairs of sprockets 2S and 26 and 27 on each of the side walls 21 and 22. These chains are guided respectively by the channel members 29 and 30 with the sections of each chain moving in opposite directions separated by the partition 31.
- the opposite chains 23 and 24 are joined together at intervals somewhat longer than the length of a bowling pin by a series of parallel bars 32 which are used to raise the balls or pins which fall onto the elevator.
- This elevator device is open at is lower and inclined sections 18 and 19 respectively so that pins and balls may readily fall onto them from the conveyor belt, the end of which is adjacent and at a slightly higher level than the section 18.
- a plurality of cross members 33 secured across the face of the elevator from one side wall 21 to the other 22 retain in position a plurality of vertical leaf springs 34 which hold the upwardly moving pins and balls in position. Two springs have been found to operate satisfactorily in this device.
- the lower spring element should be bent slightly inwardly at its upper end 35 while the upper spring should be bent slightly outwardly at its lower end as.
- a container 37 having an inclined bottom is secured to the inner face of the elevator to receive the falling balls as they fall from the elevator.
- a tube 38 is provided at one side of this container to convey the balls from the container to a return chute (not shown).
- the chains 23 and 24 are continuously rotated in synchronism through a drive chain 39 extending around a sprocket wheel (not shown) which is med to the shaft 28' on which is also fixed the pair of sprocket Wheels 27
- a hopper mechanism generally designated 41 (see FIGURES 6 and 7).
- This hopper comprises an elongated container having rear and front walls 42 and 3 43 respectively with a series of nine vertical compartment walls 44 parallel with the end walls 47 and 48 forming compartments 52 sulficiently wide and long to receive bowling pins.
- compartment walls 44 extend between the rear and front walls 42 and 43 from a point adjacent the middle of the walls downwardly to a point substantially below the lower edge of the walls.
- the end of this hopper, at which point the pins from the vertical section 26 of the elevator enter, is provided with an opening 49 in an inclined bottom section 50, with the lowest edge .of the bottom section on a level with the top of the compartments 52.
- a spring member 51 secured to the wall 42 extends over the opening 49 and a portion of the inclined bottom 56', so that as the pins are conveyed upwardly through the opening 49, the leaf spring 51 will turn the pins on-their side and permit them to roll down the inclined bottom 56 towards the compartments 52.
- a pair of parallel shafts 53 and e A pair of opposite sprockets 57 and 58 on shafts 53 and V V 54 respectively have fixed about them the chains 59 and 643. At uniform intervals along these chains are fixed a series of fingers 61'. These fingers 61 should bespaced apart a distance equal to one third the distance between the parallel bars 32 and should have a height sufficient to contact the bowling pins as they roll down the inclined bottom 50 to carry them along until they fall into an open compartment 52.
- These chains 59 and 66 are continuously rotated with the lower half of the chain moving away from the opening 49 in the hopper 41 by means of a driving chain 61 which engages the sprocket wheel 62 on the shaft '53.
- the driving chain 61 is in turn driven from a common operating source to be described.
- the compartments 52' are formed with a depth preferably equal to the thickness of two bowling pins.
- the lower end of each of these compartments is normally closed by cradle elements 63.
- Each of these cradle elements has a bottom 64 'of a section of a cylindrical shell of somewhat less than 180 with end members 65 and 66 at either end of the cylindrical section or bottom 64.
- Each of these cradles is axially supported by shafts 67 and68 extending from the end members 65 and 66 respectively.
- Shafts 67 are journalled in bearings 69 in the wall42,
- the common bar 71 is operatively connected to a gear box 72 from which a rotatable shaft 73 projects.
- Fixed to the end of this rotatablesha-f-t is one end of a lever arm 74 which hinged at its other end an'elon'gated link or arm 75.
- This extended lever bar 75 is slidably secured by clamps or clips 79 in face to face relation to an end section of the arm 76 which in turn is hinged at its other end '77 to the common operating bar 71 through a joint member 78.
- a projection 80 on the extended bar 75 and a projection 81 on the bar 76 have fixed to them the ends of a spring 82 which tensions the bars 75 and 76 to slide into a greater face to face relationship.
- the projection 89 acting with the end of the bar 76 holds the spring under continuous tension and limits the relative movement of the bars 75 and 76.
- the shaft 73 begins a single complete rotation.
- the lever arm 75 is moved to the left, and as the spring 82 is sufiiciently strong to move the bar 76 with the movement of the arm 75 under normal conditions the bar 76 will also move to the left.
- the common operating bar 71 which is hinged to the bar 76 will then also be moved to the left rotating each of the cradles somewhat more than 180.
- the spring mechanism joining the bars 75 and 76 together will prevent any overloading or damage caused by this jamming.
- the cradles 63 and operating arm 71 will be restrained from their normal reciprocating motion.
- the bar 75 operated by the shaft 73 will, however, continue to reciprocate in its normal fashion. As this bar 75 reciprocates and the bar 76 is restrained, the two bars will slide apart against the tension of the spring 82.
- the bar 75 Upon continued rotation of the shaft 73, the bar 75 will return to its normal closed position releasing the additional tension on the spring -82 and returning the shaft 76, the op- 'erating arm 71 and the cradles to their original position. In this return motion the pin which may have been jammed will be released with no damage to the machine. When such a jamming occurs, however, there will normally be no delivery of pins from the hopper because the cradles cannot rotate sufliciently to clear the lowermost pins. This will not, however, aifect the subsequent operation of the machine.
- This gear box 72 from which the operating shaft 73 extends is fixed on a platform 83 which is secured to the outer side of the wall 43 of the hopper.
- This gear box is driven from a shaft 84 journalled in bearings 84' and 85 on Wall sections 86 and 87' respectively and having positioned on it a single revolution clutch mechanism 85 which is engaged for a single revolution of the shaft 84 by activating the solenoid 86.
- the spring 88 and lever 89' normally tension the clutch mechanism 85 in an inoperativeposition. Operation of the solenoid 86 will be described later in connection with the electrical system.
- a continually rotating power belt 87 fixed at one end about the sprocket 88 on the shaft 84 and at the other end fixed about the sprocket 89 on the shaft 90 supplies a continuous source of power to the shaft 84 and is operasprocket 94 on the shaft 90.
- Beneath the compartments on this shaft is a roller 95 which continuously rotates in a direction which will carry pins falling :onto it towards the frame or rack element 1122 to be described through chutes.
- the shafts 100 and 101 are also driven in the same direction in a like manner through the chains 102 and 103 through the sprocket wheels 104 and 105 respectively.
- On the shafts 98, 100 and 101 beneath the compartments are fixed rollers 106 and 107 and 108 all parallel to and operating in the same direction as the roller 95.
- Each of the lower ends of the compartments is aligned with a single chute which leads to one of ten different positions on the frame or rack 122 in the proper positions of a ten pin set-up.
- These chutes may be seen in FIGURES 1 and 1A and are indicated in dotted outline in FIGURE 5 as 109 to 118.
- the chutes which are inclined downwardly from the hopper are fixed at their lower end to the platform 119 over openings 120 in the platform.
- each of the chutes may be provided with a series of roller bearings 119 (FIGURE 41A).
- a band 121 is provided to prevent the pins from shooting beyond the open end of the chutes.
- the frame or rack 122 Positioned beneath the platform L19 to receive the pins as they come off their respective chutes and to lower them into position on the bowling alley is the frame or rack 122 (see FIGURES 1A and 8).
- This rack is provided with ten steel rod receptacles 123 each positioned to project through one of the openings 120 in the platform 1'19 and shaped to receive within it a pin as it falls from the chute.
- Each of these receptacles is formed of a series of bent rod loops 124 positioned to form substantially cylindrical holders designed to hold the pins upright.
- a pair of vertical shafts 125 and 126 fixed in the brackets 127 and 128 respectively at their lower end and extending through the platform 119 and sleeves 129 on the platform act as guides for the vertical movement of the frame or rack.
- This frame 122 is supported and raised and lowered by three chains 130, 131 and 132 fixed respectively to the brackets 133, 134 and 135 which are in turn fixed to the frame or rack 122.
- These chains extend upwardly through openings in the platform 119 over bearing rollers 136, 137 and 138 respectively and are secured at their other ends to windlasses 139, 140 and 141 (see FIGURE 5).
- the windlasses 139, 140 and 141 are each fixed to the shaft 142 which is supported on the platform 11-9 by bearings 143 and 144.
- This shaft is rotated for raising and lowering the frame or rack 122 in a pre-selected sequence, to be described, by means of a driving chain 145 which at one end extends over the sprocket wheel 146 fixed to the shaft 142 md at the other end over the sprocket wheel 147 which is fixed to the shaft 148.
- the shaft 148 in turn is driven from a gear box 149, which in turn is driven from the driving shaft 259 through the beveled gears 151.
- a Windlass 156 is also attached to this shaft 142 with one end of the chain 152 winding around it.
- This chain 152 extends over a pair of pulleys 153 and 154 and under the sprocket wheel 155 with its other end fixed to the counterweight 191 (FIGURE l).
- the sprocket 155 is mounted on the same shaft 259 as is one of the beveled gears 151.
- each receptacle 123 is open except for the projecting tongues 157 formed by the ends of the bars *158-167.
- These bars 158167 are connected in a network by cross members 168, 169 and 172 with member 168 secured to bars 158, 159 and 160, member 169 secured to bars 161, 162 and 163 and also joined to cross member 168 by means of bars 170 and 171, and with the cross member 172 secured to bars 164, 165, i166 and 167 and also connected to cross member 169 by bars 173 and 174.
- This network is supported in a longitudinal slidable position relative to the frame 122 by brackets 133, 173' and 174.
- the tongues 157 are held in the openings to prevent pins falling into the receptacles from passing through the openings by a latch arrangement shown in FIGURE 9 in which a bar 178 is hinged at one end to a hinge element 179.
- a downwardly extending projection .180 from the element 178 contacts the cross bar member 169 and holds the tongues 157 in the openings of the receptacles against the tension of the spring 175.
- the upper projecting arm 182 is positioned to come into contact with the adjustable screw stop 186 positioned on the platform 119. Also attached to the upper portion of the shaft 125 is one end of an inverted L-shaped support 187 with a lever arm 188 pivotally supported at its other end.
- the lever arm 188 has one end normally projecting under the projecting arm 182 and the other end extending beyond the fiange portion 189 of the upwardly extending fixed element 190.
- the tongues 157 will be pulled by the spring from the openings at the bottom of the receptacles in the manner previously described. Thus, the pins will be released, preventing possible damage to the mechanism by a jamming :of the pins in the chutes.
- lever 188 since the lever 188 is attached to support 187, it cannot operate to raise the release lever 178 on the downward movement of rack 122. This is so because, during the downward movement of rack 122 (from the position shown in FIG. 1A), the lever 188 will strike the upper surface of flange 189 and pivot clockwise, remaining in a substantially vertical position while passing flange 189, so that its end 193 is lowermost and out of engagement with the projection of 182. It is only on the upper movement of the rack 122 that lever 188 is operatively engaged with flange 189 so that it is pivoted counterclockwise, bringing its end 193 into engagement with projection 182 in order to raise lever 178.
- a bracket 194 Fixed to the rack 122 is a bracket 194 to which is supported and pivoted a lever arm 195 (see FIGURE).
- One leg 196 of this lever arm has fixed to its end a roller 197 positioned between two upwardly extending studs 198 and 199 secured to bar 162.
- the outer leg 200 of the lever 195 projects angularly upwardly and also has pivoted at its end a roller 201.
- the roller 201 contacts the lower side :of the plate 119 or, if desired, an'extension from the plate, and as the rack continues to move upwardly the roller 201 rolls along the lower side of the platform 119 causing the roller 197 at the other end of the lever 195 to move the bar 162 in the direction of the arrow A.
- This movement of the bar 162 will carry the entire network of bars in the same direction, with the tongues 157 moving back into the openings of the receptacles 123.
- the bar 169 will also move forward until the projection 180, which has been raised above the bar 169 and thereby released from contact with it, is free to again drop behind the bar 169 and hold it against the tension of the spring 175, thus holding the tongues 157 in the openings at the bottom of each receptacle against the tension of the spring.
- FIGURES 1A, 3, 4 and 5 Illustrated in FIGURES 1A, 3, 4 and 5 is a sweep mechanism for clearing the alley of pins and balls before the next set is put into position and also for protecting the frame when it is lowered.
- a clearing bar 202 sufficiently wide to extend over the alley is supported at either end by'brackets 3 which are in turn hinged at 204 to the carrier arms 205.
- Inwardly extending bosses 204' on each carrier arm contact the brackets 203 and thereby limit the rotation of the clearing bar 202.
- At the other end of the carrier arms 205 are fixed rotatable bearing wheels 206 which are guided in channel members 207 and 208.
- channel members are in turn fixed to side supporting beams 209 and 210 which extend from a point over the bowling alley pit to a point bey-ond'the positions at which the pins will beset on the alley.
- the forward ends of these channels are arcuately curved upwardly and are secured to an extension 211 formed at the forward end of each of the channels 208 and 210.
- the carrier arm 205 is reciprocated along the channel members 207 and 208 by a conveyor chain 212 which is fixed to the carrier arm 205.
- This conveyor chain extends around the sprockets 213 and 214 at either end of the channels 207 and 208.
- One half of the conveyor chain 212 extends around the outside and bottom of the.
- channel 208 and the other half of the chain 212 extends around the outside of the channel 207.
- Idler sprockets 215 and 216 also engage the chain 212, with sprocket 216 being rotatably supported on one end of arm 217 which is pivoted at its other end to the extension 218 topermit adjustment of the tension on the chain 212.
- the motor 219 (see power source for the various operating elements heretofore described.
- a continuously rotating shaft 220 from the motor is connected to the gear reduction box 221. From this box, a shaft 222 rotates the sprocket wheel 223 about which one end of the chain 224 extends.
- FIGURES 1, 2 and 5 acts as a On its return, the clearing bar stops just beother end of this chain 224 extends around the sprocket wheel 225 which is mounted on the shaft 226.
- This continuously rotating shaft 226 is mounted in bearings 227 and 228.
- a sprocket wheel 229 At one end 'of the shaft 226 is fixed a sprocket wheel 229 over which the chain 230 extends.
- the chain 230 in turn extends about and rotates the sprocket 231 fixed to the shaft 232.
- This shaft 232 is journalled in bearings 233 and 234 and 235.
- Also fixed to the shaft is a beveled gear 236 within the casing 237.
- the beveled gear 236 drives the beveled gear 238 which is fixed to the end of the shaft 239.
- the shaft 239 journalled in bearings 240 and 241 and 242 has fixed to it a sprocket wheel 243 at its far end.
- the sprocket wheel 243 in turn drives the chain 16 which, as previously mentioned, supplies operative power to the conveyor belt system in the pit.
- Also fixed to the shaft 232 is the sprocket wheel 244 which drives the chain 39 which in turn supplies power to the elevator mechanism in the manner previously de scribed.
- a slip clutch may be positioned on the shaft 232 to prevent overloading. Also fixed to the shaft 232 is a sprocket 246 which drives the chain 61 for operation of the hopper as previously described. 7
- a beveled gear 247 which drives the beveled gear 248 fixed to the end of shaft 250 in the solenoid operated clutch box generally designated 251 (see FIGURES 5 and 12).
- a sprocket wheel 252 (FIGURE 5) which drives the chain 93 which extends at its other end about the sprocket wheel 94 (FIGURE 2). This in turn continuously rotates the rollers 95, 106, 107 and 108, in the manner previously described.
- Clutch elements 266, 267,. 268 and 269 all journalled on the shaft 250 operatively and respectively engage the gears .254 and 255 and the sprockets 260 and 261 with the continuously rotating shaft 250 when the two halves of the respective clutches are thrown into engagement.
- the driving section and driven section of these clutches are engaged and disengaged by means of solenoids 270, 271, 272 and 273 which are fixed to the top of the clutch box with their armatures tensioned outwardly by springs 274, 275, 276 and 277 ("FIGURE 5) with the springs 274 and 276 fixed at one end to the post 278 and springs 275 and 277 fixed at one end to the post 279.
- each of these solenoids carries a downwardly extending arm (not shown) through a slot (not shown) in the top of the clutch box with the end of the arm engaged in a groove of one half of the clutch, whereby the clutches are disengaged until their respective solenoids are activated.
- the shaft 258 will turn in one direction, and on engagement of the sprocket wheel 260' by its solenoid 272, the shaft 258 will turn in the opposite direction.
- the shaft 259 upon engagement of either the gear 255 with shaft 250 by action of solenoid 271 or sprocket wheel 261 by itssolenoid 273 clutch or sprocket wheel and chain mechanism will rotate in one direction or the other respectively.
- the shaft 258 extends through one side of the solenoid box 251 and is supported in the bearing 280 '(FIGURE 5) and has fixed at its end thesprocket wheel 281.
- the sprocket wheel 281 (see FIGURE 2) carries the chain 282 which in turn rotates the sprocket wheel 283.
- This sprocket wheel 283 is mounted on the end of the shaft 284 shown in dotted outline in FIGURE 5, which also has mounted on it the sprockets214 for driving the chains 212.
- the chains 212 in turn move the sweep mechanism previously described forward and back in a pro-selected sequence which will later be described.
- the shaft 259 extends through the other side of the solenoid box 251 and has secured to it the beveled gear 151' and the sprocket wheel 155 for raising and lowering the rack mechanism in a sequence to be described.
- the reason for using both a counterweight system and a gear system for raising and lowering the rack is that the counterweight system reduces power requirement.
- the gear system is also used to eliminate slippage when the clutch in the clutch box is disengaged due to the uneven balance between the counterweight and the rack as pins are received or released.
- FIGURE 13 illustrates the electrical system which controls the sequence of operation of this machine in which the sweep first moves down to the level of the alley and rearwardly clearing the pins and balls from the alley into the pit and then moves back towards its original starting position stopping just beyond the position of the head pin.
- the rack element descends to the bowling alley and releases the pins in their proper position.
- the rack then moves back up and when it reaches its up position, the sweep continues back to its original position.
- a new set of pins are released from the hopper which is being continuously supplied with pins cleared from the pit.
- the apparatus is ready for another complete cycle.
- the circuit through the solenoid 272 is opened and a circuit is completed through the line 293, the line 292, the contact 300, the line 301, the solenoid 270, the line 288 and the line 287, activating the solenoid 270 which engages the clutch 266 reversing the direction of the sweep.
- the microswitch 297 should be located so that the sweep will be reversed at a point just over the edge of the pit.
- the microswitch 303 On the return of the sweep (diagrammatically shown in FIGURE 13 at 302) the microswitch 303 is closed. This completes a circuit with the current passing through the line 391 to the line 304, the microswitch 303, the line 306, the line 298, the solenoid 290, the line 288 and the line 287, thus again activating the solenoid 290.
- the solenoid 290 then rotates the rotary switch 294 to its next position closing contact 307.
- a circuit is then completed through the line 293, the contact 307, the line 309, the solenoid 27-1 and the line 287, thus activating the solenoid 271.
- the solenoid 271 engages the clutch '267 and thereby lowers the rack or frame 122.
- the pins are released in the manner previously described.
- the microswitches 310 and 311 are closed by the downward movement of the rack.
- a circuit is completed through the lines 287, 288, the solenoid 290, the line 298 and the line 312, the microswitch 311, the line 309, contact 307 and the line 293; thus activating the solenoid 290 which in turn moves the rotary switch 294 to its next position closing contact 313.
- the solenoid 273 is energized by the circuit through lines 293 and 292, the contact 313, the line 314, the microswitch 310, the solenoid 273 and the line 287.
- the solenoid 270 is also activated by the closing of contact 313 which completes the circuit through lines 293 and 292, the contact 313, the line 314 and the 'lines 315 and 316. Solenoid 273, when activated, engages the clutch 269 which raises the rack previously lowered and at the same time solenoid 270 reengages the sweep mechanism which had been stopped just beyond the frame when it was being lowered and continues the movement of this sweep back to its original position. When the frame or rack reaches its up position, microswitch 3 10 is opened and the solenoid 273 is de-energized stopping the upward motion of this frame.
- the solenoid 290 When the sweep in its continued movement back to its original starting position hits the microswitch 317, the solenoid 290 is energized through the circuit, including the line 293, the line 292, the switch 313, the line 314, the line 315, the line 318, the switch 317, the line 319, the line 298, the solenoid 290, the lines 288 and 287, moving the rotary switch 294 to close the contact 321.
- the solenoid 86 (see FIGURE 6) is then activated through the circuit including the lines 293 and 292, the contact 321, the line 322, the solenoid 86 and the line 287.
- This solenoid '86 engages a single revolution clutch '85 as previously described which in turn causes a single set of pins to drop from the hopper.
- the microswitch 323 is then momentarily closed, completing a circuit through the lines 293 and 292, the contact 321, the line 322, the microswitch 323, the line 298, the solenoid 290, and the lines 288 and 287, by the movement of lever 74 on shaft 73 as the latter rotates thus again activating the solenoid 290 which rotates the rotary switch 294 back to its original position closing the contact 325.
- the microswitch 323 which is normally spring tensioned in an open contact position is then disengaged and the apparatus is ready for another complete cycle.
- a counterweight 326 is secured to an extension on one of the shafts 67 to insure positive action in the closing of the cradle or gate elements 63.
- a stop 327 is secured to the top of the frame or rack 122 to limit the upward motion of the frame 122 when the stop comes into contact with the lower side of the platform 119.
- a pair of rollers 328 having their supports secured to the frame 122 may contact the elements 173 and 174 for additional control of the opera tion of the bars 158 to 167.
- a bowling pin setting machine for setting bowling pins in a pre-selected position on a bowling alley comprising, a frame having means for receiving a plurality of pins in an upright pre-selected spaced relation, means for lowering and raising the frame to and from the level of the alley, gate means for retaining said pins in said frame, first means normally operable upon the downward movement of said frame for releasing said gate means, and second means efiectively located at a point along the vertical path of travel of said frame above the effective position of said first means operable only upon the upward movement of said frame for releasing said gate means.
- means for setting bowling pins in a pre-selected position on a bowling alley comprising, a frame having a plurality of spaced receptacles for receiving pins, said receptacles having bottom elements adapted to be opened for releasing said pins in an upright position, means for lowering and raising the frame to and from the level of the alley, first means for normally opening said bottom elements when the frame is at a low position, and second means effectively located along the vertical path of travel of said frame above the effective position of said first means operable only upon the upward movement of said frame for opening said bottom elements.
- means for setting bowling pins in a pre-selected position on a bowling alley r 1 1 r 1 2 comprising, a'frame having a plurality of spaced recep-' means operable only upon the upward movement of said tacles for receiving pins with the bottom of said recepframe for retracting said tongues.
Landscapes
- Branching, Merging, And Special Transfer Between Conveyors (AREA)
Description
March 26, 1963 w. BiLOWZ BOWLING PIN SPOTTING MACHINE Original Filed Jan. 4, 1954 '7 Sheets-Sheet 1 R. Z VI wwk rc m wJ n 11. WA 3 March 26, 1963 w. BILOWZ BOWLING PIN SPOTTING MACHINE Original Filed Jan. 4, 1954 7 Sheets-Sheet 2 w. T N m z o w w m m Bur M a e 1T. 7 Q 0 V. B 8- gVON March 26, 1963 w. BlLOWZ 3,
BOWLING PIN SPOTTING MACHINE Original Filed Jan. 4, 1954 7 Sheets-Sheet :5
I 2 ILS u llglf: 1:6 1:7 is
IN V EN TOR.
BY Mah er 51100.12
&
ATTORNEY March 26, 1963 w. BILOWZ 3,083,017
BOWLING PIN SPOTTING MACHINE Original Filed Jan. 4, 1954 7 Sheets-Sheet 4 o l ,4 57 5a 59 v52 53 66 57 56 as ea 6| 56 43 50 73- 4 I 2 I 75 z 62 91 as 8 I a s5 88 3 F- 7 95 96 INVENTOR.
ATTORNEY March 26, 1963 w. BILOWZ 3,083,017
BOWLING PIN SPOTTING MACHINE Original Filed Jan. 4, 1954 7 Sheets-Sheet 5 IN V EN TOR.
By Walter 5110101 7.417 M ATTORNEY Margh 26, 1963 w. BILOWZ 3,0
BOWLING PIN SPOTTING MACHINE Original Filed Jan. 4, 1954 7 Sheets-Sheet 6 IN V EN TOR.
M/ai tar .Bzlowz ATTO NE'Y March 26, 1963 w. BlLOWZ BOWLING PIN SPOTTING MACHINE Original Filed Jan. 4, 1954 7 Sheets-Sheet 7 FIG. 11;
Walter BY United States Patent 3,083,017 BOWLING PEN SPOTTIN G MACHINE Waiter Biiowz, Maiden, Mass, assignor to American Machine & Foundry Company, New York, N.Y., a corporation of New .Iersey Original application Ian. 4, 1954, Ser. No. 401,858, new Patent No. 2,962,284, dated Nov. 29, 1960. Divided and this application July 22, 1959, Ser. No. 835,810
3 Claims. (Cl. 273-43) The present invention relates to a mechanism for setting pins in a bowling alley.
This application is a division of application Serial No. 401,858, filed January 4, 1954, and now Patent No. 2,962,284.
It is an object of this invention to provide an automatic mechanism operated by a bowler for clearing bowling pins and balls from the alley into a pit, from which the pins are conveyed to a hopper device, which in turn automatically distributes them to individual compartments from which ten pins are simultaneously released and conveyed to a frame or rack. This frame or rack, which holds the pins in their proper relative positions, is lowered to the level of the alley at which point the pins are released and are set in their proper positions.
An object of this invention is to provide setting mechanism for placing bowling pins in preselected position on a bowling alley upon the movement of a pin setting frame from a dwell position above the alley to a lowermost position adjacent thereto, and for releasing pins during the return upward movement of the frame in the event pins were not properly released from the frame at its lowermost position.
A still further object of this invention is to provide a machine for setting bowling pins, which is less expensive and more efiicient in operation and construction than other machines for similar purposes.
These and other objects and advantages of the present invention will be more clearly understood when considered in connection with the drawings in which:
FIGURES l and 1A illustrate fragmentary side elevations of continuous portions of the machine.
FIGURE 2 illustrates a fragmentary side elevation of the other side of the machine as shown in FIGURE 1.
FIGURE 3 shows a side elevation of the sweep mechanism partially shown in FIGURE 1A.
FIGURE 4 illustrates a front fragmentary elevation of the sweeping element shown in FIGURE 3.
FIGURE 5 is a fragmentary sectional top view taken substantially along the line 5-5 of FIGURE 1 and FIGURE 1A.
FIGURE 6 is a front elevation of the hopper element.
FIGURE 7 is a top plan view of the hopper element.
FIGURE 8 is a top fragmentary plan view of the rack or frame.
FIGURES 9 and 10 are fragmentary side elevations of portions of the frame or rack shown in FIGURE 8.
FIGURE 11 is a fragmentary plan view of the conveyor mechanism.
FIGURE 12 is a fragmentary plan view of a solenoid operated clutch mechanism.
FIGURE 13 is a schematic diagram of the electrical system.
FIGURE 14 is a schematic view of a detail of FIG- URE 13.
FIGURE 15 is an end partial sectional view of the elevator mechanism.
This machine is installed at the end of a bowling alley with a portion of the machine in and over the pit and over the end of the alley adjacent the pit. A continuously operating conveyor mechanism, generally designated 1 (FIGURE 11) is positioned at the bottom of the pit for conveying balls and pins which have fallen 01' been cleared into the pit rearwardly to an elevator device. Ihis conveyor device comprises two pairs of rollers '2 and 3 keyed to the shafts 4 and 5. The shafts 4 and 5 are respectively journalled in the bearings 10 and 11 and 12 and 13 which in turn are fixed to the frame members 14. A fabric conveyor belt 6 is fixed about these rollers and rotates with them. On the inner laps of this fabric belt 6 extending longitudinal of the belt at its center is sewn or otherwise suitably secured a V- shaped belt 7. This belt extends around the pulley wheels or sheaves 8 and 9 which are axially mounted on and keyed respectively to the shafts 4 and 5. The conveyor is continuously rotated with the upper side moving to the rear of the pit through the sprocket 15 and driving chain 16. During this operation the belt 6 is held in position by the V-shaped belt 7 and will not slip or ride from one end of the shafts towards the other as very often happens in short conveyor belts. After the pins have fallen onto this belt 6 and have been carried rearwardly, they are deposited in an elevator system (FIG- URE 15) generally designated 17. This elevator device has a horizontal section 18, an inclined section 19 and a vertical section 20 formed by the opposite angle mem bers 21 and 22 (FIGURE 5).
A pair of continuous conveyor chains 23 and 24 extend through the sections 18, 19 and 20 around three pairs of sprockets 2S and 26 and 27 on each of the side walls 21 and 22. These chains are guided respectively by the channel members 29 and 30 with the sections of each chain moving in opposite directions separated by the partition 31.
The opposite chains 23 and 24 are joined together at intervals somewhat longer than the length of a bowling pin by a series of parallel bars 32 which are used to raise the balls or pins which fall onto the elevator. This elevator device is open at is lower and inclined sections 18 and 19 respectively so that pins and balls may readily fall onto them from the conveyor belt, the end of which is adjacent and at a slightly higher level than the section 18. In the vertical section (FIGURES 1 and 15) a plurality of cross members 33 secured across the face of the elevator from one side wall 21 to the other 22 retain in position a plurality of vertical leaf springs 34 which hold the upwardly moving pins and balls in position. Two springs have been found to operate satisfactorily in this device. However, depending upon the height of vertical section 20, more springs may be provided, if desired. In the vertical section 20, an opening 27 somewhat larger than the size of a ball is provided between two adjacent leaf springs to allow the balls to fall out of the elevator; but the pins, because of their length, will continue in their upward movement in the elevator.
To insure this proper operation, the lower spring element should be bent slightly inwardly at its upper end 35 while the upper spring should be bent slightly outwardly at its lower end as. A container 37 having an inclined bottom is secured to the inner face of the elevator to receive the falling balls as they fall from the elevator.
A tube 38 is provided at one side of this container to convey the balls from the container to a return chute (not shown). The chains 23 and 24 are continuously rotated in synchronism through a drive chain 39 extending around a sprocket wheel (not shown) which is med to the shaft 28' on which is also fixed the pair of sprocket Wheels 27 As the pins are carried upwards to the top of the elevator, they enter a hopper mechanism generally designated 41 (see FIGURES 6 and 7). This hopper comprises an elongated container having rear and front walls 42 and 3 43 respectively with a series of nine vertical compartment walls 44 parallel with the end walls 47 and 48 forming compartments 52 sulficiently wide and long to receive bowling pins. These compartment walls 44 extend between the rear and front walls 42 and 43 from a point adjacent the middle of the walls downwardly to a point substantially below the lower edge of the walls. The end of this hopper, at which point the pins from the vertical section 26 of the elevator enter, is provided with an opening 49 in an inclined bottom section 50, with the lowest edge .of the bottom section on a level with the top of the compartments 52. A spring member 51 secured to the wall 42 extends over the opening 49 and a portion of the inclined bottom 56', so that as the pins are conveyed upwardly through the opening 49, the leaf spring 51 will turn the pins on-their side and permit them to roll down the inclined bottom 56 towards the compartments 52.
54 journalled at their ends in the bearing members 55 and 56 respectively fixed on these walls 42 and 43.
Above the compartments 52 at either end of the hopper are positioned a pair of parallel shafts 53 and e A pair of opposite sprockets 57 and 58 on shafts 53 and V V 54 respectively have fixed about them the chains 59 and 643. At uniform intervals along these chains are fixed a series of fingers 61'. These fingers 61 should bespaced apart a distance equal to one third the distance between the parallel bars 32 and should have a height sufficient to contact the bowling pins as they roll down the inclined bottom 50 to carry them along until they fall into an open compartment 52. These chains 59 and 66 are continuously rotated with the lower half of the chain moving away from the opening 49 in the hopper 41 by means of a driving chain 61 which engages the sprocket wheel 62 on the shaft '53. The driving chain 61 is in turn driven from a common operating source to be described. The compartments 52' are formed with a depth preferably equal to the thickness of two bowling pins. The lower end of each of these compartments is normally closed by cradle elements 63. Each of these cradle elements has a bottom 64 'of a section of a cylindrical shell of somewhat less than 180 with end members 65 and 66 at either end of the cylindrical section or bottom 64. Each of these cradles is axially supported by shafts 67 and68 extending from the end members 65 and 66 respectively. Shafts 67 are journalled in bearings 69 in the wall42,
while shafts 68 are journalled in the wall 43. The shafts 68, which extend beyond the wall 43, each have fixed at their ends lever arms 70 parallel with one another. Each of these parallel lever arms 70 is hinged at its upper end 72' to a common operating bar 71. This common operating bar may be reciprocated to pivot the cradles 63 in unison through an arc of somewhat more than 180. The operation of conveyors 59 and 60 and fingers 61' is such that bowling pins are fed progressively into the compartments 52. In the structure illustrated herein, the pins are fed into the compartmentSZ nearest bottom section 5! As soon as this compartment is filled, the next two pins are moved over the top pin in the filled compartment and delivered into the adjacent'unfilled compartment. This operation continues until all compartments are filled. It will be seen that at all times there is i an ample supply of pins in compartments 52 awaiting delivery to the spotting rack 122. I 1
In the operation of this common operating bar 71, in .its proper sequence which will be described later, the ten lowest pins, one in 'each compartment, which are resting in the cradles 63 Will be turned out from the compartments as the cradle rotates, but other pins above in any of the compartments will be held in the compartments by the cylindrical section 64 of the cradle.
The common bar 71 is operatively connected to a gear box 72 from which a rotatable shaft 73 projects. Fixed to the end of this rotatablesha-f-t is one end of a lever arm 74 which hinged at its other end an'elon'gated link or arm 75. This extended lever bar 75 is slidably secured by clamps or clips 79 in face to face relation to an end section of the arm 76 which in turn is hinged at its other end '77 to the common operating bar 71 through a joint member 78. A projection 80 on the extended bar 75 and a projection 81 on the bar 76 have fixed to them the ends of a spring 82 which tensions the bars 75 and 76 to slide into a greater face to face relationship. The projection 89 acting with the end of the bar 76 holds the spring under continuous tension and limits the relative movement of the bars 75 and 76. In the operation of this hopper device, when a set of ten pins are being released, the shaft 73 begins a single complete rotation. During the first half of the rotation of the shaft, the lever arm 75 is moved to the left, and as the spring 82 is sufiiciently strong to move the bar 76 with the movement of the arm 75 under normal conditions the bar 76 will also move to the left. The common operating bar 71 which is hinged to the bar 76 will then also be moved to the left rotating each of the cradles somewhat more than 180. The lowest pins in the compartments which are held in the cradle are then released as the cradle rotates about them. Other pins which may also be in the compartments remain in the compartments. The shaft 73 as it completes the second half of its rotation moves the shafts '75 and 76 to the right which causes the operating arm 71 to move to the right and consequently the cradles 63 to rotate back to their original position, permitting the pins which were held in the compartments to {all .down towards the eradles.
If as occasionally may happen during the rotation of the cradles a pin being delivered to a compartment becomes jammed between the walls of the compartment and the cradle as the cradle is rotating, the spring mechanism joining the bars 75 and 76 together will prevent any overloading or damage caused by this jamming. In this operation, if a pin becomes jammed during the rotation of the shaft 73, the cradles 63 and operating arm 71 will be restrained from their normal reciprocating motion. The bar 75 operated by the shaft 73 will, however, continue to reciprocate in its normal fashion. As this bar 75 reciprocates and the bar 76 is restrained, the two bars will slide apart against the tension of the spring 82. Upon continued rotation of the shaft 73, the bar 75 will return to its normal closed position releasing the additional tension on the spring -82 and returning the shaft 76, the op- 'erating arm 71 and the cradles to their original position. In this return motion the pin which may have been jammed will be released with no damage to the machine. When such a jamming occurs, however, there will normally be no delivery of pins from the hopper because the cradles cannot rotate sufliciently to clear the lowermost pins. This will not, however, aifect the subsequent operation of the machine.
This gear box 72 from which the operating shaft 73 extends is fixed on a platform 83 which is secured to the outer side of the wall 43 of the hopper. This gear box is driven from a shaft 84 journalled in bearings 84' and 85 on Wall sections 86 and 87' respectively and having positioned on it a single revolution clutch mechanism 85 which is engaged for a single revolution of the shaft 84 by activating the solenoid 86. The spring 88 and lever 89' normally tension the clutch mechanism 85 in an inoperativeposition. Operation of the solenoid 86 will be described later in connection with the electrical system. i V
A continually rotating power belt 87 fixed at one end about the sprocket 88 on the shaft 84 and at the other end fixed about the sprocket 89 on the shaft 90 supplies a continuous source of power to the shaft 84 and is operasprocket 94 on the shaft 90. Beneath the compartments on this shaft is a roller 95 which continuously rotates in a direction which will carry pins falling :onto it towards the frame or rack element 1122 to be described through chutes. Also fixed to the shaft 90 is a sprocket 96 on which is fixed a chain 97. This chain which will be more clearly seen in FIGURE 2 in turn rotates a shaft 98 through the sprocket wheel 99 in the same direction as the shaft 90. The shafts 100 and 101 are also driven in the same direction in a like manner through the chains 102 and 103 through the sprocket wheels 104 and 105 respectively. On the shafts 98, 100 and 101 beneath the compartments are fixed rollers 106 and 107 and 108 all parallel to and operating in the same direction as the roller 95. Each of the lower ends of the compartments is aligned with a single chute which leads to one of ten different positions on the frame or rack 122 in the proper positions of a ten pin set-up. These chutes may be seen in FIGURES 1 and 1A and are indicated in dotted outline in FIGURE 5 as 109 to 118. The chutes which are inclined downwardly from the hopper are fixed at their lower end to the platform 119 over openings 120 in the platform. As pins drop from the bottom of the hopper and are moved by the rollers 95, 106, 107, 108 into the chutes corresponding with the compartments, they slide down the chutes and are directed through the holes 120 in the platform 119 into their proper position on the rack 122. To insure the proper movement and direction, each of the chutes, particularly the longer ones, may be provided with a series of roller bearings 119 (FIGURE 41A).
At the end of each of these open chutes, a band 121 is provided to prevent the pins from shooting beyond the open end of the chutes. Positioned beneath the platform L19 to receive the pins as they come off their respective chutes and to lower them into position on the bowling alley is the frame or rack 122 (see FIGURES 1A and 8). This rack is provided with ten steel rod receptacles 123 each positioned to project through one of the openings 120 in the platform 1'19 and shaped to receive within it a pin as it falls from the chute. Each of these receptacles is formed of a series of bent rod loops 124 positioned to form substantially cylindrical holders designed to hold the pins upright. A pair of vertical shafts 125 and 126 fixed in the brackets 127 and 128 respectively at their lower end and extending through the platform 119 and sleeves 129 on the platform act as guides for the vertical movement of the frame or rack. This frame 122 is supported and raised and lowered by three chains 130, 131 and 132 fixed respectively to the brackets 133, 134 and 135 which are in turn fixed to the frame or rack 122. These chains extend upwardly through openings in the platform 119 over bearing rollers 136, 137 and 138 respectively and are secured at their other ends to windlasses 139, 140 and 141 (see FIGURE 5). The windlasses 139, 140 and 141 are each fixed to the shaft 142 which is supported on the platform 11-9 by bearings 143 and 144. This shaft is rotated for raising and lowering the frame or rack 122 in a pre-selected sequence, to be described, by means of a driving chain 145 which at one end extends over the sprocket wheel 146 fixed to the shaft 142 md at the other end over the sprocket wheel 147 which is fixed to the shaft 148. The shaft 148 in turn is driven from a gear box 149, which in turn is driven from the driving shaft 259 through the beveled gears 151. Also attached to this shaft 142 is a Windlass 156 with one end of the chain 152 winding around it. This chain 152 extends over a pair of pulleys 153 and 154 and under the sprocket wheel 155 with its other end fixed to the counterweight 191 (FIGURE l). The sprocket 155 is mounted on the same shaft 259 as is one of the beveled gears 151.
As will be seen in FIGURE 8, the bottom of each receptacle 123 is open except for the projecting tongues 157 formed by the ends of the bars *158-167. These bars 158167 are connected in a network by cross members 168, 169 and 172 with member 168 secured to bars 158, 159 and 160, member 169 secured to bars 161, 162 and 163 and also joined to cross member 168 by means of bars 170 and 171, and with the cross member 172 secured to bars 164, 165, i166 and 167 and also connected to cross member 169 by bars 173 and 174. This network is supported in a longitudinal slidable position relative to the frame 122 by brackets 133, 173' and 174. A spring 175 secured at one end 176 to the bar 158 and at the other end 177 to the rack 122 normally tensions the tongues 157 of the bars 158167 out of their respective openings at the bottom of each receptacle 1 23'. In their normal operation positions, the tongues 157 are held in the openings to prevent pins falling into the receptacles from passing through the openings by a latch arrangement shown in FIGURE 9 in which a bar 178 is hinged at one end to a hinge element 179. A downwardly extending projection .180 from the element 178 contacts the cross bar member 169 and holds the tongues 157 in the openings of the receptacles against the tension of the spring 175. When, in the proper sequence of operation of this machine, the rack is lowered to the floor of the bowling alley, the tongues 157 are retracted from the openings permitting the pins to fall onto the floor in an upright position. In this operation, the bar .169 is released from contact with the projection 1 80 by raising the bar 178. This is accomplished by means of a lever system illustrated in FIGURE 9. -In the hollow guide shaft 125, is a concentric rod 181 having projecting arms 182 and i183 passing through elongated slots 184 and 185 respectively in the upper and lower ends of the shaft 125. The lower projecting arm 183 is hinged at its free end to the end of the bar 178. The upper projecting arm 182 is positioned to come into contact with the adjustable screw stop 186 positioned on the platform 119. Also attached to the upper portion of the shaft 125 is one end of an inverted L-shaped support 187 with a lever arm 188 pivotally supported at its other end. The lever arm 188 has one end normally projecting under the projecting arm 182 and the other end extending beyond the fiange portion 189 of the upwardly extending fixed element 190. When the rack is lowered, the inner rod 181 moves downwardly with the hollow shaft 125. As the rack nears its lowest position, the projecting arm 182 comes into contact with the stop 186 and thus prevents the rod 181 from continuing downward with the shaft 125. Thus as the shaft .125 continues to move downward towards the floor, the lever arm 178 is raised and thereby disengages the projection and the bar 169. When the bar 169 and the projection 180 are disengaged, the spring 175 will pull the tongues 157 of the bars from the opening at the bottom of their respective receptacle allowing the pins to fall out. I
In the event that the rack is prevented from moving all the way down to the floor by some obstruction on the floor, the projection 180 and the bar 169 will not normally be disengaged and, therefore, the rack 122 will begin to return to its up position with the pins still held in their individual receptacles. These pins, however, will be released as the rack moves upwards when the end 192 of the lever 188 strikes the flange 18 9. At this point, the other end 193 of the lever 188 contacts the arm 1'82 and raises the rod 181 relative to the shaft 125 as the rack is moving upwardly. This upward movement of the rod 181 relative to the shaft 125 will then raise the lever 178 and thus release bar 169. The tongues 157 will be pulled by the spring from the openings at the bottom of the receptacles in the manner previously described. Thus, the pins will be released, preventing possible damage to the mechanism by a jamming :of the pins in the chutes.
It will be observed that since the lever 188 is attached to support 187, it cannot operate to raise the release lever 178 on the downward movement of rack 122. This is so because, during the downward movement of rack 122 (from the position shown in FIG. 1A), the lever 188 will strike the upper surface of flange 189 and pivot clockwise, remaining in a substantially vertical position while passing flange 189, so that its end 193 is lowermost and out of engagement with the projection of 182. It is only on the upper movement of the rack 122 that lever 188 is operatively engaged with flange 189 so that it is pivoted counterclockwise, bringing its end 193 into engagement with projection 182 in order to raise lever 178.
Fixed to the rack 122 is a bracket 194 to which is supported and pivoted a lever arm 195 (see FIGURE One leg 196 of this lever arm has fixed to its end a roller 197 positioned between two upwardly extending studs 198 and 199 secured to bar 162. The outer leg 200 of the lever 195 projects angularly upwardly and also has pivoted at its end a roller 201. As the rack is moved upwards, the roller 201 contacts the lower side :of the plate 119 or, if desired, an'extension from the plate, and as the rack continues to move upwardly the roller 201 rolls along the lower side of the platform 119 causing the roller 197 at the other end of the lever 195 to move the bar 162 in the direction of the arrow A. This movement of the bar 162 will carry the entire network of bars in the same direction, with the tongues 157 moving back into the openings of the receptacles 123. The bar 169 will also move forward until the projection 180, which has been raised above the bar 169 and thereby released from contact with it, is free to again drop behind the bar 169 and hold it against the tension of the spring 175, thus holding the tongues 157 in the openings at the bottom of each receptacle against the tension of the spring.
Illustrated in FIGURES 1A, 3, 4 and 5 is a sweep mechanism for clearing the alley of pins and balls before the next set is put into position and also for protecting the frame when it is lowered. As shown, a clearing bar 202 sufficiently wide to extend over the alley is supported at either end by'brackets 3 which are in turn hinged at 204 to the carrier arms 205. Inwardly extending bosses 204' on each carrier arm contact the brackets 203 and thereby limit the rotation of the clearing bar 202. At the other end of the carrier arms 205 are fixed rotatable bearing wheels 206 which are guided in channel members 207 and 208. These channel members are in turn fixed to side supporting beams 209 and 210 which extend from a point over the bowling alley pit to a point bey-ond'the positions at which the pins will beset on the alley. The forward ends of these channels are arcuately curved upwardly and are secured to an extension 211 formed at the forward end of each of the channels 208 and 210.
The carrier arm 205 is reciprocated along the channel members 207 and 208 by a conveyor chain 212 which is fixed to the carrier arm 205. This conveyor chain extends around the sprockets 213 and 214 at either end of the channels 207 and 208. One half of the conveyor chain 212 extends around the outside and bottom of the.
The motor 219 (see power source for the various operating elements heretofore described. A continuously rotating shaft 220 from the motor is connected to the gear reduction box 221. From this box, a shaft 222 rotates the sprocket wheel 223 about which one end of the chain 224 extends. The
FIGURES 1, 2 and 5) acts as a On its return, the clearing bar stops just beother end of this chain 224 extends around the sprocket wheel 225 which is mounted on the shaft 226. This continuously rotating shaft 226 is mounted in bearings 227 and 228. At one end 'of the shaft 226 is fixed a sprocket wheel 229 over which the chain 230 extends. The chain 230 in turn extends about and rotates the sprocket 231 fixed to the shaft 232. This shaft 232 is journalled in bearings 233 and 234 and 235. Also fixed to the shaft is a beveled gear 236 within the casing 237. The beveled gear 236 drives the beveled gear 238 which is fixed to the end of the shaft 239. The shaft 239 journalled in bearings 240 and 241 and 242 has fixed to it a sprocket wheel 243 at its far end. The sprocket wheel 243 in turn drives the chain 16 which, as previously mentioned, supplies operative power to the conveyor belt system in the pit. Also fixed to the shaft 232 is the sprocket wheel 244 which drives the chain 39 which in turn supplies power to the elevator mechanism in the manner previously de scribed.
A slip clutch may be positioned on the shaft 232 to prevent overloading. Also fixed to the shaft 232 is a sprocket 246 which drives the chain 61 for operation of the hopper as previously described. 7
Fixed to the shaft 226 is a beveled gear 247 which drives the beveled gear 248 fixed to the end of shaft 250 in the solenoid operated clutch box generally designated 251 (see FIGURES 5 and 12). On this shaft 250, which is continuously rotated, is fixed a sprocket wheel 252 (FIGURE 5) which drives the chain 93 which extends at its other end about the sprocket wheel 94 (FIGURE 2). This in turn continuously rotates the rollers 95, 106, 107 and 108, in the manner previously described.
The shaft 258 extends through one side of the solenoid box 251 and is supported in the bearing 280 '(FIGURE 5) and has fixed at its end thesprocket wheel 281. The sprocket wheel 281 (see FIGURE 2) carries the chain 282 which in turn rotates the sprocket wheel 283. This sprocket wheel 283 is mounted on the end of the shaft 284 shown in dotted outline in FIGURE 5, which also has mounted on it the sprockets214 for driving the chains 212. The chains 212 in turn move the sweep mechanism previously described forward and back in a pro-selected sequence which will later be described.
The shaft 259 extends through the other side of the solenoid box 251 and has secured to it the beveled gear 151' and the sprocket wheel 155 for raising and lowering the rack mechanism in a sequence to be described. The reason for using both a counterweight system and a gear system for raising and lowering the rack is that the counterweight system reduces power requirement. The gear system is also used to eliminate slippage when the clutch in the clutch box is disengaged due to the uneven balance between the counterweight and the rack as pins are received or released.
FIGURE 13 illustrates the electrical system which controls the sequence of operation of this machine in which the sweep first moves down to the level of the alley and rearwardly clearing the pins and balls from the alley into the pit and then moves back towards its original starting position stopping just beyond the position of the head pin. At this point, the rack element descends to the bowling alley and releases the pins in their proper position. The rack then moves back up and when it reaches its up position, the sweep continues back to its original position. On return of the rack to its up position, a new set of pins are released from the hopper which is being continuously supplied with pins cleared from the pit. At this point, the apparatus is ready for another complete cycle.
More specifically, when a bowler or operator closes the switch 286, a circuit is completed through the lines 287, 288, the solenoid 290, the line 291, the switch 286, the contact 325, the lines 292 and 293. This circuit operates the solenoid 290 which will rotate the ratchet type six position rotary switch 294 (diagrammatically shown in FIGURE 14) one-sixth of a rotation. On this rotation, the rotary switch 294 closes the contact 295. A circuit is then completed through the lines .293, 292 and 294, the contact 295, the lines 296 and 289 through the solenoid 272 and the line 287. This activates the solenoid 272 which in turn operates the clutch 268 in a manner as previously set forth and causes the sweep mechanism to move towards the pit. As this sweep is moving towards the pit, it trips the microswitch 297 which in turn completes a circuit through the lines 293, 292 and 294, the contact 295, the line 296, the microswitch 297, the line 298, the solenoid 290 and the lines 288 and 287. This activates the solenoid 290 to rotate the ratchet 294 to its next position closing the contact 300.
When the contact 300 is closed, the circuit through the solenoid 272 is opened and a circuit is completed through the line 293, the line 292, the contact 300, the line 301, the solenoid 270, the line 288 and the line 287, activating the solenoid 270 which engages the clutch 266 reversing the direction of the sweep. The microswitch 297 should be located so that the sweep will be reversed at a point just over the edge of the pit.
On the return of the sweep (diagrammatically shown in FIGURE 13 at 302) the microswitch 303 is closed. This completes a circuit with the current passing through the line 391 to the line 304, the microswitch 303, the line 306, the line 298, the solenoid 290, the line 288 and the line 287, thus again activating the solenoid 290. The solenoid 290 then rotates the rotary switch 294 to its next position closing contact 307. A circuit is then completed through the line 293, the contact 307, the line 309, the solenoid 27-1 and the line 287, thus activating the solenoid 271. The solenoid 271 engages the clutch '267 and thereby lowers the rack or frame 122. As the rack reaches the level of the alley, the pins are released in the manner previously described. At this time, the microswitches 310 and 311 are closed by the downward movement of the rack. When the microswitch 311 is closed, a circuit is completed through the lines 287, 288, the solenoid 290, the line 298 and the line 312, the microswitch 311, the line 309, contact 307 and the line 293; thus activating the solenoid 290 which in turn moves the rotary switch 294 to its next position closing contact 313. Due to the closing of contact 313, the solenoid 273 is energized by the circuit through lines 293 and 292, the contact 313, the line 314, the microswitch 310, the solenoid 273 and the line 287. The solenoid 270 is also activated by the closing of contact 313 which completes the circuit through lines 293 and 292, the contact 313, the line 314 and the 'lines 315 and 316. Solenoid 273, when activated, engages the clutch 269 which raises the rack previously lowered and at the same time solenoid 270 reengages the sweep mechanism which had been stopped just beyond the frame when it was being lowered and continues the movement of this sweep back to its original position. When the frame or rack reaches its up position, microswitch 3 10 is opened and the solenoid 273 is de-energized stopping the upward motion of this frame. When the sweep in its continued movement back to its original starting position hits the microswitch 317, the solenoid 290 is energized through the circuit, including the line 293, the line 292, the switch 313, the line 314, the line 315, the line 318, the switch 317, the line 319, the line 298, the solenoid 290, the lines 288 and 287, moving the rotary switch 294 to close the contact 321. The solenoid 86 (see FIGURE 6) is then activated through the circuit including the lines 293 and 292, the contact 321, the line 322, the solenoid 86 and the line 287. This solenoid '86 engages a single revolution clutch '85 as previously described which in turn causes a single set of pins to drop from the hopper. iThe microswitch 323 is then momentarily closed, completing a circuit through the lines 293 and 292, the contact 321, the line 322, the microswitch 323, the line 298, the solenoid 290, and the lines 288 and 287, by the movement of lever 74 on shaft 73 as the latter rotates thus again activating the solenoid 290 which rotates the rotary switch 294 back to its original position closing the contact 325. The microswitch 323 which is normally spring tensioned in an open contact position is then disengaged and the apparatus is ready for another complete cycle.
As illustrated in FIGURES 1, 2 and 7, a counterweight 326 is secured to an extension on one of the shafts 67 to insure positive action in the closing of the cradle or gate elements 63. As shown in FIGURE 1A, a stop 327 is secured to the top of the frame or rack 122 to limit the upward motion of the frame 122 when the stop comes into contact with the lower side of the platform 119.
As shown in FIGURE 8, a pair of rollers 328 having their supports secured to the frame 122 may contact the elements 173 and 174 for additional control of the opera tion of the bars 158 to 167.
Having now described my invention, I claim:
1. A bowling pin setting machine for setting bowling pins in a pre-selected position on a bowling alley comprising, a frame having means for receiving a plurality of pins in an upright pre-selected spaced relation, means for lowering and raising the frame to and from the level of the alley, gate means for retaining said pins in said frame, first means normally operable upon the downward movement of said frame for releasing said gate means, and second means efiectively located at a point along the vertical path of travel of said frame above the effective position of said first means operable only upon the upward movement of said frame for releasing said gate means.
2. In a bowling pin setting machine, means for setting bowling pins in a pre-selected position on a bowling alley comprising, a frame having a plurality of spaced receptacles for receiving pins, said receptacles having bottom elements adapted to be opened for releasing said pins in an upright position, means for lowering and raising the frame to and from the level of the alley, first means for normally opening said bottom elements when the frame is at a low position, and second means effectively located along the vertical path of travel of said frame above the effective position of said first means operable only upon the upward movement of said frame for opening said bottom elements.
3. In a bowling pin setting machine, means for setting bowling pins in a pre-selected position on a bowling alley r 1 1 r 1 2 comprising, a'frame having a plurality of spaced recep-' means operable only upon the upward movement of said tacles for receiving pins with the bottom of said recepframe for retracting said tongues. tacles open, movable tongue elements normally projecting into said openings (for retaining pins in the receptacles, References Cited in the file of this patent means for lowering and raising the frame to and from the alley, means including a spring and latch for retracting UNITED STATES PATENTS said tongues from the openings when the frame is in a 15524341 HedenSkwg 1925 low position, and second means including a latchefiec- 115421804 Gray e June 1925 tively located at 'a point along the vertical path of travel 2,017,143 Bentz 1935 of said frame above the effective position of said first 1O 2702707 Frye 1955
Claims (1)
1. A BOWLING PIN SETTING MACHINE FOR SETTING BOWLING PINS IN A PRE-SELECTED POSITION ON A BOWLING ALLEY COMPRISING, A FRAME HAVING MEANS FOR RECEIVING A PLURALITY OF PINS IN AN UPRIGHT PRE-SELECTED SPACED RELATION, MEANS FOR LOWERING AND RAISING THE FRAME TO AND FROM THE LEVEL OF THE ALLEY, GATE MEANS FOR RETAINING SAID PINS IN SAID FRAME, FIRST MEANS NORMALLY OPERABLE UPON THE DOWNWARD MOVEMENT OF SAID FRAME FOR RELEASING SAID GATE
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US835810A US3083017A (en) | 1954-01-04 | 1959-07-22 | Bowling pin spotting machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US401858A US2962284A (en) | 1954-01-04 | 1954-01-04 | Bowling pin setting machine |
US835810A US3083017A (en) | 1954-01-04 | 1959-07-22 | Bowling pin spotting machine |
Publications (1)
Publication Number | Publication Date |
---|---|
US3083017A true US3083017A (en) | 1963-03-26 |
Family
ID=27017622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US835810A Expired - Lifetime US3083017A (en) | 1954-01-04 | 1959-07-22 | Bowling pin spotting machine |
Country Status (1)
Country | Link |
---|---|
US (1) | US3083017A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3317207A (en) * | 1964-04-14 | 1967-05-02 | American Mach & Foundry | Bowling pinspotting machine |
US5624323A (en) * | 1993-06-18 | 1997-04-29 | Mendes Inc. | Automatic pinsetter |
US20100197418A1 (en) * | 2007-07-30 | 2010-08-05 | C-Dic Co., Ltd. | Pin setter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1524241A (en) * | 1922-01-28 | 1925-01-27 | Brunswickbalke Collender Compa | Automatic pin-setting machine |
US1542804A (en) * | 1921-08-12 | 1925-06-16 | Walter H Gray | Bowling-alley system |
US2017143A (en) * | 1933-07-17 | 1935-10-15 | Singer Mfg Co | Automatic pin setter for bowling alleys |
US2702707A (en) * | 1946-08-16 | 1955-02-22 | American Mach & Foundry | Apparatus for handling bowling pins |
-
1959
- 1959-07-22 US US835810A patent/US3083017A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1542804A (en) * | 1921-08-12 | 1925-06-16 | Walter H Gray | Bowling-alley system |
US1524241A (en) * | 1922-01-28 | 1925-01-27 | Brunswickbalke Collender Compa | Automatic pin-setting machine |
US2017143A (en) * | 1933-07-17 | 1935-10-15 | Singer Mfg Co | Automatic pin setter for bowling alleys |
US2702707A (en) * | 1946-08-16 | 1955-02-22 | American Mach & Foundry | Apparatus for handling bowling pins |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3317207A (en) * | 1964-04-14 | 1967-05-02 | American Mach & Foundry | Bowling pinspotting machine |
US5624323A (en) * | 1993-06-18 | 1997-04-29 | Mendes Inc. | Automatic pinsetter |
US20100197418A1 (en) * | 2007-07-30 | 2010-08-05 | C-Dic Co., Ltd. | Pin setter |
US8066579B2 (en) * | 2007-07-30 | 2011-11-29 | C-Dic Co., Ltd. | Pin setter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2602554A (en) | Mechanism for aligning boxes in a stack | |
US2310218A (en) | Pin setting apparatus | |
US1709189A (en) | Assembling machine for mints or the like | |
US4371076A (en) | Apparatus for conveying and closely gathering food | |
US2389643A (en) | Ball and pin handling mechanism for bowling pin setting machines | |
US1490594A (en) | Veneer and rotary cut lumber stacker | |
US3343689A (en) | Lumber packaging unit | |
US2053435A (en) | Apparatus for packing articles in boxes | |
US3024890A (en) | Article handling apparatus | |
US3056513A (en) | Stacking machine | |
US2671549A (en) | Row forming device | |
US2226068A (en) | Machine for feeding cans to labeling machines | |
US3083017A (en) | Bowling pin spotting machine | |
US2880943A (en) | Horizontal belt mat winding machine | |
US1452711A (en) | Brick-handling apparatus | |
US2962284A (en) | Bowling pin setting machine | |
US2917169A (en) | Lamp bulb feeder | |
US2616694A (en) | Bowling pin handling apparatus | |
US2641471A (en) | Bowling pin setting machine | |
US2417753A (en) | Can arranging conveyer mechanism | |
US1883078A (en) | Machine for handling canned goods | |
US2347391A (en) | Apparatus for feeding tiles to spraying machines | |
US2769637A (en) | Distributor mechanism for bowling pin spotting machines | |
US4230204A (en) | Checkout counter with bag delivery means | |
US2719624A (en) | Article handling and orienting machine |