US3080823A - Booster pumps - Google Patents

Booster pumps Download PDF

Info

Publication number
US3080823A
US3080823A US790315A US79031558A US3080823A US 3080823 A US3080823 A US 3080823A US 790315 A US790315 A US 790315A US 79031558 A US79031558 A US 79031558A US 3080823 A US3080823 A US 3080823A
Authority
US
United States
Prior art keywords
liquid
pump
compressor
chamber portion
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US790315A
Inventor
Harold E Adams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nash Engineering Co
Original Assignee
Nash Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US256580A external-priority patent/US2956504A/en
Application filed by Nash Engineering Co filed Critical Nash Engineering Co
Priority to US790315A priority Critical patent/US3080823A/en
Application granted granted Critical
Publication of US3080823A publication Critical patent/US3080823A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/02Tanks
    • B64D37/14Filling or emptying
    • B64D37/16Filling systems

Definitions

  • This invention relates to booster pumps, particularly fuel booster pumps for aircraft engines.
  • the novel fuel -booster pump of the present application is particularly designed to be used in the fuel line between a tank mounted booster pump and the main fuel pump of the engine, but is also adapted for other uses.
  • the novel pump is desirably like the combined centrifugal and Vacuum pumps disclosed in United States Patent No. 2,461,865, and in my application Serial No. 652,633, now Patent No. 2,581,828, tiled March 7, 1946, for Pumps, but embodies further improvements especially adapted to meet the exacting requirements of line mounted booster pumps.
  • the main engine fuel pump must be increased in size, which seems impractical, or, as disclosed herein, it may be supplemented by a line booster pump driven directly by the engine and mounted on the engine itself to pressurize its own main fuel pump.
  • the engine mounted line booster pump does not do away with the tank mounted booster pump. It merely reduces the discharge requirement from the tank mounted booster pump.
  • the tank mounted booster is necessary for the prevention of vapor locked in the fuel lines, even when the engine driven booster pump is present.
  • the line' mounted booster pump is required to deal with conditions4 of considerably greater severity than those encountered in the operation of a tank mounted booster pump.
  • positive type line booster pumps such as vane or gear pumps have been successfully used. These pumps have to be proportioned, however, so that they will handle a total displacement equal to the liquid fuel to be handled, plus the vapors given ofi ⁇ by the fuel in its travel from the tank to the entrance of the positive type booster pump.
  • centrifugal pump will handle considerably larger volume for pump weight than will a positive type pump, but it is also well known that a conventional centrifugal pump for liquid is extremely sensitive to the presence of gas or vapor, and that its pumping action will break down when the gas or vapor component constitutes more than three percent by volume of the mixed fluid to be handled.
  • a combined centrifugal and vacuum pump of the type as exemplified in Patent #2,461,865 and Serial No. 652,- 633, now Patent No. 2,581,828, has unique provision for the separation, removal and recompression of lthe vapors. It has been found that this type of pump can be used on pipe line applications by increasing the separating proportions of the liquid pump and increasing the vapor handling proportions of the vacuum pump or compressor, and tnen returning the recompressed vapors to the fuel tank. This type of pump is now being extensively used as an engine driven booster pump in the manner referred to.
  • the vapors are returned by a separate pipe line back to the fuel tank from which they started, or to some other fuel tank.
  • the vapor removing and compressing element in sending the removed vapors back to the tank has to pressurize the gases and vapors sufficiently to overcome pipe friction and any static head difference between the pump and the receiving tank. This pressure difference, though greater than has to be maintained in the case of the tank mounted fuel booster pump, is still relatively low.
  • the discharge pressure of the compressor is made at least equal to that of the liquid pump by making the rotor diameter of the compressor approximately the same as the impeller diameter of the liquid pump.
  • centrifugal liquid pump be designed to give the required full pressure at low engine speeds.
  • the centrifugal liquid pump therefore, is generating a much higher pressure than is required. This is because of the well known characteristic of centrifugal pumps lthat the pressure generated varies as the square of the rotational speed, whereas capacity varies as the first power of the rotational speed. These same characteristics are inherent in the hydroturbine vacuum pump or compressor. During normal operation of the engine, therefore, both the centrifugal liquid pump and the compressor of the combination referred to in the preceding paragraph would be operating to deliver considerably higher pressures than are actually necessary.
  • the required vapor and liquid can be also'decreased. Because of the characteristics of the fuel system, the fric-tional drop in the inlet piping diminishes rapidly with the reduced liquid flow, so that the vapors required -to be handled by the compressor decrease even out of proportion with the decreased rotational speed.
  • the compressor is made adequate to meet the vapor handling requirements at the normal operating speed of the engine, and adequate to furnish the pressure required at the inlet of the main engine fuel pump at that speed, the necessity for making the compressor capable of delivering the same pressure as the associated liquid pump may be avoided by throttling down the discharge pressure of the liquid pump to the required inlet pressure of the main fuel pump, and combining the compressor output with the liquid pump output only after the latter has been throttled down.
  • the compressor though constructed to produce a lower discharge pressure than the liquid pump, is enabled to combine its output with that of the liquid pump by providing a liquid pressure reducing valve at the discharge side of the liquid pump.
  • a combined liquid pump and compressor unit capable of handling the gas and vapor on the one hand and the liquid, on the other, in the compressor and the liquid pump respectively, and of recombining the pump and compressor outputs, but further adapting for convenient alteration to divert the compressed gas and vapor back to the source of liquid supply in any organization in which such diversion is deemed preferable.
  • FIG. l is a longitudinal sectional view of a combined line pump and compressor embodying one form of the invention, the section being taken upon the line 1 1 of FIG. 4 looking in the direction of the arrows;
  • FIG. 2 is a fragmentary, longitudinal sectional view of the same structure, the section being taken upon the line 2 2 of FIG. 4 looking in the direction of the arrows;
  • FIG. 3 is a further longitudinal sectional view of the same structure, the section being taken upon the line 3 3 of FIG. 4 looking in the direction of the arrows;
  • FIG. 4 is a transverse sectional view taken upon the line 4 4 of FIG. l looking in the direction of the arrows;
  • FIG. 4a is a transverse sectional view through the compressor, the section being taken upon the line 4ta-4a of FIG. 1, looking in the direction of the arrows;
  • FIG. 5 is a View in side elevation of a portion of the pump casing with a cover plate removed;
  • FIG. 6 is a view of one of two alternative cover plates adapted to be applied to the complementary portion of the casing member shown in FIG. 5 when the compressed gas and vapor are to be returned to a fuel tank;
  • FIG. 7 is a view of an alternative cover plate which is substituted when the compressed gas and vapor are recombined with the liquid en route to the main fuel pump;
  • FIG. 8 is a fragmentary sectional view similar to FIG. 2, but illustrating a modified pump and compressor combination in which the compressor is capable of delivering as high a discharge pressure as the centrifugal liquid pump;
  • FIG. 9 is a longitudinal sectional view of a duplex liquid pump and compressor combination in which a single cornpressor serves both working chambers of the liquid pump, the section being taken upon the line 9 9 of FIG. l0 looking in the direction of the arrows;
  • FIG. l0 is an end view, partly broken away, of the pump and compressor combination of FIG. 9, the planes of the portions shown in section being substantially indicated by the line 0 10 of FIG. 9, looking in the direction of the arrows;
  • FIG. ll is a fragmentary sectional View taken upon the line Il lli of FIG. 10, looking in the direction of the arrows;
  • FIG. 12 is a fragmentary sectional view taken upon the line 12 l2 of FIG. l0, looking in the direction of the arrows.
  • the illustrative pump and compressor unit of FIGURES l to 7 comprises a casing which consists chiefly of complementary casing members 2 and 3 having flanges 4 and 5, respectivelypthrough which they are secured to one another in axial alignment by machine screws 6.
  • the casing member 3 is provided with threaded bores '7 which are adapted to receive the threaded bodies of headed screws (not shown) for clamping the casing upon a flanged fuel supply pipe section (not shown) in axial alignment therewith.
  • the unit 1 includes .liquid iinpeller blades 8 and compresser rotor blades 9, both of which are desirably made integral with a driving disc 10.
  • a flange 12 of the disc lil is revolubly received within an annular ilange 13 which forms part of a stationary compressor body member 14.
  • An annular groove 1l is formed in the body member 14 and forms part of a seal chamber between the liquid end and the vapor end of the impeller-rotor. This chamber is connected to the interior of the liquid impeller passageways by a bore 11x, to avoid the building up of excessive pressure between the impeller shroud and thev lobe seal and thereby to avoid ooding of the vapor pump.
  • the disc 1t? is secured upon a driving shaft 1S to be driven in unison with the shaft by means of a key 16.
  • the hub of the disc is secured upon a reduced portion 17 of the shaft 15.
  • the left hand hub face of the disc 1G (as viewed in FIGURE l) bears against a washer 18, which washer in turn bears against a shoulder 19 of the shaft 15. ⁇
  • a second washer 20' bears against the right hand hub face of the disc 10, being pressed against the disc by a nut 21 which is threaded onto a further reduced end portion 22 of the shaft 15.
  • the driving, bearing and sealing details of the shaft 15 form ⁇ no part of the present invention.
  • the intermediate portion of the shaft is supported in a stationary bearing 23.
  • a sylphon bellows 24 sealed to the shaft 15 through its head 25 at one end, carries at its opposite end a bearing ring 26 which is pressed by the bellows into bearing engagement with an end face of the bearing 23.
  • An enlarged portion 27 of the shaft 15 carries the inner race 28 of a ball bearing 29, the outer race 3i? of which is secured in a cup portion 31 of the casing member 2.
  • the shaft 15 is adapted to be connected to an engine-driven shaft (not shown) through a splined coupling, the shaft being formed with a splined end 35 for mating with a complementary recess of the engine driving shaft.
  • the compressor body member 14 is formed interiorly to provide two opposed eccentric lobes 33 and 34.
  • the rotor blades 9 divide the rotor into compartments or buckets, and serve to drive a ring of liquid, in the illustrative case liquid fuel, around in the casing. Since the liquid is thus subjected to centrifugal force, it recedes from the center of rotation as the lobe depth increases and is forced back toward the center by the outer lobe wall as the lobe depth diminishes.
  • the outer boundary of the ring always coincides with the inner wall of the casing 14.
  • the inner boundary or the ring is indicated by the dot and dash line 14e of FIG. 4a.
  • a pocket is alternately expanded and contractedat the inner end of each bucket or compartment of the rotor during the traverse by the bucket of each of the lobes, vapor being caused to be drawn into the bucket through an intake port 36 formed in a stationary central cone 37 as the liquid moves outward ,and being compressed and driven from the bucket through an outlet port 38 of the cone 37 as the liquid moves inward. Since the traverse of a single lobe completes the pumping cycle for each bucket, two dit-.metrically opposed inlet ports 36 and two diametrically opposed outlet ports 38 are provided in the cone 37, so that each lobe has an inlet port and an outlet port associated with it.
  • the cone 37 forms an integral part of a stationary head section 39 which has passages 4i) therein that communicate with the ports 36, and passages 41 therein that communicate with the ports 38.
  • the left hand face of the head section 39 is generally open and is covered by a ported disc 42.
  • the casing member 2 carries the body member 14, the head member 39, and the ported disc 42.
  • Body member 14 is composed of the annular ring 13, lobes 33 and 34, head section 39 and ported disc 42, which are all formed into one inte-gral part by furnace brazing. Studs 43 are passed through the casing member 2, and have reduced ends threaded into the ring portion 13 ofthe body member 14. Nuts 45' are threaded onto the studs 43 for holding the body members 2 and 14 together.
  • Dowel pins 46 are passed through the disc 42 and the head member 39 and into the annular ring 13 for maintaining the alignment and orientation of these parts during the brazing process.
  • the casing member 2 is provided with vapor inlet passages 47 and with vapor outlet passages 48 which com municate respectively with the inlet passages 40 and the outlet passages 41 of the head member 39. T he' passages 47 and 48 also communicate with inlet and discharge passages 49 and 50, respectively, which are formed in the casing member 3.
  • the liquid fuel enters the eye ofthe impeller a ⁇ t51.
  • the liquid pump is especially designed to cause the gas and vapor to be separated from the liquid and to becollected in an annular channel 52 which isformed inthe liquid pumping chamber of the casing member 3.
  • the vapor and gas are sucked out from the channel 52 through bores 52x and 53, a channel section 54 formed in the casing member 3, a channel section 55 formed jointly in the casing member 3 and a cover plate S6, and thence through the passages 49, 47 and 40 to the pumping chamber of the compressor.
  • the liquid fuel is freed of entrained gas and vapor by the'cornbined action ofthe liquid pump and the compressor, and is then discharged through a volute passage 57 to a discharge conduit 58.
  • the liquid In passing from the passage 57 to the conduit 5S, the liquid automatically has its pressure reduced by reducing valve mechanism 59 to substantially a predetermined gaugeI pressure regardless of the speed at which the engine is operating.
  • the valve mechanism is mounted in the conduit 58, being carried by a supporting plate 6i).
  • the plate Gil is detachably secured along with a cover plate 61 to the portion of casing 3 which forms an end of the conduit 58 by machine screws 62.
  • the plate 60 is connected in sealed relation to one end of a corrugated bellows wall 63.
  • the opposite end of the bellows wall is connected to a movable valve body 64 which is composed of complementary members 65 and 66.
  • the bellows is closed at its forward end by the piston, but the bellows is open at its rear end and communicates with the atmosphere through passages 67, 68, 69, 70, 71, 72 and a vertical drain tapping 72x at the bottom of casing member 2.
  • the valve body 64 slides in a cylindrical member 73 which is iixed in the conduit 58.
  • the liquid fuel discharged from the volute passage 57 enters a circumferential channel 74 of the valve formed externally of the valve body, through an opening 75 which is provided in the 'cylindrical member 73.
  • the channel 74 normally extends to the left of the cylindrical member 73 and cornmunicates through openings 76 with the conduit 58.
  • a stop shoulder 77 stands in the way of the valve body 64 to limit inward movement of the valve and prevent overextension of the bellows 63.
  • the end of the adjusting screw 80 stands in the way of the valve to limit outward movement of the valve and thereby prevent over-compression of the bellows.
  • a compression coil spring 78 bears at one end against the valve body 64 and at the opposite end against a hanged and shouldered nut 79.
  • the nut is threaded on the screw Si) which is mounted on the plate 61 with capacity for ro tation, but not for axial movement.
  • the screw is formed with a flange 81 which engages' the inner face of the plate 61.
  • a neck and head portion 82 of the screw extends through the plate 61, the protruding portion of the head being slotted.
  • a boss 83 on the face of plate 61 is slotted to provide a means of locking screw Sil with lockwire 84.
  • the flange of nut 79 has a llat face which bears against a dat sided linger 85 that extends inward from the plate 61.
  • the linger 85 prevents rotation of the nut 79.
  • Liquid will ow from the volute passage 57 through the valve channel 74 and into the conduit 58 so long as the valve body is not moved far enough to the right to close the openings 76 completely.
  • pressure of the liquid in the conduit 58 tends to move the valve body or piston 64 toward the right, and this is opposed by atmospheric pressure acting within the bellows and the pressure of the spring 78 bearing leftward against the piston.
  • the absolute pressure in the conduit S therefore, will generally be substantially atmospheric pressure plus a predetermined amount which depends in value upon the adjustment of the nut 79.
  • passageway 79a leading fromv the chamber beyond the discharge valve, back to the pump suction.
  • the purpose of this passageway is to bleed oif some of the fuel beyond the discharge valve chamber back to the pump suction for the purpose of better regulation of the discharge pressure.
  • valve 59 Because of the pressure reduction effected by the valve 59, the compressor itself can operate at a lower discharge pressure than would otherwise he necessary if it were required to discharge against the full centrifugal pump pressure.
  • the purpose of this valve is primarily for regulation of the fuel pressure and advantage is taken, as long as the valve is required in the circuit, to discharge the vapors to the reduced pressure.
  • the aircraft designer may cause the compressed gas and vapor to be discharged into the conduit 58 which leads forward to the inlet of the main engine pump, or to be returned to a fuel tank, whichever is more convenient.
  • the cover plate 56 is applied to the casing member 3.
  • the upper and lower halves of the plate 56 are divided from one another by a horizontal partition 87 which divides a lower pocket SS from upper pockets S9 and 90.
  • the partition S7 coincides with a partition wall 91 of the casing member 3.
  • the upper pockets 89 and 90 are divided from one another by a vertical imperforate partition 92 which coincides with a partition wall 93 of the casing member 3.
  • the lower pocket 38 forms a part of the conduit section 55 through which communication is established between the groove S2 of the centrifugal liquid pump and the intake side of the compressor, as
  • a cover plate 56a is used in place of the cover plate 56, and the plug 94 is secured in place, as shown in FIGURE 2.
  • the plate 56a is like the plate 56, being provided with partitions 87a and 92a which divide the inner side of the plate into pockets 88a, 89a and 99a.
  • the only difference between the two plates resides in the fact that the parti- Iion 92a has a bore 95 formed in it for placing the pockets 89a and 90a in communication with one another. This places the pocket 39a in communication with the outlet passage Si? of the compressor.
  • the pocket 89a always communicates directly with the conduit 53 and hence transmits the products from the compressor into the conduit 58. IIn this case the plug 94, rather than a tube is applied to the interiorly threaded end of the passage 50.
  • the plates 56 and 56a are not necessarily mutually distinct structures. 'The plate 56 may be converted to the plate 56a simply by making a bore 95 through the partition 92. The plate 55a may be converted back to the plate 56 by plugging the bore with a bolt 95a.
  • the pump of FIGURE S differs from the pump of FIGURES l to 7 primarily in the fact that the discharge pressure of the compressor is caused to be at least as great as the unthrottled output pressure of the centrifugal pump, so that no throttling of the centrifugal pump output is required in order to permit the compressor output to be combined with the centrifugal pump output.
  • FIGURES l to 7 All the parts of the pump of FIGURE 8 are found in FIGURES l to 7, and in general the principle of operation is the same. Corresponding reference characters have accordingly been applied to corresponding parts with the subscript b added in each instance. No comprehensive, detailed description will be given, but attention will be confined to the points of difference with particular emphasis upon the salient novelty of the FIG- URE 8 form of pump.
  • the pump of FIGURE 8 is characterized by the fact that the blades 9b of the compressor rotor are made approximately as large in diameter as, or, as shown a little larger than the blades 3b of the centrifugal pump impeller. This is brought about by generally increasing the radial dimensions of the compressor part in proportron to the centrifugal pump part, and by adjusting thc communicating passages slightly to maintain the operative relation of the centrifugal pump and the comperssor previously described.
  • the desired output pressure relationship could bc brought about by relatively increasing the speed of the compressor.
  • the driving of the pump impeller and the compressor rotor in unison from a common shaft is found advantageous.
  • the rotor diameter must be approximately the same as the impeller diameter if the compressor output pressure is to equal or exceed the centrifugal pump output pressure.
  • the entrained gas and vapor are separated from the liquid fuel at the intake side of the liquid pump, are drawn olf by the compressor, compressed, and discharged to the conduit 50h.
  • the conduit Silb may be closed olf from communication with the conduit 53h by a cover plate like the plate 56 of FIGURE 6, 1n which case the plug 9% would be removed from the internally threaded end of the conduit 501) and replaced by a tube which leads to a fuel tank.
  • the plug Mb may be used to close the internally threaded end of the conduit 50h, and conduit Sb may be caused to deliver to the conduit 58b through a cover plate like the cover plate 56a of FIGURE 7.
  • the significant feature of FIGURE 8 resides in the fact that the discharge pressure of the compressor is at least as great as that of the liquid pump. No throttling valve is required in the conduit SSb, therefore, for enabling the compressor output to be delivered to and intermingled with the liquid pump output, and none is provided.
  • a throttling valve may be provided at the intake of that pump, but this valve acts impartially upon the previously combined outputs of the compressor and the centrifugal pump, and not upon the output of the liquid pump to the exclusion of the compressor.
  • the compressor of FIGURE 8 consumes relatively more power than the compressor of FIGURES 1 to 7.
  • the FIGURE 8 combination has a wider range'of usefulness, however, than the combination of FIGURES 1 to 7 because it can be applied in a wider range of installations, wherein a recombination of liquid pump and compressor outputs is required.
  • FIGURES 9 to 12 the invention is illustrated as embodied in a combined liquid pump .and compressor unit in which the liquid pump is of theduplex type.
  • the liquid pump is divided axiallyfinto two pumping chambers having separate inlets but a common ⁇ outlet.
  • the vapors separated in the respective intakes are separately drawn oif by the respective lobes of the compressor, the compressor having distinct intake connections to the two lobes but a common outlet from them.
  • the lobes of Athe compressor .are caused thus to exert their suction effects separately upon the vapor collection channels of the respective centrifugal pump chambers, caus ing each to be effectively and independently evacuated, as pointed out in Serial No. 652,633.
  • the liquid pump output is throttled as in the illustrative case of FIGURES l to and 7, and the compressor output is fed forward and combined with the throttled liquid pump output en route to the main engine pump.
  • the liquid pump of FIGURES 9 to l2 comprises body composed chiefly of body members 101, 1G13 and 165.
  • the body member 101 supports the other body parts, being formed with a supporting flange 109 pro.- vided with bolt holes 111 through which it may be attached to the engine body.
  • the body member 101 is also provided with tapped bores 113 for receiving machine screws (not shown) through which connection may be made to a flanged fuel supply pipe (not shown).
  • the body member 101 is formed with a generally cylindrical openingy in which portions of the body memincludes a flanged end closure plate 115 through which it is attached to the body member 1191 by screws 117.
  • the body member 165 similarly includes a flanged end closure plate 119 through which it is secured to the body member 1111 by screws 118 Whose shanks also pass through an attaching flange 121 of compressor head member 123 for securing the head 123 along with Vthe plate 119 to the body member 191.
  • a flanged, cup-like compressor body member 125 is secured to the head 123 by screws 127.
  • a shaft 131 is equipped with Va splined -driving portion 133 through which it may be connected to be driven by the engine itself.
  • the shaft is supported near one end in a bearing 135 which is carried by the plate 115 and near the other end in a bearing 137 which is carried by the plate 119.
  • the bearing 137 is contined'against axial movement between a shoulder 139 of the plate 119 and a split resilient ring 141 carried by the plate 119.
  • a collar 143 disposed on the shaft 131 with its left face in engagement with a split resilient ring 145 that interts with the shaft, has its right face disposed to bear against the bearing 137.
  • a key 157 provides a driving connection between the shaft 131 and the rotor 151.
  • the impeller 161 comprises a central hub 16.3 which is connected to ,the shaft 131 through a key 165.
  • the hub is conned on the shaft between collars 167 and 169.
  • the collar 167 bears against a shouldered collar 171 which is integral with the shaft.
  • the collar 169 bears against a resilient split ring 173 which is interlocked with the shaft.
  • the spacing is such that the hub is held between the -shouldered collar 171 and the split ring 173.
  • the impeller is driven by key 165.
  • the hub 163 has integral with it a central partition ilange 175 upon which the impeller blades 177 and 17S are mounted.
  • the two chambers of the centirfugal pump discharge the liquid in common Ato a volute passage 189 formed in the body member 191.
  • the gases and vapors are separated from the liquid near the inner boundary of the impeller blades, being collected. for the respective chambers 191 and. 193 in annular channels 195 and 197. (See particularly FIGS. 9 and 11.)
  • the channel 195 communicates through a passage 199 with a circumferential passage 2111 which is formed jointly between the body members11 and 153. l
  • the channel 197 communicates through a passage 293 with a passage 265 which is formed jointly by the body members 191 and 165.
  • the channel 231 is connected through passages formed in the body members 1131 and 1115 with the inlet passage 233 of the one lobe of the compressor and the channel 205 is connected through passagesformedin the body members 1111 and 105, through separate inlet passage 231 connecting tothe other lobe of the compressor.
  • Theinlet passages 231 and 233 do not communicate with one another. in this way, the lower and upper lobes of the compressor are caused to act as separate suction means for drawing off the gas and vapor from the respective centrifugal pump charnbers 191 and 193.
  • the compressed gases and vapors are discharged from the two lobes to a common outlet passage 235.
  • the passage 135 is connected through passages to deliver the products of the compressor to a chamber 237 for recombination with the output of the centrifugal pump after the' liquid from the centrifugal pump has had its pressure reduced by throttling.
  • the chamber 2,37, formed in the body member 191, includes a cylindrical extension 239 in which a throttling valve 241 is mounted.
  • the throttling valve is designed to reduce the pressure of the liquid passing from the volute 189 of the centrifugal ⁇ pump to the chamber 237.
  • the valve comprises a supporting plate 243 which, to-
  • the interior of the bellows 249 is Vented to the atmosphere through a space 267 which is provided between the plates 243 and 245, a port 269 formed throught the plate 243, and a passage 271 formed in a side extension of the body member 101. Atmospheric pressure, therefore, opposes the pressure of the liquid in the chamber 237, tending to hold the passages 263 open.
  • a compression coil spring 273 is provided for supplev menting the resistance of the atmospheric pressure to closing of the passages 263. Means are provided for adjusting the pressure of the spring 273 against the body of valve 253. The spring 273 bears at one end against valve body member 255, andat its opposite end against a flanged nut 275 which is threaded on a screw 277. '1 he screw 277 is secured with capacity for turning, but without capacity for longitudinal movement in the cover plate 245.
  • a screw flange 27711 surrounds the screw snank and bears against plate 245.
  • the screw comprises a waist portion 280, a cylindrical head portion 281 and a polygonal head portion 283, the head portions being disposed to project through and beyond the cover plate 245.
  • a raised boss 285 on the face of the plate 245 surrounds the head portion 281.
  • a locking wire 287 is disposed in a slot (not shown) of the boss 285 and extends through the head portion 281 of the .screw for normally retaining the screw in adjusted position.
  • the nut 275 has a flat face that engages an inwardly extending flat finger 289 of the cover plate 245.
  • the finger 289 prevents rotation of the nut 275 so that the nut is caused to be adjusted in and out along the screw 277 according to the direction of turning of the screw.
  • the nut is adjusted downward, and to reduce that pressure, the nut is adjusted upward.
  • the pump body member 101 also includes a passage 291, which is in communication with the inlet of the main engine pump, which in turn also communicates with the discharge chamber of the pump by means of the check valve 293.
  • This check valve serves as a by-pass means to allow fuel to pass through the pump casing from its inlet to its discharge with minimum pressure drop when the pump is for any reason rendered inoperative.
  • the valve 293 includes a stern 297 which is guided in a bare 299 formed in a plate 301.
  • the plate 301 is secured to the body 101 by screws 303.
  • the bore 299 is formed in an axially elongated central portion of the plate y, l,
  • the bore contains in its inner end a compression coil spring 305, which urges the valve 293 toward its seat with predetermined force.
  • the valve normally closes the passage 307 through which the passage 291 and the volute 189 communicate, being urged closed by the prev determined force of the spring 30S and also being held closed by the pressure difference normally maintained by the pump while operating between the discharge pressure developed in the volute 189 and the suction pressure of its inlet and existing in chamber 307.
  • the main engine pump can still pump fuel through the booster pump by overcoming the slight pressure ⁇ difference caused by the spring 305, thus permitting vvalve 293 to open and fuel to pass with a minimum pressure drop through the pump structure.
  • a liquid pump for pumping liquid at or near its boiling point comprising a housing including a liquid pump chamber portion having central inlets at each end thereof and an intermediate annular discharge passage, an outlet passage for said liquid pump communicating with said annular discharge passage, a rotatable main shaft centrally mounted in said housing in said liquid pumping chamber portion, a liquid impeller of the duplex radial type affixed to said shaft for rotation therewith, a liquid ring compressor chamber portion defined within vthe interior of said housing in alignment with said pumping chamber portion, said main shaft extending therethrough, a compressor rotor affixed to said shaft in said compressor chamber portion, said compressor rotor being of less diameter than said impeller rotor to develop a discharge pressure less than that of said liquid pumping chamber portion, vapor and gas inlet means for said liquid ring compressor chamber portion including an internal passage in said housing connecting said compressor chamber portion inlet means with said liquid pumping chamber portion at the location of each of said spaced inlets to continuously remove gas and liquid having entrained vapor from said liquid
  • a liquid pump according to claim l including, fluid by-pass means connecting said liquid pump chamber portion inlets and said condensed liquid and vapor discharge passage, and check valve means i'n said by-pass nieans to allow liquid to pass through the pump from its inlet to its outlet with minimum pressure drop when the pump is inoperative.
  • a liquid pump for pumping liquid at or near its boiling point comprising a housing including, a liquid pumping chamber portion having central spaced inlets at each end thereof and an intermediate annular volute discharge passage, an outlet passage for said liquid pump communicating with said volute discharge passage, a rotatable main shaft centrally mounted in said housing in said liquid pumping chamber portion, a liquid impeller of the duplex radial type affixed to said shaft for rotation therewith, a liquid ring compressor chamber portion defined within the interior of said housing including a rotor affixed to said shaft and arranged in said compressor chamber portion, means to rotate said main shaft, vapor and gas inlet means for said liquid ring compressor chamber portion including an internal passage in said housing connecting said compressor cham- 13 ber portion inlet means with said liquid pumping chamber portion at the location of each of said spaced inlets to continuously remove gas and liquid having entrained vapor from said liquid pumping portion, a discharge passage delined in said housing for condensed liquid and vapor connecting said compressor chamber portion and said outlet passage, and
  • a liquid pump according to claim 4 including, iluid by-pass means connecting said liquid pump chamber portion inlets and said condensed liquid and Vapor discharge passage and check valve means in said by-pass means to allow liquid to pass through the pump from its inlet to its discharge with minimum pressure drop when the pump is inoperative.

Description

H. E. ADAMS 3,080,823
BOOSTER PUMPS sheets-sheet 1 March 12, 1963 Original Filed Nov. 15, 1951 March 12, v1963 H. E. ADAMS 3,080,823
BOOSTER PUMPS Original Filed Nov. 15, 1951 7 Sheets-Sheet 2 Z/////// Y n Q g R .H E d n E M g Q N n N Q n W N 0 Q N Q d' a. e
INVENTOR. #912Mo E. QUAMS H. E. ADAMS BOOSTER -PUMPS March l2, 1963 Original Filed Nov. 15, 1951 7 Sheets-Sheet 3 lv f wllllll.
Nxt
Il d. Ja
INVENTOR. #029.#0 E. AOQHS @Hymn-m orne/dws March 12, `1963 H. E. ADAMS 3,080,823
BOOSTER PUMPS Oiginal Filed Nov. 15, 1951 7 Sheets-Sheet 4 INVENTOR. l/oLD 009m H. E. ADAMS BOOSTER PUMPS March l2, 1963 7 Sheets-Sheet 5 Original Filed Nov. 15, 1951 IN VEN TOR A/'RaAO E, 600/75 March 12, 1963 H. E. ADAMS BOOSTER PUMPS Original Filed Nov. 15, 1951 '7 Sheets-Sheet 6 H. E. ADAMS BOOSTER PUMPS March 12, 1963 7 Sheets-Sheet 7 Original Filed Nov. 15, 1951 s?- i .all Ill l u @1Q l A m w .m s w .w w .N m n wl m l \m w ,y 5 la 7 n 1 7 5 rnv nl., ,n m .n 1 fm m m 5 D mi, umm. m l n ww l Uh .p H .I n
w W W a, w f Y\\ w\\\. w w n. m en ,Il .l i. m m ,f m m m .l \\\m n u /f/ .m w I 7 ...m M m m fm m .V\\\
BYMIM*M Unite States This invention relates to booster pumps, particularly fuel booster pumps for aircraft engines. The novel fuel -booster pump of the present application is particularly designed to be used in the fuel line between a tank mounted booster pump and the main fuel pump of the engine, but is also adapted for other uses. The novel pump is desirably like the combined centrifugal and Vacuum pumps disclosed in United States Patent No. 2,461,865, and in my application Serial No. 652,633, now Patent No. 2,581,828, tiled March 7, 1946, for Pumps, but embodies further improvements especially adapted to meet the exacting requirements of line mounted booster pumps.
This application is a division of application Serial No. 256,580, filed November 15, 1951, now Patent No. 2,956,- 504,
Because of the increased capacity required of the main engine fuel pump of an aircraft engine, it has become necessary to increase the pressure of liquid supplied to the inlet of this pump in order to prevent cavitation and vapor locking within the pump inlet passages. This pressurization has been furnished by a centrifugual booster pump mounted in the fuel tank, by pressurizing the tank, o1', in some instances, by an auxiliary line mounted posi tive type fuel booster pump. Y
With the still greater increase in fuel requirements of the present-day aircraft engine, particularly of the gas turbine type engine, there have developed increased pressure losses in the fuel line between the fuel tank and the main engine pump inlet, together with an increased pressure requirement at the main engine pump inlet because of the greater capacity of the latter pump. Both of these factors have imposed the necessity that constantly higher pressures and ows be supplied by the tank mounted booster pump. This, in turn, has increased the weight of the required tank mounted pump, and has also increased the driving power required therefor.
All these requirements tend to approach or exceed the practical limits of weight and available electric power for booster pumps. The main engine fuel pump must be increased in size, which seems impractical, or, as disclosed herein, it may be supplemented by a line booster pump driven directly by the engine and mounted on the engine itself to pressurize its own main fuel pump.
The engine mounted line booster pump does not do away with the tank mounted booster pump. It merely reduces the discharge requirement from the tank mounted booster pump. The tank mounted booster is necessary for the prevention of vapor locked in the fuel lines, even when the engine driven booster pump is present.
The line' mounted booster pump is required to deal with conditions4 of considerably greater severity than those encountered in the operation of a tank mounted booster pump.
When the fuel in a tank is caused to vaporize or boil because of the reduced ambient absolute pressure as the aircraft climbs, it is ditcult to pump. Under such conditions, either the fuel supply tank must be pressurized to bring the absolute pressure' in the tank above the vapor pressure of the fuel, or, if the tank is vented to the atmosphere, resort must be had to a tank mounted fuel booster pump capable of handling this boiling fuel, as disclosed 1 arent' "ice for example in PatentV No. 2,461,865 and Serial No. 652,- 633, now Patent No. 2,581,828.
Although, in the fuel tank the Iwholel body of fuel is boiling, most of the vapors escape to` the free surface. at the top of the tank and pass out through the vent. Only a very small proportion of the vapor is drawn through the inlet of the pump from the tank. The tank mounted pump, therefore, is required to handle only a smallrproportion of the vapors given off by the fuel in the tank.
In the case of ak fuel line, however, supplying fuel to the pump, none of the vapor that is released from `the time the fuel leaves the tank until its reaches the. pump suction can escape. The whole mixture is carried on by the velocity of the fuel in the line to the inlet of the pump, where all of the vapors evolved from the fuelmust be handled by the pump, if pumping is to continue.
ln the line there is a friction loss, and consequently a pressure drop, between the point where fuel leaves the tank and where it enters the inlet of the line booster pump. This reduction is pressure, due to frictional resistance, reduces the absolute pressure of the fuel trapped in the line below the fuel vapor pressure, causing vapors to be evolved in the line all of the which vapors must be handled by the pump. Thus, the problem of pumping boiling liquids in an enclosed suction line is considerably more dillicult than that of pumping liquids from a tank.
Where relatively small tlows have been involved with resultant lower pressure drops, positive type line booster pumps such as vane or gear pumps have been successfully used. These pumps have to be proportioned, however, so that they will handle a total displacement equal to the liquid fuel to be handled, plus the vapors given ofi` by the fuel in its travel from the tank to the entrance of the positive type booster pump. l
With the increase in flow rate and resulting increased pressure drop, together with the increased volatility of aircraft turbine fuels, the proportion of vapor to liquid has grown to such an extent as to make impracticable the employment of positive type booster pumps. In other words, the size and weight of the required pump would be prohibitive.
It is well known, of course, that a centrifugal pump will handle considerably larger volume for pump weight than will a positive type pump, but it is also well known that a conventional centrifugal pump for liquid is extremely sensitive to the presence of gas or vapor, and that its pumping action will break down when the gas or vapor component constitutes more than three percent by volume of the mixed fluid to be handled.
A combined centrifugal and vacuum pump of the type as exemplified in Patent #2,461,865 and Serial No. 652,- 633, now Patent No. 2,581,828, has unique provision for the separation, removal and recompression of lthe vapors. It has been found that this type of pump can be used on pipe line applications by increasing the separating proportions of the liquid pump and increasing the vapor handling proportions of the vacuum pump or compressor, and tnen returning the recompressed vapors to the fuel tank. This type of pump is now being extensively used as an engine driven booster pump in the manner referred to.
ln the simplest engine driven line booster pump of this kind, the vapors are returned by a separate pipe line back to the fuel tank from which they started, or to some other fuel tank. The vapor removing and compressing element in sending the removed vapors back to the tank has to pressurize the gases and vapors sufficiently to overcome pipe friction and any static head difference between the pump and the receiving tank. This pressure difference, though greater than has to be maintained in the case of the tank mounted fuel booster pump, is still relatively low.
It is not always convenient to return the removed gases and vapors to a fuel taink, however, in which case the only place for the vapors to be discharged would be to the -line that carries the liquid discharged by the booster pump to the main fuel pump inlet. Because of the higher intermediate pressure between the line booster -pump discharge and the main fuel pump inlet, the vapors removed from the suction side of the booster pump would have to be compressed sufficiently to cause them to be substantially completely recondensed. Any uncondensed vapor residue and any uncondensable gases would be so small involume, however, because of the high pressure, as to have no substantial adverse effect upon the main fuel pump. The compression of these vapors from the booster pump inlet absolute pressure to the booster pump outlet absolute pressure, of course, requires greater power because of the greater pressure difference, as compared with the pressure differential required to deliver these same vapors back to the fuel tank.
It is a primary object of the present invention -to provide a liquid booster pump in combination with a compressor capable of drawing off the vapor and gases at the intake side of the pump, and of recompressing them suciently to adm-it of their recombination with Vthe liquid at the discharge side of the pump.
It is a more specific object to provide a centrifugal liquid pump capable of separating entrained gas and vapor from the liquid, together with a compressor of the hydroturbine type driven in unison with the liquid pump and arranged to draw off the vapor and gas from the intake side of the liquid pump, to compress the gas, compress and recondense the vapor, and then to combine its output with the liquid pump output.
To this end it is a feature, in accordance with one practical and advantageous embodiment of the invention,` that the discharge pressure of the compressor is made at least equal to that of the liquid pump by making the rotor diameter of the compressor approximately the same as the impeller diameter of the liquid pump.
It is necessary that the centrifugal liquid pump be designed to give the required full pressure at low engine speeds. When the engine is operating at normal speed, the centrifugal liquid pump, therefore, is generating a much higher pressure than is required. This is because of the well known characteristic of centrifugal pumps lthat the pressure generated varies as the square of the rotational speed, whereas capacity varies as the first power of the rotational speed. These same characteristics are inherent in the hydroturbine vacuum pump or compressor. During normal operation of the engine, therefore, both the centrifugal liquid pump and the compressor of the combination referred to in the preceding paragraph would be operating to deliver considerably higher pressures than are actually necessary. In the case of some aircraft or gas turbine fuel systems, it is desirable to maintain the natural pressure of the main engine fuel pump at some regulated pressure. Where booster pumps are used which generate wide variations in pressure because of variations yin speed, it has -been the practice to interpose some form of regulating valve to maintain the desired inlet pressure to Vthe main engine fuel pump.
As the engine speed is decreased toward idling speed, the required vapor and liquid can be also'decreased. Because of the characteristics of the fuel system, the fric-tional drop in the inlet piping diminishes rapidly with the reduced liquid flow, so that the vapors required -to be handled by the compressor decrease even out of proportion with the decreased rotational speed. If, therefore, the compressor is made adequate to meet the vapor handling requirements at the normal operating speed of the engine, and adequate to furnish the pressure required at the inlet of the main engine fuel pump at that speed, the necessity for making the compressor capable of delivering the same pressure as the associated liquid pump may be avoided by throttling down the discharge pressure of the liquid pump to the required inlet pressure of the main fuel pump, and combining the compressor output with the liquid pump output only after the latter has been throttled down.
It is accordingly a further feature, in accordance with another practical and advantageous embodiment of the invention, that the compressor, though constructed to produce a lower discharge pressure than the liquid pump, is enabled to combine its output with that of the liquid pump by providing a liquid pressure reducing valve at the discharge side of the liquid pump.
It is a still further feature that a combined liquid pump and compressor unit is provided, capable of handling the gas and vapor on the one hand and the liquid, on the other, in the compressor and the liquid pump respectively, and of recombining the pump and compressor outputs, but further adapting for convenient alteration to divert the compressed gas and vapor back to the source of liquid supply in any organization in which such diversion is deemed preferable.
Other objects and advantages will hereinafter appear.
In the drawing forming part of this specification.
FIG. l is a longitudinal sectional view of a combined line pump and compressor embodying one form of the invention, the section being taken upon the line 1 1 of FIG. 4 looking in the direction of the arrows;
FIG. 2 is a fragmentary, longitudinal sectional view of the same structure, the section being taken upon the line 2 2 of FIG. 4 looking in the direction of the arrows;
FIG. 3 is a further longitudinal sectional view of the same structure, the section being taken upon the line 3 3 of FIG. 4 looking in the direction of the arrows;
FIG. 4 is a transverse sectional view taken upon the line 4 4 of FIG. l looking in the direction of the arrows;
FIG. 4a is a transverse sectional view through the compressor, the section being taken upon the line 4ta-4a of FIG. 1, looking in the direction of the arrows;
FIG. 5 is a View in side elevation of a portion of the pump casing with a cover plate removed;
FIG. 6 is a view of one of two alternative cover plates adapted to be applied to the complementary portion of the casing member shown in FIG. 5 when the compressed gas and vapor are to be returned to a fuel tank;
FIG. 7 is a view of an alternative cover plate which is substituted when the compressed gas and vapor are recombined with the liquid en route to the main fuel pump;
FIG. 8 is a fragmentary sectional view similar to FIG. 2, but illustrating a modified pump and compressor combination in which the compressor is capable of delivering as high a discharge pressure as the centrifugal liquid pump;
FIG. 9 is a longitudinal sectional view of a duplex liquid pump and compressor combination in which a single cornpressor serves both working chambers of the liquid pump, the section being taken upon the line 9 9 of FIG. l0 looking in the direction of the arrows;
FIG. l0 is an end view, partly broken away, of the pump and compressor combination of FIG. 9, the planes of the portions shown in section being substantially indicated by the line 0 10 of FIG. 9, looking in the direction of the arrows;
FIG. ll is a fragmentary sectional View taken upon the line Il lli of FIG. 10, looking in the direction of the arrows; and
FIG. 12 is a fragmentary sectional view taken upon the line 12 l2 of FIG. l0, looking in the direction of the arrows.
The illustrative pump and compressor unit of FIGURES l to 7 comprises a casing which consists chiefly of complementary casing members 2 and 3 having flanges 4 and 5, respectivelypthrough which they are secured to one another in axial alignment by machine screws 6. The casing member 3 is provided with threaded bores '7 which are adapted to receive the threaded bodies of headed screws (not shown) for clamping the casing upon a flanged fuel supply pipe section (not shown) in axial alignment therewith.
The unit 1 includes .liquid iinpeller blades 8 and compresser rotor blades 9, both of which are desirably made integral with a driving disc 10. A flange 12 of the disc lil is revolubly received within an annular ilange 13 which forms part of a stationary compressor body member 14.
An annular groove 1l is formed in the body member 14 and forms part of a seal chamber between the liquid end and the vapor end of the impeller-rotor. This chamber is connected to the interior of the liquid impeller passageways by a bore 11x, to avoid the building up of excessive pressure between the impeller shroud and thev lobe seal and thereby to avoid ooding of the vapor pump.
The disc 1t? is secured upon a driving shaft 1S to be driven in unison with the shaft by means of a key 16. The hub of the disc is secured upon a reduced portion 17 of the shaft 15. The left hand hub face of the disc 1G (as viewed in FIGURE l) bears against a washer 18, which washer in turn bears against a shoulder 19 of the shaft 15.` A second washer 20' bears against the right hand hub face of the disc 10, being pressed against the disc by a nut 21 which is threaded onto a further reduced end portion 22 of the shaft 15.
The driving, bearing and sealing details of the shaft 15 form `no part of the present invention. Brielly, the intermediate portion of the shaft is supported in a stationary bearing 23. A sylphon bellows 24 sealed to the shaft 15 through its head 25 at one end, carries at its opposite end a bearing ring 26 which is pressed by the bellows into bearing engagement with an end face of the bearing 23.
An enlarged portion 27 of the shaft 15 carries the inner race 28 of a ball bearing 29, the outer race 3i? of which is secured in a cup portion 31 of the casing member 2. The shaft 15 is adapted to be connected to an engine-driven shaft (not shown) through a splined coupling, the shaft being formed with a splined end 35 for mating with a complementary recess of the engine driving shaft.
The compressor body member 14 is formed interiorly to provide two opposed eccentric lobes 33 and 34. As is well understood, the rotor blades 9 divide the rotor into compartments or buckets, and serve to drive a ring of liquid, in the illustrative case liquid fuel, around in the casing. Since the liquid is thus subjected to centrifugal force, it recedes from the center of rotation as the lobe depth increases and is forced back toward the center by the outer lobe wall as the lobe depth diminishes. The outer boundary of the ring always coincides with the inner wall of the casing 14. The inner boundary or the ring is indicated by the dot and dash line 14e of FIG. 4a. A pocket is alternately expanded and contractedat the inner end of each bucket or compartment of the rotor during the traverse by the bucket of each of the lobes, vapor being caused to be drawn into the bucket through an intake port 36 formed in a stationary central cone 37 as the liquid moves outward ,and being compressed and driven from the bucket through an outlet port 38 of the cone 37 as the liquid moves inward. Since the traverse of a single lobe completes the pumping cycle for each bucket, two dit-.metrically opposed inlet ports 36 and two diametrically opposed outlet ports 38 are provided in the cone 37, so that each lobe has an inlet port and an outlet port associated with it.
The cone 37 forms an integral part of a stationary head section 39 which has passages 4i) therein that communicate with the ports 36, and passages 41 therein that communicate with the ports 38. The left hand face of the head section 39 is generally open and is covered by a ported disc 42. The casing member 2 carries the body member 14, the head member 39, and the ported disc 42.
Body member 14 is composed of the annular ring 13, lobes 33 and 34, head section 39 and ported disc 42, which are all formed into one inte-gral part by furnace brazing. Studs 43 are passed through the casing member 2, and have reduced ends threaded into the ring portion 13 ofthe body member 14. Nuts 45' are threaded onto the studs 43 for holding the body members 2 and 14 together.
Dowel pins 46 are passed through the disc 42 and the head member 39 and into the annular ring 13 for maintaining the alignment and orientation of these parts during the brazing process. y
The casing member 2 is provided with vapor inlet passages 47 and with vapor outlet passages 48 which com municate respectively with the inlet passages 40 and the outlet passages 41 of the head member 39. T he' passages 47 and 48 also communicate with inlet and discharge passages 49 and 50, respectively, which are formed in the casing member 3.
The liquid fuel, with its entraine'd vapor, enters the eye ofthe impeller a`t51. As explained in Serial No. 652,633, now Patent No. 2,581,828, the liquid pump is especially designed to cause the gas and vapor to be separated from the liquid and to becollected in an annular channel 52 which isformed inthe liquid pumping chamber of the casing member 3. The vapor and gas are sucked out from the channel 52 through bores 52x and 53, a channel section 54 formed in the casing member 3, a channel section 55 formed jointly in the casing member 3 and a cover plate S6, and thence through the passages 49, 47 and 40 to the pumping chamber of the compressor.
v The liquid fuel is freed of entrained gas and vapor by the'cornbined action ofthe liquid pump and the compressor, and is then discharged through a volute passage 57 to a discharge conduit 58. In passing from the passage 57 to the conduit 5S, the liquid automatically has its pressure reduced by reducing valve mechanism 59 to substantially a predetermined gaugeI pressure regardless of the speed at which the engine is operating. The valve mechanism is mounted in the conduit 58, being carried by a supporting plate 6i). The plate Gil is detachably secured along with a cover plate 61 to the portion of casing 3 which forms an end of the conduit 58 by machine screws 62.
The plate 60 is connected in sealed relation to one end of a corrugated bellows wall 63. The opposite end of the bellows wall is connected to a movable valve body 64 which is composed of complementary members 65 and 66. The bellows is closed at its forward end by the piston, but the bellows is open at its rear end and communicates with the atmosphere through passages 67, 68, 69, 70, 71, 72 and a vertical drain tapping 72x at the bottom of casing member 2.
The valve body 64 slides in a cylindrical member 73 which is iixed in the conduit 58. The liquid fuel discharged from the volute passage 57 enters a circumferential channel 74 of the valve formed externally of the valve body, through an opening 75 which is provided in the 'cylindrical member 73. The channel 74 normally extends to the left of the cylindrical member 73 and cornmunicates through openings 76 with the conduit 58. A stop shoulder 77 stands in the way of the valve body 64 to limit inward movement of the valve and prevent overextension of the bellows 63. The end of the adjusting screw 80 stands in the way of the valve to limit outward movement of the valve and thereby prevent over-compression of the bellows.
A compression coil spring 78 bears at one end against the valve body 64 and at the opposite end against a hanged and shouldered nut 79. The nut is threaded on the screw Si) which is mounted on the plate 61 with capacity for ro tation, but not for axial movement. The screw is formed with a flange 81 which engages' the inner face of the plate 61. A neck and head portion 82 of the screw extends through the plate 61, the protruding portion of the head being slotted. A boss 83 on the face of plate 61 is slotted to provide a means of locking screw Sil with lockwire 84.
The flange of nut 79 has a llat face which bears against a dat sided linger 85 that extends inward from the plate 61. The linger 85 prevents rotation of the nut 79. As ,the screw 89 is turned by the head 82, therefore, the iiut 79 is prevented from turning, and hence is caused to be fed axially along thescrew in one direction or 7 the other according to the direction in which the'screw is turned.
Liquid will ow from the volute passage 57 through the valve channel 74 and into the conduit 58 so long as the valve body is not moved far enough to the right to close the openings 76 completely. During operation, pressure of the liquid in the conduit 58 tends to move the valve body or piston 64 toward the right, and this is opposed by atmospheric pressure acting within the bellows and the pressure of the spring 78 bearing leftward against the piston. The absolute pressure in the conduit S, therefore, will generally be substantially atmospheric pressure plus a predetermined amount which depends in value upon the adjustment of the nut 79. When the nut 79 is adjusted toward the left, the resistance of the spring 78 which will have to be overcome prior to cut off, is increased, and when the nut 79 is adjusted toward the right, the resistance of the spring 78, which will have to be overcome prior to cut off, is reduced. The former adjustment increases the gauge pressure within the conduit while the latter adjustment reduces the gauge pressure within the conduit.
There is a passageway 79a leading fromv the chamber beyond the discharge valve, back to the pump suction. The purpose of this passageway is to bleed oif some of the fuel beyond the discharge valve chamber back to the pump suction for the purpose of better regulation of the discharge pressure. By continuously bleeding of a slight amount of the fuel, the pressure is prevented from reaching undesirable limits when the control valve itself is closed and has done all of the regulating it can.
There is some liquid which is discharged by the vapor pump beyond the control valve and at times of operation where the control valve is closed, the discharge pressure developed by the vapor pump may be too high for the engine fuel system. By bleeding olf this small amount of liquid, the ultimate discharge pressure is prevented from going to too high a limit.
Because of the pressure reduction effected by the valve 59, the compressor itself can operate at a lower discharge pressure than would otherwise he necessary if it were required to discharge against the full centrifugal pump pressure. The purpose of this valve is primarily for regulation of the fuel pressure and advantage is taken, as long as the valve is required in the circuit, to discharge the vapors to the reduced pressure.
The aircraft designer may cause the compressed gas and vapor to be discharged into the conduit 58 which leads forward to the inlet of the main engine pump, or to be returned to a fuel tank, whichever is more convenient.
If the compressor output is to be returned to a fuel tank, the cover plate 56, as shown in FIGURES 4 and 6, is applied to the casing member 3. The upper and lower halves of the plate 56 are divided from one another by a horizontal partition 87 which divides a lower pocket SS from upper pockets S9 and 90. The partition S7 coincides with a partition wall 91 of the casing member 3. The upper pockets 89 and 90 are divided from one another by a vertical imperforate partition 92 which coincides with a partition wall 93 of the casing member 3. The lower pocket 38 forms a part of the conduit section 55 through which communication is established between the groove S2 of the centrifugal liquid pump and the intake side of the compressor, as
A already described.
vapor forward through the conduit 58, however, a cover plate 56a is used in place of the cover plate 56, and the plug 94 is secured in place, as shown in FIGURE 2. The plate 56a is like the plate 56, being provided with partitions 87a and 92a which divide the inner side of the plate into pockets 88a, 89a and 99a. The only difference between the two plates resides in the fact that the parti- Iion 92a has a bore 95 formed in it for placing the pockets 89a and 90a in communication with one another. This places the pocket 39a in communication with the outlet passage Si? of the compressor. The pocket 89a always communicates directly with the conduit 53 and hence transmits the products from the compressor into the conduit 58. IIn this case the plug 94, rather than a tube is applied to the interiorly threaded end of the passage 50.
The plates 56 and 56a are not necessarily mutually distinct structures. 'The plate 56 may be converted to the plate 56a simply by making a bore 95 through the partition 92. The plate 55a may be converted back to the plate 56 by plugging the bore with a bolt 95a.
The pump of FIGURE S differs from the pump of FIGURES l to 7 primarily in the fact that the discharge pressure of the compressor is caused to be at least as great as the unthrottled output pressure of the centrifugal pump, so that no throttling of the centrifugal pump output is required in order to permit the compressor output to be combined with the centrifugal pump output.
All the parts of the pump of FIGURE 8 are found in FIGURES l to 7, and in general the principle of operation is the same. Corresponding reference characters have accordingly been applied to corresponding parts with the subscript b added in each instance. No comprehensive, detailed description will be given, but attention will be confined to the points of difference with particular emphasis upon the salient novelty of the FIG- URE 8 form of pump.
The pump of FIGURE 8 is characterized by the fact that the blades 9b of the compressor rotor are made approximately as large in diameter as, or, as shown a little larger than the blades 3b of the centrifugal pump impeller. This is brought about by generally increasing the radial dimensions of the compressor part in proportron to the centrifugal pump part, and by adjusting thc communicating passages slightly to maintain the operative relation of the centrifugal pump and the comperssor previously described.
The desired output pressure relationship could bc brought about by relatively increasing the speed of the compressor. For lightness, compactness and simplicity, however, the driving of the pump impeller and the compressor rotor in unison from a common shaft is found advantageous. In that kind of an organization the rotor diameter must be approximately the same as the impeller diameter if the compressor output pressure is to equal or exceed the centrifugal pump output pressure.
As before, the entrained gas and vapor are separated from the liquid fuel at the intake side of the liquid pump, are drawn olf by the compressor, compressed, and discharged to the conduit 50h. The conduit Silb, as before, may be closed olf from communication with the conduit 53h by a cover plate like the plate 56 of FIGURE 6, 1n which case the plug 9% would be removed from the internally threaded end of the conduit 501) and replaced by a tube which leads to a fuel tank.
Alternatively, however, the plug Mb may be used to close the internally threaded end of the conduit 50h, and conduit Sb may be caused to deliver to the conduit 58b through a cover plate like the cover plate 56a of FIGURE 7. The significant feature of FIGURE 8 resides in the fact that the discharge pressure of the compressor is at least as great as that of the liquid pump. No throttling valve is required in the conduit SSb, therefore, for enabling the compressor output to be delivered to and intermingled with the liquid pump output, and none is provided.
For limiting the pressure supplied at the intake of the main fuel pump, a throttling valve may be provided at the intake of that pump, but this valve acts impartially upon the previously combined outputs of the compressor and the centrifugal pump, and not upon the output of the liquid pump to the exclusion of the compressor.
The compressor of FIGURE 8 consumes relatively more power than the compressor of FIGURES 1 to 7. The FIGURE 8 combination has a wider range'of usefulness, however, than the combination of FIGURES 1 to 7 because it can be applied in a wider range of installations, wherein a recombination of liquid pump and compressor outputs is required. y
In FIGURES 9 to 12, the invention is illustrated as embodied in a combined liquid pump .and compressor unit in which the liquid pump is of theduplex type. Here the liquid pump is divided axiallyfinto two pumping chambers having separate inlets but a common `outlet. The vapors separated in the respective intakes are separately drawn oif by the respective lobes of the compressor, the compressor having distinct intake connections to the two lobes but a common outlet from them. The lobes of Athe compressor .are caused thus to exert their suction effects separately upon the vapor collection channels of the respective centrifugal pump chambers, caus ing each to be effectively and independently evacuated, as pointed out in Serial No. 652,633.
The liquid pump output is throttled as in the illustrative case of FIGURES l to and 7, and the compressor output is fed forward and combined with the throttled liquid pump output en route to the main engine pump.
The liquid pump of FIGURES 9 to l2 comprises body composed chiefly of body members 101, 1G13 and 165. The body member 101 supports the other body parts, being formed with a supporting flange 109 pro.- vided with bolt holes 111 through which it may be attached to the engine body. The body member 101 is also provided with tapped bores 113 for receiving machine screws (not shown) through which connection may be made to a flanged fuel supply pipe (not shown).
The body member 101 is formed with a generally cylindrical openingy in which portions of the body memincludes a flanged end closure plate 115 through which it is attached to the body member 1191 by screws 117.. The body member 165 similarly includes a flanged end closure plate 119 through which it is secured to the body member 1111 by screws 118 Whose shanks also pass through an attaching flange 121 of compressor head member 123 for securing the head 123 along with Vthe plate 119 to the body member 191. A flanged, cup-like compressor body member 125 is secured to the head 123 by screws 127.
A shaft 131 is equipped with Va splined -driving portion 133 through which it may be connected to be driven by the engine itself. The shaft is supported near one end in a bearing 135 which is carried by the plate 115 and near the other end in a bearing 137 which is carried by the plate 119. The bearing 137 is contined'against axial movement between a shoulder 139 of the plate 119 and a split resilient ring 141 carried by the plate 119. A collar 143 disposed on the shaft 131 with its left face in engagement with a split resilient ring 145 that interts with the shaft, has its right face disposed to bear against the bearing 137.
To the right of the bearing 137 there are successively provided on the shaft a collar 147, a sleeve 149, the hub of compressor rotor 151, a washer 153, and a nut 155. The nut and the washer 153 clamp the rotor hub firmly against a shoulder 159 of the shaft. The collar 147, the sleeve 149, and the hub of the rotor 151 lill the space from the shaft end to the bearing 137 snugly 45 bers 103 and 105 are received. The body member 1&3 A'
enough to prevent end play of the shaft, but not tightly enough to cause binding or objectionable frictional resistance to rotation of the shaft. A key 157 provides a driving connection between the shaft 131 and the rotor 151. y g
Between the bearings 135and 137 the shaft has Xed to it the centrifugal pump 'impeller 161. The impeller 161 comprises a central hub 16.3 which is connected to ,the shaft 131 through a key 165. The hub is conned on the shaft between collars 167 and 169. The collar 167 bears against a shouldered collar 171 which is integral with the shaft. The collar 169 bears against a resilient split ring 173 which is interlocked with the shaft.
The spacing is such that the hub is held between the -shouldered collar 171 and the split ring 173. The impeller is driven by key 165. The hub 163 has integral with it a central partition ilange 175 upon which the impeller blades 177 and 17S are mounted. I
-Liquid fuel` with entrained gas and vapor entersthe centrifugal pump through an opening 179 formed in the body member111. It divides as it entersl the body, one portion going through passage 131 of the casing member 161 andpas'sage 183 of casing member 103 to the eye of 'the impeller at the left hand side of the partition 175, and the other portion going through passage of casing member 1131 and passage 187 of casing member to the eye of the impeller at the right hand side of the partition 175.
The two chambers of the centirfugal pump discharge the liquid in common Ato a volute passage 189 formed in the body member 191. The gases and vapors are separated from the liquid near the inner boundary of the impeller blades, being collected. for the respective chambers 191 and. 193 in annular channels 195 and 197. (See particularly FIGS. 9 and 11.) The channel 195 communicates through a passage 199 with a circumferential passage 2111 which is formed jointly between the body members11 and 153. l
The channel 197 communicates through a passage 293 with a passage 265 which is formed jointly by the body members 191 and 165. The channel 231 is connected through passages formed in the body members 1131 and 1115 with the inlet passage 233 of the one lobe of the compressor and the channel 205 is connected through passagesformedin the body members 1111 and 105, through separate inlet passage 231 connecting tothe other lobe of the compressor. Theinlet passages 231 and 233 do not communicate with one another. in this way, the lower and upper lobes of the compressor are caused to act as separate suction means for drawing off the gas and vapor from the respective centrifugal pump charnbers 191 and 193.
The compressed gases and vapors are discharged from the two lobes to a common outlet passage 235. The passage 135 is connected through passages to deliver the products of the compressor to a chamber 237 for recombination with the output of the centrifugal pump after the' liquid from the centrifugal pump has had its pressure reduced by throttling.
The chamber 2,37, formed in the body member 191, includes a cylindrical extension 239 in which a throttling valve 241 is mounted. The throttling valve is designed to reduce the pressure of the liquid passing from the volute 189 of the centrifugal `pump to the chamber 237. The valve comprises a supporting plate 243 which, to-
gether with a cover plate 245, is clamped to the end of An opening 261 formed in the cylinder 257 in line with the end of the volute 189 admits liquid to the space 259. Normally the liquid entering the space 259 flows out of this space at the forward end of the valve body through side passages 263. The liquid which thus enters the chamber 237 bears against the end of the valve body 253 and tends to force the valve upward toward a position in which communication between the space 259 and the chamber 237 would be cut off. The liquid inl chamber 237 may pass through an opening 265 in the cylinder 257 tothe space which surrounds the bellows 249.
The interior of the bellows 249 is Vented to the atmosphere through a space 267 which is provided between the plates 243 and 245, a port 269 formed throught the plate 243, and a passage 271 formed in a side extension of the body member 101. Atmospheric pressure, therefore, opposes the pressure of the liquid in the chamber 237, tending to hold the passages 263 open.
A compression coil spring 273 is provided for supplev menting the resistance of the atmospheric pressure to closing of the passages 263. Means are provided for adjusting the pressure of the spring 273 against the body of valve 253. The spring 273 bears at one end against valve body member 255, andat its opposite end against a flanged nut 275 which is threaded on a screw 277. '1 he screw 277 is secured with capacity for turning, but without capacity for longitudinal movement in the cover plate 245.
A screw flange 27711 surrounds the screw snank and bears against plate 245. Above the flange the screw comprises a waist portion 280, a cylindrical head portion 281 and a polygonal head portion 283, the head portions being disposed to project through and beyond the cover plate 245. A raised boss 285 on the face of the plate 245 surrounds the head portion 281. A locking wire 287 is disposed in a slot (not shown) of the boss 285 and extends through the head portion 281 of the .screw for normally retaining the screw in adjusted position.
The nut 275 has a flat face that engages an inwardly extending flat finger 289 of the cover plate 245. The finger 289 prevents rotation of the nut 275 so that the nut is caused to be adjusted in and out along the screw 277 according to the direction of turning of the screw. To increase the amount of pressure above atmospheric pressure which will be maintained in the chamber 237, the nut is adjusted downward, and to reduce that pressure, the nut is adjusted upward.
The pump body member 101 also includes a passage 291, which is in communication with the inlet of the main engine pump, which in turn also communicates with the discharge chamber of the pump by means of the check valve 293. This check valve serves as a by-pass means to allow fuel to pass through the pump casing from its inlet to its discharge with minimum pressure drop when the pump is for any reason rendered inoperative.
The valve 293 includes a stern 297 which is guided in a bare 299 formed in a plate 301. The plate 301 is secured to the body 101 by screws 303. The bore 299 is formed in an axially elongated central portion of the plate y, l,
301. The bore contains in its inner end a compression coil spring 305, which urges the valve 293 toward its seat with predetermined force. The valve normally closes the passage 307 through which the passage 291 and the volute 189 communicate, being urged closed by the prev determined force of the spring 30S and also being held closed by the pressure difference normally maintained by the pump while operating between the discharge pressure developed in the volute 189 and the suction pressure of its inlet and existing in chamber 307. Upon stoppage of the pump, due to anyfailure of its drive system or in the pump itself, the main engine pump can still pump fuel through the booster pump by overcoming the slight pressure `difference caused by the spring 305, thus permitting vvalve 293 to open and fuel to pass with a minimum pressure drop through the pump structure.
` i The pumped liquid, whether or not combined with the .compressor output is discharged from the chamber 237 'ments of my invention. I do not wish, however, to be confined to the embodiments shown, but what I desire to cover by letters patent is set forth in the appended claims.
I claim:
l. A liquid pump for pumping liquid at or near its boiling point comprising a housing including a liquid pump chamber portion having central inlets at each end thereof and an intermediate annular discharge passage, an outlet passage for said liquid pump communicating with said annular discharge passage, a rotatable main shaft centrally mounted in said housing in said liquid pumping chamber portion, a liquid impeller of the duplex radial type affixed to said shaft for rotation therewith, a liquid ring compressor chamber portion defined within vthe interior of said housing in alignment with said pumping chamber portion, said main shaft extending therethrough, a compressor rotor affixed to said shaft in said compressor chamber portion, said compressor rotor being of less diameter than said impeller rotor to develop a discharge pressure less than that of said liquid pumping chamber portion, vapor and gas inlet means for said liquid ring compressor chamber portion including an internal passage in said housing connecting said compressor chamber portion inlet means with said liquid pumping chamber portion at the location of each of said spaced inlets to continuously remove gas and liquid having entrained vapor from said liquid pumping portion, means to rotate said main shaft, a pressure reducing valve interposed in said outlet passage for said liquid pumping portion, said valve including pressure responsive means connected to the ambient pressure, and cooperating pressure responsive means in fluid communication and responsive to the discharge of the centrifugal liquid pump portion, said last-named means acting as a control to regulate the liquid discharge pressure in conformity with the discharge pressure of the compressor portion and a discharge passage dened in said housing for condensed liquid and vapor connecting said compressor chamber portion and said liquid outlet passage at a location downstream of said valve.
2. A liquid pump according to claim 1 wherein said liquid ring compressor portion includes two lobed portions and a separate inlet feeding each of said lobed portions, each of said inlets being connected to said liquid pumping chamber portion in the vicinity of a respective one of said liquid pumping chamber inlets.
3. A liquid pump according to claim l including, fluid by-pass means connecting said liquid pump chamber portion inlets and said condensed liquid and vapor discharge passage, and check valve means i'n said by-pass nieans to allow liquid to pass through the pump from its inlet to its outlet with minimum pressure drop when the pump is inoperative.
4. A liquid pump for pumping liquid at or near its boiling point comprising a housing including, a liquid pumping chamber portion having central spaced inlets at each end thereof and an intermediate annular volute discharge passage, an outlet passage for said liquid pump communicating with said volute discharge passage, a rotatable main shaft centrally mounted in said housing in said liquid pumping chamber portion, a liquid impeller of the duplex radial type affixed to said shaft for rotation therewith, a liquid ring compressor chamber portion defined within the interior of said housing including a rotor affixed to said shaft and arranged in said compressor chamber portion, means to rotate said main shaft, vapor and gas inlet means for said liquid ring compressor chamber portion including an internal passage in said housing connecting said compressor cham- 13 ber portion inlet means with said liquid pumping chamber portion at the location of each of said spaced inlets to continuously remove gas and liquid having entrained vapor from said liquid pumping portion, a discharge passage delined in said housing for condensed liquid and vapor connecting said compressor chamber portion and said outlet passage, and means for reducing the pressure of the liquid in said outlet passage prior to its being combined with the condensed liquid and vapor from said discharge passage, said last mentioned pressure reducing means including a throttle valve, and actuation means in iuid communication with the liquid in the outlet passage and with atmospheric pressure for positioning said throttle valve in proportion to the pressure balance between the ambient atmospheric pressure and the pressure of the liquid in said outlet passage whereby said cornpressor chamber portion output is mixed with the liquid discharge in said outlet passage at substantially the same p'ifessures.
5. A liquid pump according to claim 4 including, iluid by-pass means connecting said liquid pump chamber portion inlets and said condensed liquid and Vapor discharge passage and check valve means in said by-pass means to allow liquid to pass through the pump from its inlet to its discharge with minimum pressure drop when the pump is inoperative.
References Cited in the tile of this patent UNITED STATES PATENTS 2,461,865 Adams Feb. 15, 1949 2,553,066 Southern May 15, 1951 2,612,844 Grise Oct. 7, 1952 2,666,393' Troeger et al Ian. 19, 1954 FOREGN PATENTS 682,295 France May 26, 1930 511,305 Great Britain Aug. 16, 1939 97,078 Sweden Oct. 10, 1939

Claims (1)

1. A LIQUID PUMP FOR PUMPING LIQUID AT OR NEAR ITS BOILING POINT COMPRISING A HOUSING INCLUDING A LIQUID PUMP CHAMBER PORTION HAVING CENTRAL INLETS AT EACH END THEREOF AND AN INTERMEDIATE ANNULAR DISCHARGE PASSAGE, AN OUTLET PASSAGE FOR SAID LIQUID PUMP COMMUNICATING WITH SAID ANNULAR DISCHARGE PASSAGE, A ROTATABLE MAIN SHAFT CENTRALLY MOUNTED IN SAID HOUSING IN SAID LIQUID PUMPING CHAMBER PORTION, A LIQUID IMPELLER OF THE DUPLEX RADIAL TYPE AFFIXED TO SAID SHAFT FOR ROTATION THEREWITH, A LIQUID RING COMPRESSOR CHAMBER PORTION DEFINED WITHIN THE INTERIOR OF SAID HOUSING IN ALIGNMENT WITH SAID PUMPING CHAMBER PORTION, SAID MAIN SHAFT EXTENDING THERETHROUGH A COMPRESSOR ROTOR AFFIXED TO SAID SHAFT IN SAID COMPRESSOR CHAMBER PORTION, SAID COMPRESSOR ROTOR BEING OF LESS DIAMETER THAN SAID IMPELLER ROTOR TO DEVELOP A DISCHARGE PRESSURE LESS THAN THAT OF SAID LIQUID PUMPING CHAMBER PORTION VAPOR AND GAS INLET MEANS FOR SAID LIQUID RING COMPRESSOR CHAMBER PORTION INCLUDING AN INTERNAL PASSAGE IN SAID HOUSING CONNECTING SAID COMPRESSOR CHAMBER PORTION INLET MEANS WITH SAID LIQUID PUMPING CHAMBER PORTION AT THE LOCATION OF EACH OF SAID SPACED INLETS TO CONTINUOUSLY REMOVE GAS AND LIQUID HAVING ENTRAINED VAPOR FROM SAID LIQUID PUMPING PORTION, MEANS TO ROTATE SAID MAIN SHAFT, A PRESSURE REDUCING VALVE INTERPOSED IN SAID OUTLET PASSAGE FOR SAID LIQUID PUMPING POR-
US790315A 1951-11-15 1958-12-19 Booster pumps Expired - Lifetime US3080823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US790315A US3080823A (en) 1951-11-15 1958-12-19 Booster pumps

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US256580A US2956504A (en) 1951-11-15 1951-11-15 Booster pumps
US790315A US3080823A (en) 1951-11-15 1958-12-19 Booster pumps

Publications (1)

Publication Number Publication Date
US3080823A true US3080823A (en) 1963-03-12

Family

ID=26945464

Family Applications (1)

Application Number Title Priority Date Filing Date
US790315A Expired - Lifetime US3080823A (en) 1951-11-15 1958-12-19 Booster pumps

Country Status (1)

Country Link
US (1) US3080823A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR682295A (en) * 1929-09-25 1930-05-26 Holden And Brooke Ltd Method and apparatus for activating circulation in hot water circuits
GB511305A (en) * 1938-03-26 1939-08-16 Gilbert Gilkes And Gordon Ltd Improvements in and relating to centrifugal fluid pumps
US2461865A (en) * 1943-07-06 1949-02-15 Nash Engineering Co Pump
US2553066A (en) * 1944-06-30 1951-05-15 Southern John Self-priming centrifugal pump
US2612844A (en) * 1950-08-24 1952-10-07 Gilbert & Barker Mfg Co Priming means for centrifugal pumps
US2666393A (en) * 1949-09-28 1954-01-19 Bendix Aviat Corp Self-priming centrifugal pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR682295A (en) * 1929-09-25 1930-05-26 Holden And Brooke Ltd Method and apparatus for activating circulation in hot water circuits
GB511305A (en) * 1938-03-26 1939-08-16 Gilbert Gilkes And Gordon Ltd Improvements in and relating to centrifugal fluid pumps
US2461865A (en) * 1943-07-06 1949-02-15 Nash Engineering Co Pump
US2553066A (en) * 1944-06-30 1951-05-15 Southern John Self-priming centrifugal pump
US2666393A (en) * 1949-09-28 1954-01-19 Bendix Aviat Corp Self-priming centrifugal pump
US2612844A (en) * 1950-08-24 1952-10-07 Gilbert & Barker Mfg Co Priming means for centrifugal pumps

Similar Documents

Publication Publication Date Title
US2330558A (en) High altitude fuel system for aircraft
US2704516A (en) Rotary pump
US2957421A (en) Fuel supply pump for prime movers
US2888097A (en) Lubrication system
JPH02291489A (en) Rotary hydraulic vane pump
US2532856A (en) Liquid feeding system
US2192660A (en) Variable displacement fuel pump
US3849020A (en) Fluidic compressor air bleed valve control apparatus
US3576375A (en) Fluid pumping system
US2318292A (en) Fluid pump
US3147712A (en) Fuel pumping system for gas turbines
US2800083A (en) Power transmission
US2713244A (en) Compound gear and centrifugal pump
US3080823A (en) Booster pumps
US3045602A (en) Booster pumps
US2956504A (en) Booster pumps
WO1991007592A1 (en) Integral liquid ring and regenerative pump
US2741089A (en) Controlling fuel supply for an aircraft gas turbine engine during acceleration at different altitudes
US2785634A (en) Fluid pressurizing apparatus
US1979621A (en) Balanced turbulence pump
US3811797A (en) Fuel pumps for use in conduction with gas turbine engines
US2411312A (en) Fuel delivery system for internal-combustion engines
US2737897A (en) High altitude fuel system
US2977071A (en) Hydraulic control system for aircraft
US2581764A (en) Metering fuel pump