US3068546A - Method of producing dyed glass fiber yarn - Google Patents

Method of producing dyed glass fiber yarn Download PDF

Info

Publication number
US3068546A
US3068546A US794848A US79484859A US3068546A US 3068546 A US3068546 A US 3068546A US 794848 A US794848 A US 794848A US 79484859 A US79484859 A US 79484859A US 3068546 A US3068546 A US 3068546A
Authority
US
United States
Prior art keywords
yarn
fabric
glass
passing
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US794848A
Other languages
English (en)
Inventor
Remus F Caroselli
Roland K Gagnon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Priority to US794848A priority Critical patent/US3068546A/en
Priority to FR818789A priority patent/FR1250124A/fr
Priority to GB5687/60A priority patent/GB893913A/en
Priority to CH186360A priority patent/CH366513A/de
Priority to DEO7250A priority patent/DE1190149B/de
Priority to BE587886A priority patent/BE587886A/fr
Application granted granted Critical
Publication of US3068546A publication Critical patent/US3068546A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/16Yarns or threads made from mineral substances
    • D02G3/18Yarns or threads made from mineral substances from glass or the like
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/465Coatings containing composite materials
    • C03C25/475Coatings containing composite materials containing colouring agents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders

Definitions

  • This invention relates to the production of dyed glass fiber yarns and more particularly relates to a method for effectively forming colored yarns which may be used to produce glass fabrics having novel design and multicolor effects.
  • glass fibers constitute an ideal material for textile fabrics, such as are used in dress goods, draperies, curtains and the like.
  • the fabric after being woven, is subjected to intense heat of approximately 1200 F. or more to soften and relax the yarn and to give a permanent set to the weave. This results in fabrics which are permanently wrinkle-proof.
  • the heat treated fabric is then passed through a finishing treatment which gives it a high resistance to abrasion, after which it is cured and an after treatment which gives it wash fastness, and water repellency is applied and the fabric is again cured.
  • the primary object of this invention is to provide a dyed glass yarn which will provide for a wider degree of styling flexibility in fabrics woven therefrom than has been heretofore possible.
  • Another object of this invention is to provide a glass yarn having a good shade of color of exceptional light fastness evenly distributed throughout the yarn, said colored yarn being resistant to heat treating temperatures of about 1200 F. and greater.
  • a further object of this invention is to provide a colored glass fiber yarn which may be woven into a fabric which in turn may be heat treated at elevated temperatures to set the weave and relax the yarn, said colored yarn being resistant to the elevated temperatures required under such heat treatments to the extent that the strength characteristics and the color are not adversely affected or alternatively that a heat stable color is developed on and in the yarn at the elevated temperatures.
  • Patented Dec. 18, 1962 Still another object of this invention is to provide a method for producing such a colored glass fiber yarn.
  • yarns comprised of continuous glass filaments are bulked by feeding the yarn into a jet of air or other compressible fluid so that the yarn is supported by the jet of air and the individual filaments are separated from each other and whipped about violently in the turbulent area.
  • the yarn it is only necessary for the yarn to be passed through a zone of suflicient turbulence for a sufiicient distance to separate the filaments and form them into convolutions and other means for forming a turbulent zone may be used.
  • the bulked continuous yarn thus produced is then fed through a dye bath of finely ground colloidally dispersed inorganic pigments, after which the excess dye is removed from the yarn and the dye impregnated yarn is dried.
  • a single end yarn comprised of continuous filaments of glass is texturized by jetting a stream of air so as to form a turbulent area around the yarn as it is drawn therethrough in accordance with the discloseure of US. Patent No. 2,783,- 609, which issued March 5, 1957 to A. L. Breen.
  • the bulked yarn thus produced is passed into and through an aqueous dye bath having a finely divided inorganic pigment dispersed therein.
  • the yarn is thereby Well impregnated and pigment is actually entrapped within the yarn as well as being adsorbed on the surfaces of the glass filaments.
  • the treated yarn is then passed between opposed resilient rollers whereby the excess dye bath solution is removed at the same time that'the dye solution is picked up by the bulked yarn and evenly distributed throughout said yarn.
  • the specific formulation of the dye bath used is as follows: 210 grams of Lemon Yellow No. 10,106 pigment, supplied by B. F. Drakenfeld Company, Inc, is added to 3055 grams of water and intimately dispersed therein.
  • the pigment as suppliedby B. F. Drakenfeld is in the form of a paste which comprises finely ground cadmium-type ceramic pigment in an aqueous dispersion to which a non-ionic surface active agent, a colloidal suspending agent and a preservative have been added.
  • the pigment was initially prepared by calcining the raw materials at a high temperature and grinding the resultant product so that all the particles pass a 325 mesh screen.
  • the yarn is continuously passed through the dye bath at a rate of about 220 feet per minute and then into an oven which is maintained at a temperature of about 600 F.
  • the resultant dried yarn is dyed an even, deep shade of yellow which will not rub off or bleed during subsequent treatment.
  • This yarn is then woven, with one or more different colored y'arns, to form a fabric in which the design is actually woven into the fabric, thus creating novel design and multicolor effects.
  • the woven fabric is then passed directly to a weave set oven which is operating at a temperature of about 1200" F.
  • This oven softens and relaxes the glass, putting a permanent crimp in the yarn and setting the weave for all time.
  • This treatment provides the wrinkle-proof feature of glass fiber fabric.
  • the volatiles remaining in the dyed yarn are volatilized and the pigment is actually fused to the filaments to some extent.
  • the Lemon Yellow No. 10,106 pigment has a metallic base which retains its color at the treating temperature.
  • the heat treated fabric is then passed through a finishing bath and into a curing oven operated at 320 F. wherein the film forming resin contained in the finishing bath is cured on the cloth to provide a high resistance to abrasion plus good hand and soft drape.
  • a water repellent such as stearato-chromyl chloride is provided by passingthe resin coated cloth into a bath containing the water repellent and then into a second curing oven maintained at a temperature of 340 F. Wash fastness and water repellency are thus imparted to the fabric and the fabric is now ready for further fabrication steps.
  • Ceramic type pigments composed of complex inorganic compounds such as iron, chromium, zinc, cobalt, copper, aluminum, cadmium, and selenium, have proven to be especially valuable in the practice of this invention.
  • These pigments may be, by way of example, initially prepared by intimately mixing a vitrifiable base and a ceramic color such as cadmium sulfide selenide red and then calcining the mixture at high temperatures. After calcinetion, the ceramic frit having the color fused therein is ground so that all particles will pass a 325 mesh screen. This provides a fine powder which is heat and light stable, will not migrate or bleed and does not change color during processing.
  • the finely ground inorganic pigments are then dispersed in a water medium containing a non-ionic surface active agent, a colloidal suspending agent and the necessary preservative agent or fungicide.
  • the dispersion will contain approximately between 50 and 75% pigment.
  • the purpose of the non-ionic surface active agent and the colloidal suspending agent is to provide a dye bath constituted of as true a dispersion of an inorganic pigment as is possible.
  • the inorganic pigments used may alternatively be designed to develop colors at tem peratures of about 1200 F. which in turn are light stable. In order to aid more effectively in dispersing the inorganic pigment throughout the dye bath, small quantities of organic thickening agents may be added thereto.
  • thickener W590'7 supplied by Inter-Chemical Corporation
  • Thickener W5907 is a polycarboxylic acid of high molecular weight.
  • ammonia to give a pH in the range of 8 to 8.5 or slightly higher is necessary to provide aid in dispersing the pigment.
  • Other organic compositions which will provide a slightly more viscous bath at a low solids concentration may be used equally as well, the only real criticality depending upon the amount of organic material finally picked up by the yarn prior to treatment at high temperatures.
  • the amount of organic material is preferably kept at a minimum in order to insure against flashing of the organic materials when the dyed yarn is oven treated at temperatures of about 1200 F. which may result in the breakdown of the glass filaments. Also a high organic content at this stage might result in' a discoloration due to incomplete combustion.
  • temperatures of about 90() to 1250 F. and above are preferably maintained in the weave-set oven.
  • the bulked yarns may be successfully dyed using dispersions of finely divided inorganic pigiii) ments in volatile organic liquids such at petroleum or aromatic solvents.
  • an inorganic pigment 0f the type above described is dispersed in a solvent such as toluol to form the dye bath.
  • Solvent compatible dispersing agents may be used to aid in dispersing the pigments.
  • solvent systems are somewhat restrictive due to the possibility of toxic fumes and fire hazards but they do provide an advantage as to dying the treated yarn.
  • the temperatures maintained in the drying and curing ovens are dependent on the speed of the yarn and the length of the path of the yarn through the oven as well as the specific drying or curing treatment provided at that particular stage of the process. Although 220 feet per minute was given above, by way of example, speeds greatly in excess as well as slower speeds might equally as well be used dependent on percent dye pickup and subsequent heating conditions.
  • An improved method of producing a multicolored glass fiber fabric comprising bulking a yarn of coutinous glass filaments by passing the yarn through a zone of sufiicient turbulence to separate the filaments sufiiciently to provide an open structure which readily accepts coloring pigment, passing the yarn through a dispersion of an inorganic pigment, removing excess dispersion and distributing the dye uniformly throughout the yarn by pass ing the, yarn through rollers, drying the yarn at about 600 F., weaving a fabric from this yarn and at least one other yarn dyed in this manner butrhaving a diiferent color, heating the fabric at about 1200 F.
  • steps comprising bulking a yarn of continuous glass filaments by passing said yarn through a zone of suificient turbulence for a suificient distance to separate the filaments and form them into convolutions, impregnating said bulked yarn by passingthe yarn through a dispersion of a finely divided inorganic pigment in a suitable carrier and into a constricted 'zone whereby the excess dispersion is removed from the yarn and the remainingpigment is uniformly distributed throughout he yarn, and drying the yarn.
  • Method for fabricating a multicolored glass fabric which comprises forming yarns of glass filaments, passing the yarn through a zone of sufficient turbulence to separate the filaments and form them into convolutions, impregnating two or more yarns with individually diiferently colored, finely divided inorganic pigments which become entrapped within the convolutions, weaving said yarns into a fabric, treating the fabric at an elevated temperature to relax the yarn and set the weave, coating the fabric with a textile finish and Water repellent, and drying the fabric.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Coloring (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
US794848A 1959-02-24 1959-02-24 Method of producing dyed glass fiber yarn Expired - Lifetime US3068546A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US794848A US3068546A (en) 1959-02-24 1959-02-24 Method of producing dyed glass fiber yarn
FR818789A FR1250124A (fr) 1959-02-24 1960-02-17 Fibres de verre teintes
GB5687/60A GB893913A (en) 1959-02-24 1960-02-17 A method of dyeing glass fibres
CH186360A CH366513A (de) 1959-02-24 1960-02-18 Verfahren zum Färben von Glasfäden
DEO7250A DE1190149B (de) 1959-02-24 1960-02-22 Verfahren zur Herstellung eines gefaerbten Glasfasergarnes
BE587886A BE587886A (fr) 1959-02-24 1960-02-22 Fibres de verre teintes.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US794848A US3068546A (en) 1959-02-24 1959-02-24 Method of producing dyed glass fiber yarn

Publications (1)

Publication Number Publication Date
US3068546A true US3068546A (en) 1962-12-18

Family

ID=25163861

Family Applications (1)

Application Number Title Priority Date Filing Date
US794848A Expired - Lifetime US3068546A (en) 1959-02-24 1959-02-24 Method of producing dyed glass fiber yarn

Country Status (6)

Country Link
US (1) US3068546A (en))
BE (1) BE587886A (en))
CH (1) CH366513A (en))
DE (1) DE1190149B (en))
FR (1) FR1250124A (en))
GB (1) GB893913A (en))

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411287A (en) * 1966-05-18 1968-11-19 Owens Corning Fiberglass Corp Fancy yarn
CN115094653A (zh) * 2022-06-21 2022-09-23 吉林大学 一种彩色玄武岩纤维织物及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1745285A (en) * 1928-02-17 1930-01-28 Edwin J Whiffen Apparatus for impregnating stranded elements
US2515299A (en) * 1948-10-19 1950-07-18 Us Rubber Co Apparatus for imparting false twist to strands
US2593818A (en) * 1949-06-01 1952-04-22 Owens Corning Fiberglass Corp Colored glass fiber product and method of producing the same
US2601394A (en) * 1947-02-01 1952-06-24 Goodrich Co B F Apparatus for impregnating cord
US2755534A (en) * 1951-11-21 1956-07-24 Johns Manville Making a dyed flameproof fabric
US2783609A (en) * 1951-12-14 1957-03-05 Du Pont Bulky continuous filament yarn
US2808635A (en) * 1953-08-11 1957-10-08 Bleachers Ass Ltd Ornamentation of textile fabrics
US2879581A (en) * 1953-06-26 1959-03-31 Exeter Mfg Company Continuous bias constructed glass textile fabric
US2930105A (en) * 1953-07-31 1960-03-29 Goodrich Co B F Glass fiber material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB721858A (en) * 1951-11-13 1955-01-12 Du Pont Glass color composition and the vehicle therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1745285A (en) * 1928-02-17 1930-01-28 Edwin J Whiffen Apparatus for impregnating stranded elements
US2601394A (en) * 1947-02-01 1952-06-24 Goodrich Co B F Apparatus for impregnating cord
US2515299A (en) * 1948-10-19 1950-07-18 Us Rubber Co Apparatus for imparting false twist to strands
US2593818A (en) * 1949-06-01 1952-04-22 Owens Corning Fiberglass Corp Colored glass fiber product and method of producing the same
US2755534A (en) * 1951-11-21 1956-07-24 Johns Manville Making a dyed flameproof fabric
US2783609A (en) * 1951-12-14 1957-03-05 Du Pont Bulky continuous filament yarn
US2879581A (en) * 1953-06-26 1959-03-31 Exeter Mfg Company Continuous bias constructed glass textile fabric
US2930105A (en) * 1953-07-31 1960-03-29 Goodrich Co B F Glass fiber material
US2808635A (en) * 1953-08-11 1957-10-08 Bleachers Ass Ltd Ornamentation of textile fabrics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411287A (en) * 1966-05-18 1968-11-19 Owens Corning Fiberglass Corp Fancy yarn
CN115094653A (zh) * 2022-06-21 2022-09-23 吉林大学 一种彩色玄武岩纤维织物及其制备方法

Also Published As

Publication number Publication date
DE1190149B (de) 1965-04-01
GB893913A (en) 1962-04-18
BE587886A (fr) 1960-06-16
CH186360A4 (en)) 1962-09-28
CH366513A (de) 1963-02-28
FR1250124A (fr) 1961-01-06

Similar Documents

Publication Publication Date Title
US2577936A (en) Colored glass fiber product and method for making same
US4586934A (en) Process and apparatus for coloring textile yarns
US10119207B2 (en) Denim fabric with fire-retardant properties and process of dyeing the warp with indigo blue dye
US2593818A (en) Colored glass fiber product and method of producing the same
US2584763A (en) Colored glass fiber products and method of producing them
US2671033A (en) Colored glass fiber products and methods of producing them
US1895243A (en) Method of coloring textile materials and product thereof
DE2425168A1 (de) Verfahren zur herstellung eines gefaerbten textilen flaechengebildes und danach hergestellte textilien
US2593817A (en) Colored glass fiber product and method of producing the same
US3498826A (en) Treated glass fibers and fabrics formed thereof
US2955053A (en) Process for selectively coloring glass fabric and resultant article
US3068546A (en) Method of producing dyed glass fiber yarn
US2347508A (en) Process for dyeing vinyl copolymer fibers
US3201931A (en) Dyed glass fiber yarn
US3060549A (en) Method of producing multi-colored glass fiber fabrics
US2788295A (en) Titania monohydrate soil retarding treatment of textiles
US2366347A (en) Method of dyeing
US3711316A (en) Process for coloring keratinous fibres with pigment
US2754221A (en) Method of treating glass fibers with a composition including colloidal silica and article produced thereby
US2686737A (en) Method of coating glass fabric with butadiene-acrylonitrile copolymer and article produced thereby
US2450902A (en) Decoration of glass fabrics
US3444116A (en) Glass fiber sizing emulsions comprising epoxidized triglyceride and carboxylic copolymer
US3117052A (en) Multi-colored glass fiber fabrics
US2433292A (en) Colored fibrous glass and method of making same
US3632380A (en) Method of fabric finishing