US3067498A - Hydraulic press structure - Google Patents

Hydraulic press structure Download PDF

Info

Publication number
US3067498A
US3067498A US2581760A US3067498A US 3067498 A US3067498 A US 3067498A US 2581760 A US2581760 A US 2581760A US 3067498 A US3067498 A US 3067498A
Authority
US
United States
Prior art keywords
workpiece
carrier
thimble
ram
upwardly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Joseph W Tomka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordberg Manufacturing Co
Original Assignee
Nordberg Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US75735358 external-priority patent/US3062425A/en
Application filed by Nordberg Manufacturing Co filed Critical Nordberg Manufacturing Co
Priority to US2581760 priority Critical patent/US3067498A/en
Application granted granted Critical
Publication of US3067498A publication Critical patent/US3067498A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T225/00Severing by tearing or breaking
    • Y10T225/30Breaking or tearing apparatus
    • Y10T225/371Movable breaking tool
    • Y10T225/379Breaking tool intermediate spaced work supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53039Means to assemble or disassemble with control means energized in response to activator stimulated by condition sensor
    • Y10T29/53061Responsive to work or work-related machine element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53274Means to disassemble electrical device

Definitions

  • This invention relates to a device for removing frangible rings from a bar and particularly to a device for removing cast iron thimbles from anode bars utilized in the refining of aluminum.
  • a carbon block preferably comprises petroleum coke, pitch, and anthracite blended together and formed under pressure is lowered into the pot.
  • An electrical current is passed through the block, which acts as the anode, and the pot, which acts as a cathode, whereupon the aluminum is melted out of the alumina ore and siphoned otl'.
  • the carbon block burns down and must be replaced on the support bar on which it is carried.
  • the support bars are transported through the various operating stations by a conventional overhead conveyor system.
  • the preformed carbon blocks are provided with a cored cavity arranged to receive a steel stub carried by the copper support bars.
  • the block is bonded to the steel stub by pouring molten iron into the cavity surrounding the stub whereupon the iron hardens and firmly anchors the block to the stub.
  • a further object of the invention is to provide an arrangement for removing such cast iron thimbles from the steel stubs of a support bar, without removing the bar from its overhead conveyor, by press means for forcing the stub and block against wedge type strippers which act to fracture the thimble and thereby cause its efiective removal from the bar stub.
  • FIGURE 1 is a front elevational view, partly in section, of the preferred embodiment of the thimble removing press
  • FIGURE 2 is a side elevational View, partially in section, of the structure of FIGURE 1;
  • FIGURE 3 is a top plan view of the structure of FIGURE 1;
  • FIGURE 4 is a fragmentary vertical sectional view of the stripper punch arrangement
  • FIGURE 5 is a fragmentary side view of the stripper punch and
  • FIGURE 6 is a schematic valve and piping layout for the arrangement.
  • a support bar is carried by a conventional overhead conveyor arrangement 12.
  • the conveyor is formed of an I-beam 14 arranged to support an anode bar body 16 through rollers 18.
  • the moving force is supplied to the foregoing assembly by means of a drive conveyor, generally indicated at 20, which similarly is formed of an I-beam 22 arranged to support a plurality of spaced members 24 by means of rollers 26.
  • the spaced members 24 are secured to and driven by a chain (not shown) and drives the anode bar 16 through a drive rod 28 which is secured to the support bar 10.
  • each anode bar 16 is arranged to support a pair of carbon blocks. Obviously, however, each anode bar could be utilized to support a single carbon block.
  • a cross bar 30 is secured to the bar 16. The ends of the cross bar 30 are turned down as at 31 and a steel stub 32 is bonded to each of the turned down portions.
  • a schematic cast iron thimble is indicated at 36 in FIG- URES 1 and 2 and the contour of the thimble, best seen in FIGURES 4 and 5, corresponds to the contour of the cored opening in the carbon block.
  • the fragmentary burned down carbon block 41 is illustrated in only certain of the views because the primary concern of the invention is the removal of the cast iron thimble from the stub, and the carbon block fragment is removed simultaneously with the thimble.
  • the present invention contemplates the use of a press for removing the cast iron thimbles and is best illustrated in FIGURES 1 through 3.
  • the press indicated generally at 38, comprises a base '48 on which are mounted spaced housings 42, the assembly being held together by means of conventional tie bolts 43.
  • Each anode bar is conveyed to the press station in a manner which will be explained hereinafter.
  • the anode bar After arriving at the press stations, the anode bar is held in position and prevented from rotating by means of an ensnaring bar 44 (FIG- URE 3) which is supported for horizontal movement in spaced guides 46.
  • the ensnaring bar 44 is secured to the piston rod 48 of an air cylinder 50 which, when activated, moves the ensnaring bar 44 to a position whereat the body 16 of the anode bar is received in the U-shaped opening 51.
  • opposed stripper jaws 52 are moved into position by means of stripper jaw cylinders 54 so that the semi-cylindrical openings 56 surround, but do not contact the steel stubs 32. As seen in FIGURE 1, the stripper jaws 52 move into position adjacent the upper surface of each thimble in order to restrain the thimble from upward movement during its removal from the steel stub.
  • the base 40 of the press 38 is provided with an hydraulic cylinder 60 which carries a ram 62 to the end of which is secured one or more stripper punches 64.
  • the stripper punch is best illustrated in FIGURES 4 and 5.
  • the punch at its extreme end 66 has a diameter which is less than the internal diameter of the cast iron thimble and diverges outwardly therefrom to form wedge surfaces 68.
  • the wedge surfaces 68 may be provided at circumferentially spaced points on the punch, but preferably are formed as a single frustro-conical surface around the punch, and are formed so that their widest dimension exceeds the internal diameter of the cast iron thimble.
  • the punch may also be provided with breaker points 70, preferably in the form of a single rod extending through the punch and extending outwardly of the wedge surfaces, as best seen in FIGURE 4.
  • the breaker points 70 are provided with knife edges 72 for a purpose to be described hereinafter.
  • the punch 64 moves upwardly, the punch end 66 contacts the lower surface of the steel stub 32 and moves the stub upwardly out of the cast iron thimble which is restrained from movement by the stripper jaws 52.
  • the wedge surfaces 63 thereof contact the juncture of the lower surface of the thimble and the inner periphery thereof and by wedging action tend to expand the thimble.
  • the thimble being frangible, shatters and drops away from the steel stub 32.
  • the shattered thimble is preferably dropped into one or more chutes (not shown) down which it slides into crap boxes. lt is, therefore, desirable to force the thimble to break in a preferred manner so that the thimble pieces will fall according to a predetermined pattern. This is accomplished by means of the breaker points 7%.
  • FIGURE 4 it is seen that, as the punch moves upwardly, the knife edges 72 are arranged to contact the bottom surface of the cast iron thimble at approximately the same time that the thimble is contacted by the wedge surfaces. The knife edges 72, therefore, exert a pressure on the thimble which causes the thimble to shatter in an axial plane substantially aligned with the breaker points.
  • the discharge chutes can, therefore, be arranged in the most convenient position with assurance that the pieces of the broken thimble will always fall into the chutes rather than into some other parts of the press.
  • the thimble is held stationary during a stripping operation while the punch forces the steel stub, and with it the entire support bar 10, in an upward direction.
  • the fixed conveyor 12 is provided with a movable portion 82 (FIGURE 2) which is free to move upwardly with the support bar.
  • a counter-balance shown generally at 30, is also provided to offset most of the weight of the conveyor portion 82 and of the support bar assembly 10 so that its entire weight need not be carried by the punch and the punch actuating ram.
  • the counter-balance arrangement is best shown in FIGURE 2. It comprises a frame portion 84, rigidly secured to the fixed conveyor rail 14.
  • a counterbalance cylinder 86 is carried by the frame and is provided with a cylinder rod 33 which in turn supports a guide assembly 88 arranged to ride in tracks 90 provided on the frame 84.
  • the movable conveyor portion is in turn supported by the guide assembly.
  • the cylinder 86 is actuated and is adjusted to provide an upward force which is just slightly less than the combined weight of the guide assembly, movable conveyor portion and support bar assembly.
  • the stripper cylinder 60 need furnish only enough force to strip the thimble from the steel stub and can thus be made smaller than if it were required to support all of the structure above the stub.
  • solenoid 110 is energized to shift the spindle of valve 112 to supply air to the head end of ensnaring cylinder 5b which moves the ensnaring bar (FIGURE 3) into position to prevent further motion of the support bar 10.
  • sufiicient tonnage may not be attained by the ram 62 to strip a thimble .from the stub.
  • a pressure switch 136 is provided which is set at the maximum pressure of the pump 13 4 and which will trip when this pressure is reached in order to allow the ram 62 to return to its lowered position and, therefore, not stop the press cycle. In these instances, of course, the thimbles have to be removed by hand.
  • a frame structure having an upwardly opening passage extending lengthwise therethrough to receive workpieces moved along an overlying conveyor, means responsive to movement of a workpiece into said passage for automatically limiting movement of said workpiece fore and aft of the passage, means responsive to actuation of said movement limiting means for automatically preventing upward movement of a part of the workpiece, and means responsive to actuating of said preventing means for automatically exerting an upwardly acting working force on another portion of the workpiece supported directly by the conveyor.
  • a hydraulic press comprising a rail having spaced fixed segments and an intermediate upwardly movable segment joining said fixed segments, a carrier on said in termediate segment, means for counterbalancing the weight of said segment and said carrier and a work-piece carried thereby, and means below said intermediate segment for exerting upwardly acting working forces on said work-piece, said counterbalancing means comprising a hydraulic cylinder operatively supported by said fixed rail segments, said cylinder having a rod operatively connected to the intermediate rail segment for applying a counterbalancing force to said intermediate rail segment, carrier and workpiece during such time as when said upwardly acting working force is applied to said workpiece.
  • a hydraulic press comprising a rail having spaced fixed segments and an intermediate upwardly movable segment joining said fixed segments, a carrier on said intermediate segment, means for counterbalancing the weight of said segment and said carrier and a workpiece carried thereby, and means below said intermediate segment for exerting upwardly acting forces on said Workpiece, said counterbalancing means comprising spaced vertical guide rails mounted on said fixed rail segments and extending upwardly therefrom, a cross piece interconnecting said guide rails at the ends thereof remote from said rail segments, a hydraulic cylinder carried by said cross piece, a guide assembly arranged for vertical movement on said guide rails, said guide assembly being secured to said intermediate rail segment for movement therewith, and a cylinder rod extending from said cylinder and connected to said guide assembly for counterbalancing said guide assembly, segment, carrier and workpiece upon actuation of said hydraulic cylinder.
  • a hydraulic press comprising spaced rail segments having downwardly converging surfaces at their adjacent ends, an intermediate upwardly movable rail segment having ends complementary to and fitted against said surfaces, a carrier movable along said segments and supported by the intermediate segment, and a force transmitting member located below the intermediate segment for exerting an upwardly acting working force on a workpiece carried by said carrier, said force transmitting member being effective to move said carrier and intermediate segment in an upward direction, and hydraulic cylinder means for at times counterbalancing the weight of said carrier and said intermediate segment.
  • abutment means positionable above said workpiece to limit movement of only said workpiece in the direction of said abutment means
  • ram means normally positioned below said workpiece and said carrier adapted to be at times moved upwardly against said carrier and said workpiece for applying an upwardly acting disassembling force to both said carrier and said workpiece in order to disassemble said carrier from said workpiece
  • pressure responsive support means positioned above said carrier and workpiece for lifting said carrier and workpiece so as to offset a major portion of the weight of said carrier and workpiece thereby minimizing said upwardly acting disassembling force required of said ram means.
  • abutment means positionable above said workpiece to limit movement of only said workpiece in the direction of said abutment means
  • ram means normally positioned below said workpiece and said carrier adapted to be at times moved upwardly against said workpiece for applying an upwardly acting working force to said workpiece
  • pressure responsive support means positioned above said carrier and workpiece for lifting said carrier and workpiece so as to offset a major portion of the weight of said carrier and workpiece during the application of said working force by said ram means.
  • pressure responsive abutment means positionable above said workpiece to limit movement of only said workpiece in the direction of said abutment means
  • pressure responsive ram means normally positioned below said workpiece and said carrier adapted to be at times moved upwardly by the application of pressure thereto against said carrier and said workpiece for applying an upwardly acting disassembling force to both said carrier and said workpiece in order to urge said workpiece against said abutment means to disassemble said carrier from said workpiece
  • pressure responsive support means positioned above said carrier and workpiece actuated in timed relationship to said ram means for lifting said carrier and workpiece so as to offset a major portion of the weight of said carrier and workpiece thereby minimizing said upwardly acting disassembling force required of said ram means.
  • a hydraulic press comprising: a base; an upper housing secured to said base; a passage formed in said housing for the reception of a workpiece therein; a guided generally bifurcated member operatively connected to first pressure responsive means for ensnaring said workpiece in order to prevent rotation thereof; a plurality of abutment members; second pressure responsive means for moving said abutment members towards said workpiece so as to place said abutment members in juxtaposition with said workpiece thereby limiting movement of said workpiece in the direction toward said abutment members; a ram member; third pressure responsive means operatively connected to said ram member for moving said ram member against said workpiece in order to apply a working force thereto; and means actuated by the positioning of said bifurcated member and said abutment members by said first and second pressure responsive means, respectively, for actuating said third pressure responsive means.
  • a hydraulic press comprising: a base; an upper housing secured to said base; a passage formed in said housing for the reception of workpieces therein; a plurality of guided generally bifurcated members operatively connected to first pressure responsive means for ensnaring said workpieces in order to prevent rotation thereof; a plurality of abutment members; second pressure responsive means for moving said abutment members towards said workpieces so as to place said abutment members in juxtaposition with said workpieces thereby limiting movement of said workpieces in the direction toward said abutment members; a plurality of ram members; third pressure responsive means operatively connected to said plurality of ram members for moving said ram members against said workpieces in order to apply working forces thereto; and means actuated by the positioning of said bifurcated members and said abutment members by said first and second pressure responsive means, respectively, for actuating said third pressure responsive means.
  • a hydraulic press comprising: a base; an upper housing secured to said base; a passage formed in said housing for the reception of a workpiece therein; a guided generally bifurcated member operatively connected to first pressure responsive means for ensnaring said workpiece in order to prevent rotation thereof; at least one abutment member; second pressure responsive means for moving said abutment member towards said workpiece so as to place said abutment member in juxtaposition with said workpiece thereby limiting movement of said workpiece in the direction toward said abutment member; a
  • third pressure responsive means operatively connected to said ram member for moving said ram member against said workpiece in order to apply a working force thereto; and means actuated by the positioning of said bifurcated member and said abutment member by said first and second pressure responsive means, respectively, for actuating said third pressure responsive means.
  • a hydraulic press comprising fixed rail segments having downwardly converging surfaces at their adjacent ends, an intermediate upwardly movable rail segment having ends complementary to and seated against said surfaces, a carrier movable along said segment and supported by the intermediate segment, a workpiece carried by said carrier, a mechanism to limit upward movement of only the workpiece, and another mechanism below the intermediate segment for inserting an upwardly acting disassembling force on said carrier to disassemble said carrier from the workpiece.
  • a hydraulic press comprising a rail having spaced segments and an intermediate upwardly movable segment joining said fixed segments, a working cylinder below said fixed segment, a carrier movable along said segments and supported by the intermediate segment for upward movement therewith, a workpiece carried by said carrier, a mechanism to limit upward movement of only the workpiece, and a mechanism actuated by the working cylinder for exerting an upwardly acting disassembling force on said carrier to disassemble said carrier from the workpiece.
  • a hydraulic .press comprising a rail having spaced fixed segments and an intermediate upwardly movable segment joining said fixed segments, a carrier on said intermediate segment, a workpiece carried by said carrier, means for cc-unterbalancing the weight of said segment, carrier and workpiece, a mechanism to limit upward movement of only said workpiece, and a mechanism below said intermediate segment for exerting an upwardly acting disassembling force on said carrier to disassemble said carrier from the workpiece.

Description

Dec. 11, 1962 w, TQMKA HYDRAULIC PRESS STRUCTURE 4 Sheets-Sheet 1 Ongmal Filed Aug 26 1958 Dec. 11, 1962 J. w. TOMKA 3,067,498
HYDRAULIC PRESS STRUCTURE Original Filed Aug. 26, 1958 4 Sheets-Sheet 2 IN V EN TOR.
WWW
Dec. 11, 1962 J. w. TOMKA 3,067,498
HYDRAULIC PRESS STRUCTURE Original Filed Aug. 26, 1958 4 Sheets-Sheet 3 awn? 66 mm XWQ- 614a.
Dec. 11, 1962 J. w. TOMKA HYDRAULIC PRESS STRUCTURE Original Filed Aug. 26, 1958 4 Sheets-Sheet 4 United States Patent Ofilice 3,067,498 Patented Dec. 11, 1962 3,067,498 HYDRAULIC PRESS STRUCTURE Joseph W. Tomka, Cincinnati, Ohio, assignor, by mesue assignments, to Nordberg Manufacturing Company, a corporation of Wisconsin Original application Aug. 26, 1958, Ser. No. 7 57 ,353. D1- vided and this application Apr. 4, 1960, Ser. No. 25,817 14 Claims. (Cl. 29-208) This invention relates to a device for removing frangible rings from a bar and particularly to a device for removing cast iron thimbles from anode bars utilized in the refining of aluminum.
This application is a division of my copending application Serial No. 757,353, filed August 26, 1958.
The method most commonly utilized to produce commercially pure aluminum is to place a charge of refined ore called alumina in a carbon pot. A carbon block preferably comprises petroleum coke, pitch, and anthracite blended together and formed under pressure is lowered into the pot. An electrical current is passed through the block, which acts as the anode, and the pot, which acts as a cathode, whereupon the aluminum is melted out of the alumina ore and siphoned otl'. During the refining process, the carbon block burns down and must be replaced on the support bar on which it is carried.
The support bars are transported through the various operating stations by a conventional overhead conveyor system. The preformed carbon blocks are provided with a cored cavity arranged to receive a steel stub carried by the copper support bars. The block is bonded to the steel stub by pouring molten iron into the cavity surrounding the stub whereupon the iron hardens and firmly anchors the block to the stub. After the carbon block has been burned down, it is necessary that the small remaining portion of the block and the cast iron thimble, which anchored the block to the stub, be removed from the bar. In the past, the removal of the cast iron thimble has been done almost completely manually and the job was difiicult, time consuming, and costly.
It is, therefore, a primary object of the present invention to provide a device for stripping such an iron thimble from the support bar stub in a fast, efficient, and inexpensive manner.
A further object of the invention is to provide an arrangement for removing such cast iron thimbles from the steel stubs of a support bar, without removing the bar from its overhead conveyor, by press means for forcing the stub and block against wedge type strippers which act to fracture the thimble and thereby cause its efiective removal from the bar stub.
The invention is best illustrated with reference to the accompanying drawings wherein:
FIGURE 1 is a front elevational view, partly in section, of the preferred embodiment of the thimble removing press;
FIGURE 2 is a side elevational View, partially in section, of the structure of FIGURE 1;
FIGURE 3 is a top plan view of the structure of FIGURE 1;
FIGURE 4 is a fragmentary vertical sectional view of the stripper punch arrangement;
FIGURE 5 is a fragmentary side view of the stripper punch and,
FIGURE 6 is a schematic valve and piping layout for the arrangement.
Referring to the drawings and particularly to FIG- URES 1 and 2, it is seen that a support bar, indicated generally at 18, is carried by a conventional overhead conveyor arrangement 12. The conveyor is formed of an I-beam 14 arranged to support an anode bar body 16 through rollers 18. The moving force is supplied to the foregoing assembly by means of a drive conveyor, generally indicated at 20, which similarly is formed of an I-beam 22 arranged to support a plurality of spaced members 24 by means of rollers 26. The spaced members 24 are secured to and driven by a chain (not shown) and drives the anode bar 16 through a drive rod 28 which is secured to the support bar 10.
In the preferred form, each anode bar 16 is arranged to support a pair of carbon blocks. Obviously, however, each anode bar could be utilized to support a single carbon block. Referring to FIGURE 2, it is seen that a cross bar 30 is secured to the bar 16. The ends of the cross bar 30 are turned down as at 31 and a steel stub 32 is bonded to each of the turned down portions. A schematic cast iron thimble is indicated at 36 in FIG- URES 1 and 2 and the contour of the thimble, best seen in FIGURES 4 and 5, corresponds to the contour of the cored opening in the carbon block. The fragmentary burned down carbon block 41 is illustrated in only certain of the views because the primary concern of the invention is the removal of the cast iron thimble from the stub, and the carbon block fragment is removed simultaneously with the thimble.
The present invention contemplates the use of a press for removing the cast iron thimbles and is best illustrated in FIGURES 1 through 3. The press, indicated generally at 38, comprises a base '48 on which are mounted spaced housings 42, the assembly being held together by means of conventional tie bolts 43. Each anode bar is conveyed to the press station in a manner which will be explained hereinafter. After arriving at the press stations, the anode bar is held in position and prevented from rotating by means of an ensnaring bar 44 (FIG- URE 3) which is supported for horizontal movement in spaced guides 46. The ensnaring bar 44 is secured to the piston rod 48 of an air cylinder 50 which, when activated, moves the ensnaring bar 44 to a position whereat the body 16 of the anode bar is received in the U-shaped opening 51.
After the bar has been properly positioned, opposed stripper jaws 52 are moved into position by means of stripper jaw cylinders 54 so that the semi-cylindrical openings 56 surround, but do not contact the steel stubs 32. As seen in FIGURE 1, the stripper jaws 52 move into position adjacent the upper surface of each thimble in order to restrain the thimble from upward movement during its removal from the steel stub.
The base 40 of the press 38 is provided with an hydraulic cylinder 60 which carries a ram 62 to the end of which is secured one or more stripper punches 64. The stripper punch is best illustrated in FIGURES 4 and 5. The punch at its extreme end 66 has a diameter which is less than the internal diameter of the cast iron thimble and diverges outwardly therefrom to form wedge surfaces 68. The wedge surfaces 68 may be provided at circumferentially spaced points on the punch, but preferably are formed as a single frustro-conical surface around the punch, and are formed so that their widest dimension exceeds the internal diameter of the cast iron thimble. The punch may also be provided with breaker points 70, preferably in the form of a single rod extending through the punch and extending outwardly of the wedge surfaces, as best seen in FIGURE 4. The breaker points 70 are provided with knife edges 72 for a purpose to be described hereinafter.
Referring specifically to FIGURE 4, it is seen that as the punch 64 moves upwardly, the punch end 66 contacts the lower surface of the steel stub 32 and moves the stub upwardly out of the cast iron thimble which is restrained from movement by the stripper jaws 52. As the punch continues its upward movement, the wedge surfaces 63 thereof contact the juncture of the lower surface of the thimble and the inner periphery thereof and by wedging action tend to expand the thimble. The thimble, however, being frangible, shatters and drops away from the steel stub 32. The advantages of this type of removal are that a shorter press stroke may be utilized than would be required if the stub were forced completely out of the thimble and, furthermore, the cast iron thimble immediately drops completely away from the stub and the punch rather than being received around the punch which would be the case if the thimble were not broken. in the latter instance, a separate operation would be necessary to remove the thimble from around the punch.
The shattered thimble is preferably dropped into one or more chutes (not shown) down which it slides into crap boxes. lt is, therefore, desirable to force the thimble to break in a preferred manner so that the thimble pieces will fall according to a predetermined pattern. This is accomplished by means of the breaker points 7%. Referring to FIGURE 4, it is seen that, as the punch moves upwardly, the knife edges 72 are arranged to contact the bottom surface of the cast iron thimble at approximately the same time that the thimble is contacted by the wedge surfaces. The knife edges 72, therefore, exert a pressure on the thimble which causes the thimble to shatter in an axial plane substantially aligned with the breaker points. The discharge chutes can, therefore, be arranged in the most convenient position with assurance that the pieces of the broken thimble will always fall into the chutes rather than into some other parts of the press. As explained heretofore, the thimble is held stationary during a stripping operation while the punch forces the steel stub, and with it the entire support bar 10, in an upward direction. To accommodate this movement, the fixed conveyor 12 is provided with a movable portion 82 (FIGURE 2) which is free to move upwardly with the support bar.
A counter-balance, shown generally at 30, is also provided to offset most of the weight of the conveyor portion 82 and of the support bar assembly 10 so that its entire weight need not be carried by the punch and the punch actuating ram. The counter-balance arrangement is best shown in FIGURE 2. It comprises a frame portion 84, rigidly secured to the fixed conveyor rail 14. A counterbalance cylinder 86 is carried by the frame and is provided with a cylinder rod 33 which in turn supports a guide assembly 88 arranged to ride in tracks 90 provided on the frame 84. The movable conveyor portion is in turn supported by the guide assembly. During a stripping operation the cylinder 86 is actuated and is adjusted to provide an upward force which is just slightly less than the combined weight of the guide assembly, movable conveyor portion and support bar assembly. Thus, the stripper cylinder 60 need furnish only enough force to strip the thimble from the steel stub and can thus be made smaller than if it were required to support all of the structure above the stub.
The cycle of operation will be best understood with reference to the schematic diagram illustrated in FIGURE 6. When the support bar carrying one or more thimbles to be removed is fed into the press station, a limit switch (not shown) is tripped to energize a control relay (not shown). Energization of the relay energizes a solenoid 100 whereby the spool of valve 102 is shifted to accommodate flow of shop air from port Q of valve 102 to port S and thence to the head end of air cylinder 86 whereby a counterbalancing force is provided as explained heretofore. Simultaneously with the energization of solenoid 11H solenoid 110 is energized to shift the spindle of valve 112 to supply air to the head end of ensnaring cylinder 5b which moves the ensnaring bar (FIGURE 3) into position to prevent further motion of the support bar 10.
'When the ensnaring bar has reached its extreme position,
is now pumped through line 119 to the head ends of the four stripper jaw cylinders 54- which move the stripper jaws into position immediately adjacent the upper surfaces of the related thimbles and surrounding, but not contacting, the related steel stubs. Each of the stripper jaws, when reaching its proper position, trips an associated limit switch. These switches are designated 12% 122, 124, and 126. When all four limit switches have been tripped, a relay (not shown) is energized to complete a circuit to solenoid 132 of pressure compensating pump 134 whe eby oil flows through line 135 into the head end of the stripper cylinder 60. The ram 62, together with the punch 64 now moves upwardly as described heretofore to perform the stripping operation.
In certain instances sufiicient tonnage may not be attained by the ram 62 to strip a thimble .from the stub. To alleviate this situation, a pressure switch 136 is provided which is set at the maximum pressure of the pump 13 4 and which will trip when this pressure is reached in order to allow the ram 62 to return to its lowered position and, therefore, not stop the press cycle. In these instances, of course, the thimbles have to be removed by hand.
.After the ram .62 has completedits stripping operation, it travels until limit switch 138 is tripped causing solenoid 116 to be de-energized and solenoid 140 to be energized. Oil now flows through line 142 into the rod ends of the four stripper jaw cylinders 54 and the stripper jaws are consequently moved away from the support bar assembly. Simultaneously, solenoid 132 of pump 134 is de-energized and solenoid 148 is energized. Oil now flows through line 150 and check valve 151 to the rod end of the cylinder 60 whereupon the ram 62 moves downwardly. At the same time, a pilot line 152 supplies oil pressure to the spindle of by-pass valve 154 to shift the valve to open position. Part of the oil, therefore, from the head end of cylinder 60, is forced out of the cylinder through line 150 and back to the reservoir 156 while the excess oil travels through by-pass valve 154 to the reservoir 156. When the ram 62 reaches its lowest position, limit switch 160 is tripped to de-energize solenoid 148 of pump 134 to neutralize the pressure in the lines leading from this pump.
When all four of the stripper jaw rams have completed their return stroke, pressure builds up at the rod end of the cylinders 54 until the pressure setting of switch 162 is reached. The switch 162 is thereby tripped and a circuit is completed to de-energize solenoid 140 of pump 118 to neutralize the pressure in this pump. Simultaneously, solenoids 100 and 110 are de-energized. Deenergizing solenoid lfitlreverses the ram of cylinder 86 to relieve the pressure in the counterbalance arrangement. De-energizing solenoid 110 reverses the ram of cylinder 50 whereupon the ensnaring bar 48 is moved to its retracted position. At this time, a limit switch 166 is tripped indicating the end of the cycle whereupon the conveyor mechanism 20 feeds the support bar out of the press and moves another support bar into the press to cause the cycle to be repeated.
I claim:
1. In a hydraulic press; the combination of fixed rail segments, an intermediate rail segment movable upwardly and joining said fixed segments, means responsive to movement of a carrier onto said intermediate segment for automatically ensnaring a workpiece supported by the carrier, means responsive to ensnaring of the workpiece for automatically actuating a plurality of abutments to position above a portion of the workpiece, a mechanism responsive to movement of all of said abutments to said position for exerting an upwardly acting disassembling force on said carrier to disassemble said carrier from the workpiece, and means for counterbalancing a substantial portion of the total weight of the carrier, the intermediate rail, and the workpiece.
2. In a press of the class described; the combination of a frame structure having an upwardly opening passage extending lengthwise therethrough to receive workpieces moved along an overlying conveyor, means responsive to movement of a workpiece into said passage for automatically limiting movement of said workpiece fore and aft of the passage, means responsive to actuation of said movement limiting means for automatically preventing upward movement of a part of the workpiece, and means responsive to actuating of said preventing means for automatically exerting an upwardly acting working force on another portion of the workpiece supported directly by the conveyor.
3. A hydraulic press comprising a rail having spaced fixed segments and an intermediate upwardly movable segment joining said fixed segments, a carrier on said in termediate segment, means for counterbalancing the weight of said segment and said carrier and a work-piece carried thereby, and means below said intermediate segment for exerting upwardly acting working forces on said work-piece, said counterbalancing means comprising a hydraulic cylinder operatively supported by said fixed rail segments, said cylinder having a rod operatively connected to the intermediate rail segment for applying a counterbalancing force to said intermediate rail segment, carrier and workpiece during such time as when said upwardly acting working force is applied to said workpiece.
4. A hydraulic press comprising a rail having spaced fixed segments and an intermediate upwardly movable segment joining said fixed segments, a carrier on said intermediate segment, means for counterbalancing the weight of said segment and said carrier and a workpiece carried thereby, and means below said intermediate segment for exerting upwardly acting forces on said Workpiece, said counterbalancing means comprising spaced vertical guide rails mounted on said fixed rail segments and extending upwardly therefrom, a cross piece interconnecting said guide rails at the ends thereof remote from said rail segments, a hydraulic cylinder carried by said cross piece, a guide assembly arranged for vertical movement on said guide rails, said guide assembly being secured to said intermediate rail segment for movement therewith, and a cylinder rod extending from said cylinder and connected to said guide assembly for counterbalancing said guide assembly, segment, carrier and workpiece upon actuation of said hydraulic cylinder.
5. A hydraulic press comprising spaced rail segments having downwardly converging surfaces at their adjacent ends, an intermediate upwardly movable rail segment having ends complementary to and fitted against said surfaces, a carrier movable along said segments and supported by the intermediate segment, and a force transmitting member located below the intermediate segment for exerting an upwardly acting working force on a workpiece carried by said carrier, said force transmitting member being effective to move said carrier and intermediate segment in an upward direction, and hydraulic cylinder means for at times counterbalancing the weight of said carrier and said intermediate segment.
6. In a hydraulic press for disassembling a workpiece supported from an overhead carrier, abutment means positionable above said workpiece to limit movement of only said workpiece in the direction of said abutment means, ram means normally positioned below said workpiece and said carrier adapted to be at times moved upwardly against said carrier and said workpiece for applying an upwardly acting disassembling force to both said carrier and said workpiece in order to disassemble said carrier from said workpiece, and pressure responsive support means positioned above said carrier and workpiece for lifting said carrier and workpiece so as to offset a major portion of the weight of said carrier and workpiece thereby minimizing said upwardly acting disassembling force required of said ram means.
7. In a hydraulic press adapted to receive therein a workpiece continually supported from an overhead carrier, abutment means positionable above said workpiece to limit movement of only said workpiece in the direction of said abutment means, ram means normally positioned below said workpiece and said carrier adapted to be at times moved upwardly against said workpiece for applying an upwardly acting working force to said workpiece, and pressure responsive support means positioned above said carrier and workpiece for lifting said carrier and workpiece so as to offset a major portion of the weight of said carrier and workpiece during the application of said working force by said ram means.
8. In a hydraulic press for disassembling a workpiece supported from an overhead carrier, pressure responsive abutment means positionable above said workpiece to limit movement of only said workpiece in the direction of said abutment means, pressure responsive ram means normally positioned below said workpiece and said carrier adapted to be at times moved upwardly by the application of pressure thereto against said carrier and said workpiece for applying an upwardly acting disassembling force to both said carrier and said workpiece in order to urge said workpiece against said abutment means to disassemble said carrier from said workpiece, and pressure responsive support means positioned above said carrier and workpiece actuated in timed relationship to said ram means for lifting said carrier and workpiece so as to offset a major portion of the weight of said carrier and workpiece thereby minimizing said upwardly acting disassembling force required of said ram means.
9. A hydraulic press comprising: a base; an upper housing secured to said base; a passage formed in said housing for the reception of a workpiece therein; a guided generally bifurcated member operatively connected to first pressure responsive means for ensnaring said workpiece in order to prevent rotation thereof; a plurality of abutment members; second pressure responsive means for moving said abutment members towards said workpiece so as to place said abutment members in juxtaposition with said workpiece thereby limiting movement of said workpiece in the direction toward said abutment members; a ram member; third pressure responsive means operatively connected to said ram member for moving said ram member against said workpiece in order to apply a working force thereto; and means actuated by the positioning of said bifurcated member and said abutment members by said first and second pressure responsive means, respectively, for actuating said third pressure responsive means.
10. A hydraulic press comprising: a base; an upper housing secured to said base; a passage formed in said housing for the reception of workpieces therein; a plurality of guided generally bifurcated members operatively connected to first pressure responsive means for ensnaring said workpieces in order to prevent rotation thereof; a plurality of abutment members; second pressure responsive means for moving said abutment members towards said workpieces so as to place said abutment members in juxtaposition with said workpieces thereby limiting movement of said workpieces in the direction toward said abutment members; a plurality of ram members; third pressure responsive means operatively connected to said plurality of ram members for moving said ram members against said workpieces in order to apply working forces thereto; and means actuated by the positioning of said bifurcated members and said abutment members by said first and second pressure responsive means, respectively, for actuating said third pressure responsive means.
11. A hydraulic press comprising: a base; an upper housing secured to said base; a passage formed in said housing for the reception of a workpiece therein; a guided generally bifurcated member operatively connected to first pressure responsive means for ensnaring said workpiece in order to prevent rotation thereof; at least one abutment member; second pressure responsive means for moving said abutment member towards said workpiece so as to place said abutment member in juxtaposition with said workpiece thereby limiting movement of said workpiece in the direction toward said abutment member; a
ram member; third pressure responsive means operatively connected to said ram member for moving said ram member against said workpiece in order to apply a working force thereto; and means actuated by the positioning of said bifurcated member and said abutment member by said first and second pressure responsive means, respectively, for actuating said third pressure responsive means.
12. A hydraulic press comprising fixed rail segments having downwardly converging surfaces at their adjacent ends, an intermediate upwardly movable rail segment having ends complementary to and seated against said surfaces, a carrier movable along said segment and supported by the intermediate segment, a workpiece carried by said carrier, a mechanism to limit upward movement of only the workpiece, and another mechanism below the intermediate segment for inserting an upwardly acting disassembling force on said carrier to disassemble said carrier from the workpiece.
13. A hydraulic press comprising a rail having spaced segments and an intermediate upwardly movable segment joining said fixed segments, a working cylinder below said fixed segment, a carrier movable along said segments and supported by the intermediate segment for upward movement therewith, a workpiece carried by said carrier, a mechanism to limit upward movement of only the workpiece, and a mechanism actuated by the working cylinder for exerting an upwardly acting disassembling force on said carrier to disassemble said carrier from the workpiece.
l4 A hydraulic .press comprising a rail having spaced fixed segments and an intermediate upwardly movable segment joining said fixed segments, a carrier on said intermediate segment, a workpiece carried by said carrier, means for cc-unterbalancing the weight of said segment, carrier and workpiece, a mechanism to limit upward movement of only said workpiece, and a mechanism below said intermediate segment for exerting an upwardly acting disassembling force on said carrier to disassemble said carrier from the workpiece.
References Cited in the file of this patent UNITED STATES PATENTS 504,031 Gordon Aug. 29, 1893 1,114,708 Longaker Oct. 20, 1914 2,707,324 Walther May 3, 1955
US2581760 1958-08-26 1960-04-04 Hydraulic press structure Expired - Lifetime US3067498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US2581760 US3067498A (en) 1958-08-26 1960-04-04 Hydraulic press structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75735358 US3062425A (en) 1958-08-26 1958-08-26 Thimble removal press
US2581760 US3067498A (en) 1958-08-26 1960-04-04 Hydraulic press structure

Publications (1)

Publication Number Publication Date
US3067498A true US3067498A (en) 1962-12-11

Family

ID=26700194

Family Applications (1)

Application Number Title Priority Date Filing Date
US2581760 Expired - Lifetime US3067498A (en) 1958-08-26 1960-04-04 Hydraulic press structure

Country Status (1)

Country Link
US (1) US3067498A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193915A (en) * 1963-10-03 1965-07-13 Douglas H Gillie Mold separating device
US3567089A (en) * 1968-09-12 1971-03-02 Foundry Suppliers Inc Engine block breaking apparatus
US3579784A (en) * 1969-02-24 1971-05-25 Foundry Suppliers Inc Engine block stripping apparatus
US4110885A (en) * 1977-05-26 1978-09-05 Fisher Gauge Limited Encapsulating block and removal apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US504031A (en) * 1893-08-29 Wheel-press
US1114708A (en) * 1913-11-17 1914-10-20 Chambersburg Eng Co Convertible press.
US2707324A (en) * 1951-07-14 1955-05-03 Dayton Steel Foundry Co Casting and processing of cast metal articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US504031A (en) * 1893-08-29 Wheel-press
US1114708A (en) * 1913-11-17 1914-10-20 Chambersburg Eng Co Convertible press.
US2707324A (en) * 1951-07-14 1955-05-03 Dayton Steel Foundry Co Casting and processing of cast metal articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193915A (en) * 1963-10-03 1965-07-13 Douglas H Gillie Mold separating device
US3567089A (en) * 1968-09-12 1971-03-02 Foundry Suppliers Inc Engine block breaking apparatus
US3579784A (en) * 1969-02-24 1971-05-25 Foundry Suppliers Inc Engine block stripping apparatus
US4110885A (en) * 1977-05-26 1978-09-05 Fisher Gauge Limited Encapsulating block and removal apparatus

Similar Documents

Publication Publication Date Title
US3945315A (en) Hydraulic scrap shearing machine
CN103143756B (en) Flat milling machine
CN219188824U (en) Automatic square pipe cutting feeding device
CN108580725B (en) Automatic waste collecting device for hardware punching machine and using method thereof
US3067498A (en) Hydraulic press structure
US3610021A (en) Universal die set with quick change die plates
US3062423A (en) Method of deforming a workpiece
CN212682340U (en) Automatic stamping and bending equipment of material loading
CN210475160U (en) Automatic conveying and blanking device for bearing steel bars
US2613739A (en) Shear accessory
US3066566A (en) Guide and support for unitary shear assembly
US3062425A (en) Thimble removal press
US4702403A (en) Rail breaker
CN208849358U (en) A kind of longitudinal cutting device of high-tension cable
US3081673A (en) Method and apparatus for shearing welded rail joints
CN104440020B (en) A kind of die-sinking device for separating extrusion die
US3703114A (en) Device for removing flash from seams of butt-welded long-measure articles
GB2129356A (en) Billet shearing method and apparatus
CN210936649U (en) Automobile parts stamping device
CN210188388U (en) Feeding device of forging press
US3478407A (en) Apparatus for manipulating disc-like members
CN109420725B (en) Automatic feeding forging device
CN211304550U (en) Automatic receiving device of punch press
CN111097951A (en) Hydraulic plate shearing machine
CN219703641U (en) Special-shaped steel pipe shearing machine