US3061426A - Creep resistant alloy - Google Patents

Creep resistant alloy Download PDF

Info

Publication number
US3061426A
US3061426A US6001A US600160A US3061426A US 3061426 A US3061426 A US 3061426A US 6001 A US6001 A US 6001A US 600160 A US600160 A US 600160A US 3061426 A US3061426 A US 3061426A
Authority
US
United States
Prior art keywords
alloys
alloy
rupture
titanium
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US6001A
Other languages
English (en)
Inventor
Clarence G Bieber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntington Alloys Corp
Original Assignee
International Nickel Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE599751D priority Critical patent/BE599751A/xx
Priority to NL260545D priority patent/NL260545A/xx
Priority to IT644011D priority patent/IT644011A/it
Priority to NO102807D priority patent/NO102807L/no
Priority to US6001A priority patent/US3061426A/en
Application filed by International Nickel Co Inc filed Critical International Nickel Co Inc
Priority to GB2956/61A priority patent/GB920551A/en
Priority to DEM47782A priority patent/DE1238672B/de
Priority to FR851157A priority patent/FR1280924A/fr
Priority to CH113261A priority patent/CH403307A/fr
Priority to SE101561A priority patent/SE208441C1/xx
Application granted granted Critical
Publication of US3061426A publication Critical patent/US3061426A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt

Definitions

  • the present invention relates to strong heatand corrosion-resistant alloys and, more particularly, to strong, heatand corrosion-resistant nickel-chromium-cobalt alloys.
  • Another object of the invention is to provide a novel heat-resistant article having substantially enhanced characteristics at temperatures in excess of about 1700 F.
  • the invention also contemplates providing a novel turbine structure having substantially enhanced characteristics at temperatures in excess of about 1700" F.
  • FIGURE is a graph relating stress and a parameter commonly known as the Larson-Miller parameter.
  • the present invention contemplates novel nickel-chromiurn-cobalt alloys and articles, structures, etc., made therefrom having substantially enhanced characteristics at elevated temperatures, and, particularly when subjected to temperatures in excess of about 1700 F comprising about 6% to about 12% chromium, about to about 30% cobalt, about 1% to about 8% molybdenum, about 0.2% to about 2% vanadium, about 4% to about 9% aluminum, about 0.5% to about 6.5% titanium, about 8% to about 12% aluminum plus titanium, about 0.001% to about 0.1% boron, about 0.01% to about 0.25% zirconium, about 0.01% to about 0.5% carbon, with the balance being essentially nickel.
  • balance essentially is used to include in addition to nickel in the balance of the alloy, small amounts of impurities such as sulfur, phosphorous, etc., and incidental elements such as niobium, tantalum, manganese, silicon, copper, iron, etc., in amounts which do not adversely affect the novel advantageous characteristics of nitecl States Patent ice the alloy.
  • the novel alloys of the present invention can contain up to about 5% niobium, up to about 2% copper, up to about 1% silicon, up to about 2% manganese, up to about 0.2% calcium, up toabout 4% tantalum and up to about 10% iron and more advantageously, up to about 2% iron
  • the alloys of the present invention exhibit excellent lives to rupture at elevated temperatures, for example, up to at least about hours lifewhen tested under a load of 35,000 pounds per-square inch (p.s.i.) at 1700 F. in combination with a reasonable amount of ductility, for example, at least about 4% elongation under the aforestated conditions.
  • the alloys can be used in the as-cast condition but can advantageously be treated by heating for about /2 to about 4 hours at a temperature of about 2100 F. to about 2200 F. under an inert atmosphere such as helium, argon, etc. The alloys are then cooled rather rapidly to a temperature below about 1700 F. while maintaining them in an inert atmosphere.
  • the alloys and articles made therefrom may be aged in service or may be aged byheating for about 1 to about 20 hours at temperatures of about 1400 F. to about 1700 F. It is characteristic of the alloys of the present invention that they can be readily cast and that they give excellent mold reproduction making them especially suited for use in the precision casting process.
  • alloys in accordance with the invention are usually melted from either "a calculated charge or from remelt stock under an inert atmosphere (including vacuum) and are cast at temperatures between about 2500 F. and about 3100 F. into molds preheated to about 1000 F. to about 1800 F. If melted at atmospheric pressure a final treatment with calcium silicide prior to casting is advantageous. When produced in this manner, alloys in accordance with the invention may be subjected in use under oxidizing conditions to temperatures up to about 2100 F.
  • Alloy No. A is representative of the best commercial alloys of the prior art. Alloys set forth in Table II were produced in various conditions as set forth in Table III and were stress-rupture tested under the conditions set forth in Table IV.
  • A.M. Melted at atmospheric pressure under argon.
  • V.M. Melted under vacuum.
  • the alloys of the present invention exhibit, in addition to high strength at elevated temperatures, good resistance to thermal shock.
  • the alloys of the present invention withstand many thousand cycles without failure. For example, one alloy in accordance with the present invention withstood 5850 cycles prior to failure as indicated by the formation of the first crack 0.125 inch in length. Under same conditions prior art alloys in commercial use fail in one to two thousand cycles.
  • C a constant having a value of 25.
  • alloys of the present invention also exhibit excellent short-time tensile characteristics at temperatures ranging from room temperature up to and including 1800 F.
  • Short-time tensile characteristics measured on the short-time high temperature test scale for alloy No. 1 as set forth in Table II are presented in Table VII.
  • T l VII 0.01% to about 0.25% zirconium, about 0.01% to about 0.5% carbon with the balance being essentially nickel.
  • An alloy for use as castings and characterized by p r are S 152%,? percent 133; having a life to rupture of at least about 100 hours when 5 exposed at a temperature of 1700 F. to a load of 35,000 Room temp 115,000 135,750 10.3 13.1 pounds per square inch containing about 8% to about 39%; igj 2: 31% "151; 12% chromium, about 10% to about cobalt, about $882?
  • Each of the aforementioned alloys Nos. 10 to 13 which 3. An alloy for use as castings and characterized by were vacuum melted and heat treated at 215 0 F. for 2 having a life to rupture of at least about 100 hours when hours and then cooled, exhibited a 100 hour rupture life exposed at a temperature of 1700 F. to a load of 35,000 under the specific stress-temperature conditions as set forth pounds per square inch containing about 8% to about in Table IX.
  • novel alloys of the present invention oxldlzl-ng atmosphere contammg about 6% to about 12% chromium, about 5% to about 30% cobalt, about 1% to gay also be used as extruslon d1es, valves, valve seats, about 8% molybdenum, about 8% to about 12% minum plus titanium, about 4% to about 9% aluminum, f gggggg g g f g gfi fjg if;$ 5233 about 0.5% to about 6.5% titanium, about 0.2% to about stood that modifications and variationshnay be restored 5O 2% Vanadlum about F about 01% g about to without departing from the spirit and scope of the in- 001% to about 9 Zirconium t to 0 vention, as those skilled in the art will readily understand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
US6001A 1960-02-01 1960-02-01 Creep resistant alloy Expired - Lifetime US3061426A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
IT644011D IT644011A (cs) 1960-02-01
NO102807D NO102807L (cs) 1960-02-01
BE599751D BE599751A (cs) 1960-02-01
NL260545D NL260545A (cs) 1960-02-01
US6001A US3061426A (en) 1960-02-01 1960-02-01 Creep resistant alloy
GB2956/61A GB920551A (en) 1960-02-01 1961-01-25 Creep resistant alloys
DEM47782A DE1238672B (de) 1960-02-01 1961-01-25 Verwendung einer Nickel-Kobalt-Chrom-Legierung fuer bei hohen Temperaturen kriechfeste Gussstuecke
FR851157A FR1280924A (fr) 1960-02-01 1961-01-30 Alliages résistant au fluage
CH113261A CH403307A (fr) 1960-02-01 1961-01-31 Alliage pour moulage
SE101561A SE208441C1 (cs) 1960-02-01 1961-02-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6001A US3061426A (en) 1960-02-01 1960-02-01 Creep resistant alloy

Publications (1)

Publication Number Publication Date
US3061426A true US3061426A (en) 1962-10-30

Family

ID=21718784

Family Applications (1)

Application Number Title Priority Date Filing Date
US6001A Expired - Lifetime US3061426A (en) 1960-02-01 1960-02-01 Creep resistant alloy

Country Status (10)

Country Link
US (1) US3061426A (cs)
BE (1) BE599751A (cs)
CH (1) CH403307A (cs)
DE (1) DE1238672B (cs)
FR (1) FR1280924A (cs)
GB (1) GB920551A (cs)
IT (1) IT644011A (cs)
NL (1) NL260545A (cs)
NO (1) NO102807L (cs)
SE (1) SE208441C1 (cs)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343950A (en) * 1963-12-23 1967-09-26 Int Nickel Co Nickel-chromium alloys useful in the production of wrought articles for high temperature application
US3368888A (en) * 1963-07-19 1968-02-13 Fed Republic Of Germany Nickel base alloy
US3411898A (en) * 1966-03-25 1968-11-19 Union Carbide Corp Nickel base alloy
US3642469A (en) * 1969-08-29 1972-02-15 Gen Electric High-stability nickel base alloy
US3869284A (en) * 1973-04-02 1975-03-04 French Baldwin J High temperature alloys
USRE28681E (en) * 1973-04-02 1976-01-13 High temperature alloys
USRE29920E (en) * 1975-07-29 1979-02-27 High temperature alloys
FR2478129A1 (fr) * 1980-03-13 1981-09-18 Rolls Royce Alliage pour moulages monocristallins et pieces moulee faite d'un tel alliage
US4624716A (en) * 1982-12-13 1986-11-25 Armco Inc. Method of treating a nickel base alloy
US4685977A (en) * 1984-12-03 1987-08-11 General Electric Company Fatigue-resistant nickel-base superalloys and method
US4983233A (en) * 1989-01-03 1991-01-08 General Electric Company Fatigue crack resistant nickel base superalloys and product formed
US5055147A (en) * 1988-12-29 1991-10-08 General Electric Company Fatigue crack resistant rene' 95 type superalloy
US5130089A (en) * 1988-12-29 1992-07-14 General Electric Company Fatigue crack resistant nickel base superalloy
US5129971A (en) * 1988-09-26 1992-07-14 General Electric Company Fatigue crack resistant waspoloy nickel base superalloys and product formed
US5129968A (en) * 1988-09-28 1992-07-14 General Electric Company Fatigue crack resistant nickel base superalloys and product formed
US5129970A (en) * 1988-09-26 1992-07-14 General Electric Company Method of forming fatigue crack resistant nickel base superalloys and product formed
US5130088A (en) * 1987-10-02 1992-07-14 General Electric Company Fatigue crack resistant nickel base superalloys
US5130086A (en) * 1987-07-31 1992-07-14 General Electric Company Fatigue crack resistant nickel base superalloys
US5129969A (en) * 1988-09-28 1992-07-14 General Electric Company Method of forming in100 fatigue crack resistant nickel base superalloys and product formed
US5143563A (en) * 1989-10-04 1992-09-01 General Electric Company Creep, stress rupture and hold-time fatigue crack resistant alloys
US5156808A (en) * 1988-09-26 1992-10-20 General Electric Company Fatigue crack-resistant nickel base superalloy composition
US5171380A (en) * 1987-07-31 1992-12-15 General Electric Company Method of forming fatigue crack resistant Rene' 95 type nickel base superalloys and product formed
DE4412031A1 (de) * 1993-04-07 1994-10-13 Aluminum Co Of America Verfahren zur Herstellung von Schmiedeteilen aus Nickellegierungen
US5374323A (en) * 1991-08-26 1994-12-20 Aluminum Company Of America Nickel base alloy forged parts
US5476555A (en) * 1992-08-31 1995-12-19 Sps Technologies, Inc. Nickel-cobalt based alloys
US6521175B1 (en) 1998-02-09 2003-02-18 General Electric Co. Superalloy optimized for high-temperature performance in high-pressure turbine disks
US6974508B1 (en) 2002-10-29 2005-12-13 The United States Of America As Represented By The United States National Aeronautics And Space Administration Nickel base superalloy turbine disk
EP1710322A1 (en) 2005-03-30 2006-10-11 United Technologies Corporation Nickel based superalloy compositions, articles, and methods of manufacture
EP1927669A1 (en) 2006-12-01 2008-06-04 Industria de Turbo Propulsores S.A. Low-density directionally solidified single-crystal superalloys
EP2628811A1 (en) 2012-02-14 2013-08-21 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
EP2628810A1 (en) 2012-02-14 2013-08-21 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
JP2015101753A (ja) * 2013-11-25 2015-06-04 株式会社Ihi ニッケル基合金
WO2017189208A1 (en) 2016-04-27 2017-11-02 Siemens Energy, Inc. Gas turbine blade with corrugated tip wall
US10793934B2 (en) 2017-05-02 2020-10-06 United Technologies Corporation Composition and method for enhanced precipitation hardened superalloys

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1367661A (en) * 1971-04-07 1974-09-18 Int Nickel Ltd Nickel-chromium-cobalt alloys
US4053308A (en) * 1974-12-24 1977-10-11 Howmedica, Inc. Nonprecious alloy for fusion to porcelain

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912323A (en) * 1957-09-16 1959-11-10 Int Nickel Co Cast nickel base alloy for high temperature service
US2920956A (en) * 1956-10-08 1960-01-12 Universal Cyclops Steel Corp Method of preparing high temperature alloys

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB583807A (en) * 1943-06-30 1946-12-31 Harold Ernest Gresham Nickel base alloy
FR1071278A (fr) * 1951-12-05 1954-08-30 Mond Nickel Co Ltd Perfectionnements aux alliages résistant à la chaleur et objets et pièces fabriqués à partir desdits alliages

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2920956A (en) * 1956-10-08 1960-01-12 Universal Cyclops Steel Corp Method of preparing high temperature alloys
US2912323A (en) * 1957-09-16 1959-11-10 Int Nickel Co Cast nickel base alloy for high temperature service

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368888A (en) * 1963-07-19 1968-02-13 Fed Republic Of Germany Nickel base alloy
US3343950A (en) * 1963-12-23 1967-09-26 Int Nickel Co Nickel-chromium alloys useful in the production of wrought articles for high temperature application
US3411898A (en) * 1966-03-25 1968-11-19 Union Carbide Corp Nickel base alloy
US3642469A (en) * 1969-08-29 1972-02-15 Gen Electric High-stability nickel base alloy
US3869284A (en) * 1973-04-02 1975-03-04 French Baldwin J High temperature alloys
USRE28681E (en) * 1973-04-02 1976-01-13 High temperature alloys
USRE29920E (en) * 1975-07-29 1979-02-27 High temperature alloys
FR2478129A1 (fr) * 1980-03-13 1981-09-18 Rolls Royce Alliage pour moulages monocristallins et pieces moulee faite d'un tel alliage
US4624716A (en) * 1982-12-13 1986-11-25 Armco Inc. Method of treating a nickel base alloy
US4685977A (en) * 1984-12-03 1987-08-11 General Electric Company Fatigue-resistant nickel-base superalloys and method
US5171380A (en) * 1987-07-31 1992-12-15 General Electric Company Method of forming fatigue crack resistant Rene' 95 type nickel base superalloys and product formed
US5130086A (en) * 1987-07-31 1992-07-14 General Electric Company Fatigue crack resistant nickel base superalloys
US5130088A (en) * 1987-10-02 1992-07-14 General Electric Company Fatigue crack resistant nickel base superalloys
US5156808A (en) * 1988-09-26 1992-10-20 General Electric Company Fatigue crack-resistant nickel base superalloy composition
US5129971A (en) * 1988-09-26 1992-07-14 General Electric Company Fatigue crack resistant waspoloy nickel base superalloys and product formed
US5129970A (en) * 1988-09-26 1992-07-14 General Electric Company Method of forming fatigue crack resistant nickel base superalloys and product formed
US5129969A (en) * 1988-09-28 1992-07-14 General Electric Company Method of forming in100 fatigue crack resistant nickel base superalloys and product formed
US5129968A (en) * 1988-09-28 1992-07-14 General Electric Company Fatigue crack resistant nickel base superalloys and product formed
US5055147A (en) * 1988-12-29 1991-10-08 General Electric Company Fatigue crack resistant rene' 95 type superalloy
US5130089A (en) * 1988-12-29 1992-07-14 General Electric Company Fatigue crack resistant nickel base superalloy
US5130087A (en) * 1989-01-03 1992-07-14 General Electric Company Fatigue crack resistant nickel base superalloys
US4983233A (en) * 1989-01-03 1991-01-08 General Electric Company Fatigue crack resistant nickel base superalloys and product formed
US5143563A (en) * 1989-10-04 1992-09-01 General Electric Company Creep, stress rupture and hold-time fatigue crack resistant alloys
US5360496A (en) * 1991-08-26 1994-11-01 Aluminum Company Of America Nickel base alloy forged parts
US5374323A (en) * 1991-08-26 1994-12-20 Aluminum Company Of America Nickel base alloy forged parts
US5476555A (en) * 1992-08-31 1995-12-19 Sps Technologies, Inc. Nickel-cobalt based alloys
US5637159A (en) * 1992-08-31 1997-06-10 Sps Technologies, Inc. Nickel-cobalt based alloys
US5888316A (en) * 1992-08-31 1999-03-30 Sps Technologies, Inc. Nickel-cobalt based alloys
DE4412031A1 (de) * 1993-04-07 1994-10-13 Aluminum Co Of America Verfahren zur Herstellung von Schmiedeteilen aus Nickellegierungen
US6521175B1 (en) 1998-02-09 2003-02-18 General Electric Co. Superalloy optimized for high-temperature performance in high-pressure turbine disks
US6974508B1 (en) 2002-10-29 2005-12-13 The United States Of America As Represented By The United States National Aeronautics And Space Administration Nickel base superalloy turbine disk
EP1710322A1 (en) 2005-03-30 2006-10-11 United Technologies Corporation Nickel based superalloy compositions, articles, and methods of manufacture
US20100008790A1 (en) * 2005-03-30 2010-01-14 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
US20100158695A1 (en) * 2005-03-30 2010-06-24 United Technologies Corporation Superalloy Compositions, Articles, and Methods of Manufacture
US8147749B2 (en) 2005-03-30 2012-04-03 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
EP1927669A1 (en) 2006-12-01 2008-06-04 Industria de Turbo Propulsores S.A. Low-density directionally solidified single-crystal superalloys
US20080240972A1 (en) * 2006-12-01 2008-10-02 Industria De Turbo Propulsores, S.A. Low-density directionally solidified single-crystal superalloys
EP2628811A1 (en) 2012-02-14 2013-08-21 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
EP2628810A1 (en) 2012-02-14 2013-08-21 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
US9752215B2 (en) 2012-02-14 2017-09-05 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
US9783873B2 (en) 2012-02-14 2017-10-10 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
JP2015101753A (ja) * 2013-11-25 2015-06-04 株式会社Ihi ニッケル基合金
WO2017189208A1 (en) 2016-04-27 2017-11-02 Siemens Energy, Inc. Gas turbine blade with corrugated tip wall
US10793934B2 (en) 2017-05-02 2020-10-06 United Technologies Corporation Composition and method for enhanced precipitation hardened superalloys

Also Published As

Publication number Publication date
DE1238672B (de) 1967-04-13
FR1280924A (fr) 1962-01-08
CH403307A (fr) 1965-11-30
GB920551A (en) 1963-03-06
NO102807L (cs)
NL260545A (cs)
SE208441C1 (cs) 1966-10-25
BE599751A (cs)
IT644011A (cs)

Similar Documents

Publication Publication Date Title
US3061426A (en) Creep resistant alloy
US3046108A (en) Age-hardenable nickel alloy
US3160500A (en) Matrix-stiffened alloy
US2977222A (en) Heat-resisting nickel base alloys
US3526499A (en) Nickel base alloy having improved stress rupture properties
US2994605A (en) High temperature alloys
US2570194A (en) Production of high-temperature alloys and articles
US3343950A (en) Nickel-chromium alloys useful in the production of wrought articles for high temperature application
US3030206A (en) High temperature chromiummolybdenum alloy
US4288247A (en) Nickel-base superalloys
US2809110A (en) Alloy for high temperature applications
US3151981A (en) Nickel-chromium-cobalt alloy
US3048485A (en) High strength creep resisting alloy
US3378368A (en) Titanium-base alloys
US2766156A (en) Heat-treatment of nickel-chromiumcobalt alloys
US3666453A (en) Titanium-base alloys
US2975051A (en) Nickel base alloy
US3118763A (en) Cobalt base alloys
US3069258A (en) Nickel-chromium casting alloy with niobides
US3107167A (en) Hot workable nickel base alloy
US2780545A (en) High-temperature alloy
US2575915A (en) Nickel base high-temperature alloy
US3540881A (en) High temperature ferrous alloy containing nickel,chromium and aluminum
US3415641A (en) Wrought nickel base alloy
US3314784A (en) Cobalt-base alloy resistant to thermal shock