US3060131A - Powder cloud generating apparatus - Google Patents
Powder cloud generating apparatus Download PDFInfo
- Publication number
- US3060131A US3060131A US782772A US78277258A US3060131A US 3060131 A US3060131 A US 3060131A US 782772 A US782772 A US 782772A US 78277258 A US78277258 A US 78277258A US 3060131 A US3060131 A US 3060131A
- Authority
- US
- United States
- Prior art keywords
- reel
- xerographic
- powder
- plate
- take
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title claims description 37
- 230000007246 mechanism Effects 0.000 claims description 52
- 230000033001 locomotion Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000011161 development Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 12
- 239000003570 air Substances 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000012080 ambient air Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 235000013358 Solanum torvum Nutrition 0.000 description 1
- 240000002072 Solanum torvum Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108700023468 protein-bound SN-C polysaccharide Proteins 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/06—Apparatus for electrographic processes using a charge pattern for developing
- G03G15/08—Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
- G03G15/0803—Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer in a powder cloud
Definitions
- This invention relates to the field of xerography and, particularly, to improvements in automatic xerographic processing equipment for forming direct xerographs.
- a xerographic plate comprising a layer of photoconductive insulating material on a conductive backing is given a uniform electric charge over its surface and is then exposed to the subject matter to be reproduced, usually by conventional projection techniques. This exposure discharges the plate areas in accordance with the light intensity that reaches them, and thereby creates an electrostatic latent image on or in the photoconductive layer.
- Development of the latent image is etfected with an electrostatically charged, finely divided material, such as an electroscopic powder, which is brought into surface contact with the photoconductive layer and is held thereon electrostatically in a pattern corersponding to the electrostatic latent image. Thereafter, the developed xerographic powder image is usually transferred to a support surface to which it may be fixed by any suitable means.
- the principal object of this invention is to improve automatic xerographic processing equipment to provide a compact, high speed, and light weight apparatus for forming direct positive, continuous tone xerographs, particularly for use in aircraft.
- a further object of the invention is to minimize the time delay between the sensitization of a xerographic plate and the development of an electrostatic latent image formed thereon.
- a further object of the invention is to extend the time period between successive uses of individual xerographic plates employed in automatic xerographic processing equipment.
- a further object of the invention is to maintain a xerographic processing apparatus free of accumulated developing powder during operation.
- a further object of the invention is to improve xerographic plate handling devices to permit rapid, uniform and positive movement of a rigid xerographic plate through an automatic xerographic processing apparatus.
- a further object of the invention is to improve xerographic plate storage devices to permit repetitive processing of successive xerographic plates seriatim.
- a further object of the invention is t9 3,060,131 Patented Oct. 23, 1962 improve xerographic developing apparatus whereby the Xerographic developing operation may be effected in a sealed chamber and wherein the development electrode surface may be cleaned between developing operations.
- a further object of the invention is to improve xerographic plate charging devices for forming a uniform electrostatic charge on a xerographic plate surface.
- a further object of the invention is to improve xerographic plate positioning devices for maintaining a xerogra-phic plate in the focal plane of a lens system.
- a further object of the invention is to improve xerographic plate cleaning mechanisms for removing residual powder from xerographic plates in transit.
- a further object of the invention is to improve apparatus for transferring xerographic powder images from xerogr-aphic plates to a support surface.
- the apparatus includes a magazine assembly for storing xerogr-aphic plates, a charging assembly for forming a uniform electrostatic charge on the photoconductive surface of each plate, a lens and shutter assembly for making exposures, a development assembly for developing the latent images on the plates, a printing assembly for transfer-ring developed images to a continuous paper strip, brush cleaning devices'for removing residual developing powder from the xerographic plates and the development electrode of the developing assembly, and plate handling and control devices associated with these assemblies to form a completely integrated and fully automatic system.
- xerographic plates are fed seriatim from the magazine to an exposure position and, in transit, each plate is charged by a scorotron or screened corona discharge device that places a uniform positive electrostatic change over the surface of the plate.
- the plate is then passed to an exposure position wherein it is exposed in conventional manner to form a latent pattern of electrostatic charges thereon that corresponds to the subject of the exposure, and is then transported to a development chamber wherein it is positioned adjacent to a development electrode.
- Development is effected by a negatively charged developing powder that is injected into the chamber from a powder cloud generator connected thereto, the powder particles being electrostatically attracted to the'positive charge pattern formed on the plate.
- the chamber When development is complete, the chamber is scavenged by low pressure air to remove developing powder suspended in the air of the chamber. The chamber is then partly opened, and the plate is advanced to feed rolls that pass it through pressure rolls in conjunction with a continuous, adhesive coated, paper strip whereby the powder image formed on the plate is transferred to the adhesive strip. Once the plate is clear of the developing chamber, the chamber is reclosed and scavenged with high pressure air to eliminate residual powder, and the development electrode is cleaned by a brush assembly that is actuated through a clutch that forms part of the development chamber assembly. After leaving the pressure transfer rolls, the transfer paper with the powder image thereon is passed through a second set of pressure rolls conjointly with a transparent plastic web which adheres to the adhesive on the transfer strip and fixes the powder image thereon by forming a protective cover thereover.
- the plate is passed to a pivotable direction-changing mechanism having plate driving rolls frictionally driven from a drive roll geared to the transfer pressure rolls.
- Plate holding rolls retain the plate within the direction-changing mechanism as it is pivoted about its axis to engage the driving rolls with a second drive roll that reverses the direction of rotation of the plate driving rolls.
- the plate On engagement with the second drive roll, the plate is withdrawn from the direction-changing mechanism and is advanced through a cleaning position wherein residual powder is dusted therefrom by a cleaning brush which, in turn, is cleaned of residual powder by a flicking bar. Suitable vacuum means are provided to remove this residual powder from the machine.
- the plate is gripped by another set of drive rolls and is returned to the magazine wherein it is deposited on top of the other plates therein for reuse.
- FIG. 1 is a schematic perspective view of the Xerographic camera system of the invention as adapted for installation in an aircraft;
- FIG. 2 is an enlarged perspective view of the several components of the xerographic camera system of the invention
- FIG. 3 is a functional schematic cross-sectional view of the Xerographic camera and processing apparatus
- FIG. 4 is an isometric view of a xerographic plate adapted for use in the invention.
- FIG. 5 is an isometric view of the Xerographic plate magazine assembly, with side walls broken away, illustrating the several plate actuating mechanisms therein;
- FIG. 6 is an isometric view of the plate transfer mechanism and plate charging mechanism
- FIG. 7 is a detail sectional view of the xerographic plate latching mechanism of the plate transfer mechanism
- FIG. 8 is an isometric View, partly in section, of the exposure position mechanism of the invention.
- FIG. 9 is an isometric view, partly in section, of the developing mechanism of the invention, showing the several components thereof substantially in extended position to withdraw a Xerographic plate from the exposure position mechanism;
- VFIG. '10 is a side elevation of the developing mechanism of the invention, showing the several component parts thereof in retracted position for developing a xerographic plate;
- FIG. 11 is a schematic diagram of the pneumatic system of the invention, and includes a schematic crosssectional view of the major components of the developing mechanism, as well as a schematic isometric view of a portion of the exposure position mechanism;
- FIG. 12 is a sectional view illustrating the structural arrangement for electrically isolating a Xerographic plate held in the developing mechanism assembly;
- FIG. 13 is an isometric view of the direction-changing mechanism
- FIG. 14 is an isometric view of the Xerographic powder image transfer mechanism and the image fixing mechanism
- FIG. 15 is a schematic sectional view of the mechanisms of FIG. 14;
- FIG. 16 is an isometric view, partly in section, of the xerographic plate brush cleaner mechanism
- FIGS. 17 and 18 are detailed sectional views, respectively, of the left and right hand structural arrangements for supporting the xerographic plate cleaning brush of FIG. 16;
- FIG. 19 is a schematic isometric view, partly in section, of the drive mechanism of the invention.
- FIGS. 20 and 21, taken together, constitute a timing chart of an operational cycle of the mechanism of the invention
- ⁇ FIG. 24 is an isometric view of the powder cloud generating mechanism
- FIG. 25 is a side elevation of a powder cloud generating assembly
- FIG. 26 is a sectional view of the powder outlet assembly of the powder cloud generating assembly.
- the invention is adapted for installation in an aircraft, and is shown as comprising a xerographic camera 10, containing a lens and shutter mechanism as well as all xerographic processing equipment; a control unit 20, wherein the several pneumatic and electrical control circuits of the system are housed; and an intervalometer 30, for initiating operation of the system.
- the camera and processing mechanism is preferably housed in a cast magnesium cover assembly 11 that is separable substantially at its mid section to permit access to the interior of the apparatus.
- two spaced side plates or frames are integrally connected by tie rods to form a rigid framework for supporting the several components of the Xerographic processing equipment.
- a power-driven, take-up roll spindle 12 for storing aerial xerographs 13 taken and processed by the apparatus.
- a lever 14 is provided to actuate a web cutter inside the housing, whereby finished xerographs may be detached from those in process.
- Manually settable knobs 15 and 16 project through an opening 17 to permit adjustment of the diaphragm and speed-setting mechanisms, respectively, of the lens and shutter assembly of the camera.
- the lower portion of housing 11 there are provided two trunnions 18, at the front and rear of the camera, whereby the camera portion of the system may be supported on the inner gimbal ring 19 of a gyroscopic stabilizing system, which, together with an outer gimbal ring 21, is piVo-tally supported in a shock-mounted frame 22 within the aircraft.
- a gyroscopic stabilizing system which, together with an outer gimbal ring 21, is piVo-tally supported in a shock-mounted frame 22 within the aircraft.
- a plurality of electrical, pneumatic and vacuum lines 24 connect camera it) to control unit 20 which, in turn, is connected to the aircraft electrical and pneumatic supplies via a plurality of lines 25
- housed within the control unit is an electrical circuit unit 26 including relay circuits for controlling the various automatic and interlocking functions of the several components of the camera apparatus, a pneumatic control system unit 27 for controlling the operation of a plurality of high pressure air systems and vacuum systems essen- "tial to the proper functioning of the camera mechanism,
- a plurality of control knobs and switches 29 are provided on electrical circuit unit 26 for conditioning the system for automatic operation and for testing the several components thereof in accordance with prescribed maintenance requirements.
- Intervalometer unit 30 is connected to control unit 20 via a cable 31. and is provided with a plurality of setting knobs 32 whereby the camera apparatus may be conditioned for taking single exposures or successive exposures in timed relation, in accordance with conventional aerial photography practice.
- FIG. 3 The relative arrangement of the several components of the interior of the xerographic camera and processing apparatus are best shown in the schematic sectional view of FIG. 3 wherein a lens and shutter assembly 40 is mounted over an opening in the lower end of housing 11 in a manner to form a light-tight seal with the housing.
- Assembly 40 includes a lens system 41, a diaphragm 42 which is settable under control of knob 15, as described above, and a shutter mechanism (not shown) that may be cocked and released in accordance with conventional practice in aerial photography.
- the system is provided with a plurality of xerographic plates 50 (see also FIG. 4), each of which comprises a conductive backing plate, preferably of brass, having a photoconductive layer 51, preferably of amorphous selenium, formed on one face thereof.
- xerographic plates 50 each of which comprises a conductive backing plate, preferably of brass, having a photoconductive layer 51, preferably of amorphous selenium, formed on one face thereof.
- Each plate 50 is provided with two side rails 52 that are integrally secured thereto and are so constructed to position the plate with reference to the several mechanisms with which it cooperates, and to form a recessed area for photoconductive layer 51 to protect a xerographic powder image formed thereon from smearing during transit of the plate through the system.
- a supply of xerographic plates 50 is manually inserted in a magazine assembly 100 which is then placed in the camera wherein it is supported on suitable guide rails (not shown) formed on the framework of the apparatus.
- plates 50 are passed seriatim over a charging mechanism assembly 200, whereby the photoconductive surface of each plate is given a uniform electrostatic charge, and is then passed to an exposure position mechanism 230 wherein each plate is held momentarily during the exposure period.
- a charge pattern or elec trostatic latent image corresponding to the subject being xerographed, is formed on each plate.
- the plate After exposure, the plate is passed to a development mechanism assembly 320 wherein the electrostatic latent image of the subject is converted to a xerographic powder image thereof. After development each plate is passed through an image transfer assembly 470, wherein its xerographic powder image is transferred to an adhesive support surface, and thence to a direction-changing mechanism 490, whereby the plate is aligned with and passed through a brushcleaning apparatus 540 wherein residual powder remaining on the photoconductive surface of the plate is removed. After cleaning, the plate is returned to magazine assembly 100 for reuse.
- the plate magazine comprises a self-contained, lighttight, box-like structure wherein a plurality of xerographic plates are loaded preparatory to use in the system.
- the magazine is of such construction to prevent the admission of light, and is provided with a dark slide covering the bottom opening thereof when the magazine is removed from the camera.
- the magazine When the magazine is placed in position in the system it cooperates with the framework of the machine in a manner such that a light-tight structure is maintained when the dark slide is removed.
- a plate spacing and advancing mechanism that is actuated by a motor through a single-revolution clutch, whereby plates fed to the magazine are retained in their respective positions and are released singly from the bottom of the magazine for use in the system.
- a plate transfer mechanism actuated by an air cylinder, whereby plates in the magazine may be withdrawn seriatim and be advanced to the plate charging apparatus.
- plate magazine assembly 100 (see FIGS. 3 and 5) includes a box-like casting having a cover portion 101, side walls 102 and 103, a front wall 104 and a rear wall 105 that forms a rear cover plate for the camera, and is provided with suitable bosses and interior wall portions for supporting the several components of the magazine mechanism.
- a supply of xerographic plates 50 is placed therein.
- the plates are inserted in the magazine through a rectangular opening 106 in front wall 104, with photoconductive layer 5-1 facing downwardly, and are adapted to be supported within the magazine by four interponent members 107, one of which is fixed on each of two pairs of shafts 108 and 109 arranged on opposite sides of the magazine.
- Each of the shafts 108 is rotatably mounted in a bearing 110 set in cover portion 101 Cil the ratchet by a three-armed lever 6 and a bearing block 111 fixed on the respective side walls 102 and 103.
- each of the shafts 109 is rotatably mounted in a bearing 112 and a bearing block 113.
- each of the shafts 108 and 109 has fixed thereto a helical gear 115 that meshes with a similar helical gear 116 fixed on a shaft 117 that is provided at one end with a bevel gear 118 that is driven by a bevel gear 119' fixed on a tubular sleeve 120 that is rotatably mounted in a vertical wall portion 121.
- shafts 108 and 109 on the left-hand side of the magazine are provided with helical gears 1213 that mesh with gears 124 fixed on a shaft 125 that is provided with a bevel gear 126 that meshes with a bevel gear 127 fixed on a tubular sleeve 128 that is rotatably mounted in a vertical wall portion 129.
- Tubular shafts 120 and 128 form part of a singlerevolution clutch mechanism 130, described below, whereby power from the drive mechanism of the camera is transmitted via a sprocket 132, shaft 133, pinion 134, gear 135, shaft 136, and the clutch mechanism to effect intermittent rotation of the .shafts 117 and 125 whereby xerographic plates may be released from interponent members 107, as described below.
- hook members 138 and 139 are provided on each side of the magazine, each of which is pivotally suspended from an associated block 140 that is secured to the inner face of the side walls 102 and 103.
- Each of the hook members is resiliently urged inwardly against the plates in the magazine by a suitable spring (not shown) and is provided with a hook portion that underlies the lowermost plate in the plate stack when the parts are in the position shown in FIG. 5.
- the single-revolution clutch mechanism 130 is an adaptation of a conventional form of single-revolution clutch such as that used in the shutter winding mechanism of the K17 aerial camera. Briefly, it constitutes a solenoid-actuated device which, upon energization of the solenoid, serves to engage the several operatng mechanisms of the magazine with a constantly rotating shaft, during a single revolution thereof, to effect the required actuation of such mechanisms. As shown in FIG. 5, the clutch mechanism includes a pair of side plates and 146 that are held together for unitary movement by pins 147 and are fixed respectively to sleeves 120 and 128 which are rotatably mounted on drive shaft 136.
- ratchet 148 In the space between side plates 145 and 146, there is a ratchet 148 that is fixed on drive shaft 136 and rotates constantly therewith.
- ratchet pawl 149 Cooperating with the ratchet 148 is a ratchet pawl 149 that is p-iv otally mounted on a stud 150 extending between the side plates, and is resiliently urged into engagement with 152 that has a lug extending over a tail portion of ratchet pawl 149 and is resiliently connected to the ratchet pawl by a spring 153 that is extended between a stud on the lever and a stud on the pendant end of the ratchet pawl.
- ratchet pawl 149 is held out of engagement with ratchet 148 by a holding pawl 155 that underlies a forward extension on ratchet pawl 149.
- the upper end of holding pawl 155 is pivotally mounted in a bracket 156, that is secured to the underside of cover portion 101, and is pivotally connected at its midportion to a spring-urged armature 157 of a solenoid SOL-X, that is also secured on cover 101.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Description
Oct. 23, 1962 H. E. CRUMRl-NE ETAL 3,960,131
POWDER CLOUD GENERATING APPARATUS Original Filed June 3, l9
l7 Sheets-Sheet 1 5 R O T N E V m Herbert E.Crumrine Charles L. Huber ATTORNEY 1962 H. E. CRUMRINE ETAL 3,060,131
POWDER CLOUD GENERATING APPARATUS Original Filed June 3, 1957 17 Sheets-Sheet 2 HIGH VOLTAGE POWER SUPPLY INVENTORj FIG 3 Herberr E.Crumrine B Charles L.Huber ATTORNEY Oct. 1962 H. E. CRUMRINE ETAL 3,060,131
' POWDER CLOUD GENERATING APPARATUS 17 Sheets-Sheet 5 Original Filed June 3. 1957 INVENTORS Herbert E.Crumrine Charles L. Huber Oct. 23, 1962 H. E CRUMRINE ETAL 3,060,131
POWDER CLOUD GENERATING APPARATUS l7 Sheets-Sheet 4 Original Filed June 3, 1957 INVENTORS Herbert E.Crumrine Y Charles L.Huber A ORNEY Oct. 23, 1962 E. CRUMRINE ETAL 3,069,131
POWDER CLOUD GENERATING APPARATUS 1'7 Sheets-Sheet 5 Original Filed June 5, 1957 INVENTOR$ Herbert E.Crumr|ne Charles L.Huber ATTORNEXV Oct. 23, 1962 H. E, CRUMRINE ETAL 3,060,131
POWDER CLOUD GENERATING APPARATUS l7 Sheets-Sheet 6 Original Filed June 3. 1957 INVENTORS Herbert E.Crumr|ne BY Charles L.Huber ATTORNEY Oct. 23, 1 H. E. CRUMRINE ETAL 3,
POWDER CLOUD GENERATING APPARATUS 1'7 Sheets-Sheet 7 Original Filed June 3, 1957 INVENTORS Herbert E.Crumrine Charles L. Huber FIG. 9
Och 1962 H. E. CRUMRINE ETAL 3,
POWDER CLOUD GENERATING APPARATUS Original Filed June I5. 1957 17 Sheets-Sheet 8 INVENTORS Herbert E.Crumrine 9 Charles L.Huber ATTORNEY Oct. 23, 1962 H. E. CRUMRINE ETAL 3,060,131
POWDER CLOUD GENERATING APPARATUS 1'7 Sheets-Sheet 9 Original Filed June 3, 1957 PRESSURIZED A IR POWDER CLOUD GENERATOR AIR CYL AIR CYL AMBIENT AIR AIR CYL-D I R R O HE T SN C UA RE L BL C C v o w. 4 5 4 AMBIENT AIR FIG. 11
INVENTOR. Herbert E.Crumrine Charles L. Huber VACUUM PUMP Oct. 23, 1962 H. E. CRUMRINE ETAL 3,060,131
POWDER CLOUD GENERATING APPARATUS l7 Sheets-Sheet 10 Original Filed June 3, 1957 INVENTORS Herbert E.Crumrine Charles L. Huber ATTO RNEY Oct. 23, 1962 H. E. CRUMRINE ETAL 3,069,131
POWDER CLOUD GENERATING APPARATUS Original Filed June 3. 1957 17 Sheets-Sheet l1 INVENTOILS Herbert E. Crumrine Charles L. Huber TORNEY Oct. 23, 1962 H. E. CRUMRINE ETAL 3,069,131
POWDER CLOUD GENERATING APPARATUS l7 Sheets-Sheet 12 Original Filed June 3. I957 E OF.
INVENTORS Herbert E.Crumrine Charles L.Huber ATTORNEY BY i? Oct 1962 H. E. CRUMRINE ETAL 3,060,131
POWDER CLOUD GENERATING APPARATUS Original Filed June 3, 1957 1'7 Sheets-Sheet 13 INVENTORS Herbert E.Crumrine BY Charles L.Huber 3 g o TO A RNEY Oct. 23, 1962 H. E. CRUMRINE ETAL 3,060,131
POWDER CLOUD GENERATING APPARATUS l7 Sheets-Sheet 14 Original Filed June 3, 1957 33 3w 1: m A.
lN VENTORS Herbert E. Crumrine Charles L Huber 4 5 TIME IN SECONDS WTTORNEY 2 F I G. 0
BY Mm Qum mJum 2 0 m .0 UP
AIR CYLINDER B CLUTCH SOLENOID SOLENOID VALVE Oct. 23, 196 H. E. CRUMRINE ETAL POWDER CLOUD GENERATING APPARATUS Original Filed June 3. 1957 17 Sheets-Sheet 15 nnm n #mm mm 893 5. a mm m 6 u Jum w .u ow 825mm 2 2% 3:33 a i AC WY BD 3MIN.
IGINVEBYTORS Herbert E. Crumnne Charles L.Huber TIME IN SECONDS ATTORNEY FIG Oct. 23, 1962 H. E. CRUMRINE ETAL 3,069,131
POWDER CLOUD GENERATING APPARATUS Original Filed June 3, 1957 17 Sheets-Sheet l6 INTERVALOMETER REG. :5
IN V EN TORS Herbert E.Crumrine Y Charles L. Huber TTORNEY Oct. 23, 1962 H. E. CRUMRINE ETAL 3,059,131
POWDER CLOUD GENERATING APPARATUS Original Filed June 3, 1957 17 Sheets-Sheet 17 IN VEN TORS Herberi E. Crumrine B Charles L.Huber ATTORNEY United States Patent 3,060,131 POWDER CLOUD GENERATING APPARATUS Herbert E. Crumrinc, Rochester, and Charles L. Huber,
Byron, N.Y., assignors to Xerox Corporation, a corporation of New York Original application June 3, 1957, Ser. No. 663,085, now Patent No. 3,009,402, dated Nov. 21, 1961. Divided and this application Dec. 24, 1958, Ser. No. 782,772
3 Claims. (Cl. 252-359) This invention relates to the field of xerography and, particularly, to improvements in automatic xerographic processing equipment for forming direct xerographs.
In the process of xerography, for example, as disclosed in Carlson Patent 2,297,691, issued October 6, 1952, a xerographic plate comprising a layer of photoconductive insulating material on a conductive backing is given a uniform electric charge over its surface and is then exposed to the subject matter to be reproduced, usually by conventional projection techniques. This exposure discharges the plate areas in accordance with the light intensity that reaches them, and thereby creates an electrostatic latent image on or in the photoconductive layer. Development of the latent image is etfected with an electrostatically charged, finely divided material, such as an electroscopic powder, which is brought into surface contact with the photoconductive layer and is held thereon electrostatically in a pattern corersponding to the electrostatic latent image. Thereafter, the developed xerographic powder image is usually transferred to a support surface to which it may be fixed by any suitable means.
Following the disclosure of the basic electrophotographic or xerographic techniques in the Carlson patent, many improvements have been made in xerographic plates and developing materials to increase plate sensitivity and panchromaticity and to improve resolution of the final image structure. In addition, many improvements have been made in each of the component devices for effecting xerographic processing, i.e., in devices for electrostatically charging xeroigraphic plates, in devices for exposing such plates, in apparatus for developing electrostatic latent images, in xerographic powder image transfer devices, and in powder image fixing devices. For the most part such improvements have been employed in apparatus for reproducing line copy images, and such devices are presently in wide commercial use for this purpose. However, the additional complexities involved in forming continuous tone images by xerographic techniques has heretofore hindered the application of such techniques to the field of direct photography.
The principal object of this invention is to improve automatic xerographic processing equipment to provide a compact, high speed, and light weight apparatus for forming direct positive, continuous tone xerographs, particularly for use in aircraft. A further object of the invention is to minimize the time delay between the sensitization of a xerographic plate and the development of an electrostatic latent image formed thereon. A further object of the invention is to extend the time period between successive uses of individual xerographic plates employed in automatic xerographic processing equipment. A further object of the invention is to maintain a xerographic processing apparatus free of accumulated developing powder during operation. A further object of the invention is to improve xerographic plate handling devices to permit rapid, uniform and positive movement of a rigid xerographic plate through an automatic xerographic processing apparatus. A further object of the invention is to improve xerographic plate storage devices to permit repetitive processing of successive xerographic plates seriatim. A further object of the invention is t9 3,060,131 Patented Oct. 23, 1962 improve xerographic developing apparatus whereby the Xerographic developing operation may be effected in a sealed chamber and wherein the development electrode surface may be cleaned between developing operations. A further object of the invention is to improve xerographic plate charging devices for forming a uniform electrostatic charge on a xerographic plate surface. A further object of the invention is to improve xerographic plate positioning devices for maintaining a xerogra-phic plate in the focal plane of a lens system. A further object of the invention is to improve xerographic plate cleaning mechanisms for removing residual powder from xerographic plates in transit. A further object of the invention is to improve apparatus for transferring xerographic powder images from xerogr-aphic plates to a support surface.
These and other objects of the invention are attained in a preferred embodiment which comprises a self-contained, fully automatic, xerographic system that is intended for use in an aircraft for producing successive, continuous tone, aerial xerographs under the control of an intervalometer. Essentially, the apparatus includes a magazine assembly for storing xerogr-aphic plates, a charging assembly for forming a uniform electrostatic charge on the photoconductive surface of each plate, a lens and shutter assembly for making exposures, a development assembly for developing the latent images on the plates, a printing assembly for transfer-ring developed images to a continuous paper strip, brush cleaning devices'for removing residual developing powder from the xerographic plates and the development electrode of the developing assembly, and plate handling and control devices associated with these assemblies to form a completely integrated and fully automatic system.
.In operation, xerographic plates are fed seriatim from the magazine to an exposure position and, in transit, each plate is charged by a scorotron or screened corona discharge device that places a uniform positive electrostatic change over the surface of the plate. The plate is then passed to an exposure position wherein it is exposed in conventional manner to form a latent pattern of electrostatic charges thereon that corresponds to the subject of the exposure, and is then transported to a development chamber wherein it is positioned adjacent to a development electrode. Development is effected by a negatively charged developing powder that is injected into the chamber from a powder cloud generator connected thereto, the powder particles being electrostatically attracted to the'positive charge pattern formed on the plate. When development is complete, the chamber is scavenged by low pressure air to remove developing powder suspended in the air of the chamber. The chamber is then partly opened, and the plate is advanced to feed rolls that pass it through pressure rolls in conjunction with a continuous, adhesive coated, paper strip whereby the powder image formed on the plate is transferred to the adhesive strip. Once the plate is clear of the developing chamber, the chamber is reclosed and scavenged with high pressure air to eliminate residual powder, and the development electrode is cleaned by a brush assembly that is actuated through a clutch that forms part of the development chamber assembly. After leaving the pressure transfer rolls, the transfer paper with the powder image thereon is passed through a second set of pressure rolls conjointly with a transparent plastic web which adheres to the adhesive on the transfer strip and fixes the powder image thereon by forming a protective cover thereover.
Simultaneously, the plate is passed to a pivotable direction-changing mechanism having plate driving rolls frictionally driven from a drive roll geared to the transfer pressure rolls. Plate holding rolls retain the plate within the direction-changing mechanism as it is pivoted about its axis to engage the driving rolls with a second drive roll that reverses the direction of rotation of the plate driving rolls. On engagement with the second drive roll, the plate is withdrawn from the direction-changing mechanism and is advanced through a cleaning position wherein residual powder is dusted therefrom by a cleaning brush which, in turn, is cleaned of residual powder by a flicking bar. Suitable vacuum means are provided to remove this residual powder from the machine. After passing through the cleaning position, the plate is gripped by another set of drive rolls and is returned to the magazine wherein it is deposited on top of the other plates therein for reuse.
A preferred form of the invention is disclosed in the appended drawings, in which:
FIG. 1 is a schematic perspective view of the Xerographic camera system of the invention as adapted for installation in an aircraft;
FIG. 2 is an enlarged perspective view of the several components of the xerographic camera system of the invention;
FIG. 3 is a functional schematic cross-sectional view of the Xerographic camera and processing apparatus;
FIG. 4 is an isometric view of a xerographic plate adapted for use in the invention;
FIG. 5 is an isometric view of the Xerographic plate magazine assembly, with side walls broken away, illustrating the several plate actuating mechanisms therein;
FIG. 6 is an isometric view of the plate transfer mechanism and plate charging mechanism;
FIG. 7 is a detail sectional view of the xerographic plate latching mechanism of the plate transfer mechanism;
FIG. 8 is an isometric View, partly in section, of the exposure position mechanism of the invention;
FIG. 9 is an isometric view, partly in section, of the developing mechanism of the invention, showing the several components thereof substantially in extended position to withdraw a Xerographic plate from the exposure position mechanism;
VFIG. '10 is a side elevation of the developing mechanism of the invention, showing the several component parts thereof in retracted position for developing a xerographic plate;
FIG. 11 is a schematic diagram of the pneumatic system of the invention, and includes a schematic crosssectional view of the major components of the developing mechanism, as well as a schematic isometric view of a portion of the exposure position mechanism;
FIG. 12 is a sectional view illustrating the structural arrangement for electrically isolating a Xerographic plate held in the developing mechanism assembly;
FIG. 13 is an isometric view of the direction-changing mechanism;
FIG. 14 is an isometric view of the Xerographic powder image transfer mechanism and the image fixing mechanism;
FIG. 15 is a schematic sectional view of the mechanisms of FIG. 14;
FIG. 16 is an isometric view, partly in section, of the xerographic plate brush cleaner mechanism;
FIGS. 17 and 18 are detailed sectional views, respectively, of the left and right hand structural arrangements for supporting the xerographic plate cleaning brush of FIG. 16;
FIG. 19 is a schematic isometric view, partly in section, of the drive mechanism of the invention;
FIGS. 20 and 21, taken together, constitute a timing chart of an operational cycle of the mechanism of the invention;
IFIGS. 22 and 23, taken together, constitute a wiring diagram of the several electrical control circuits of the invention;
\FIG. 24 is an isometric view of the powder cloud generating mechanism;
FIG. 25 is a side elevation of a powder cloud generating assembly; and
FIG. 26 is a sectional view of the powder outlet assembly of the powder cloud generating assembly.
In the particular embodiment shown in the drawings (see FIGS. 1 and 2) the invention is adapted for installation in an aircraft, and is shown as comprising a xerographic camera 10, containing a lens and shutter mechanism as well as all xerographic processing equipment; a control unit 20, wherein the several pneumatic and electrical control circuits of the system are housed; and an intervalometer 30, for initiating operation of the system. The camera and processing mechanism is preferably housed in a cast magnesium cover assembly 11 that is separable substantially at its mid section to permit access to the interior of the apparatus. Within the housing, two spaced side plates or frames are integrally connected by tie rods to form a rigid framework for supporting the several components of the Xerographic processing equipment.
On the front wall of the exterior of housing 11 there is located a power-driven, take-up roll spindle 12 for storing aerial xerographs 13 taken and processed by the apparatus. A lever 14 is provided to actuate a web cutter inside the housing, whereby finished xerographs may be detached from those in process. Manually settable knobs 15 and 16 project through an opening 17 to permit adjustment of the diaphragm and speed-setting mechanisms, respectively, of the lens and shutter assembly of the camera.
011 the lower portion of housing 11 there are provided two trunnions 18, at the front and rear of the camera, whereby the camera portion of the system may be supported on the inner gimbal ring 19 of a gyroscopic stabilizing system, which, together with an outer gimbal ring 21, is piVo-tally supported in a shock-mounted frame 22 within the aircraft. By the latter means the Xerographic camera is maintained in a proper attitude with reference to the ground for taking aerial xerographs by means of suitable gyroscopically controlled servomotors (not shown) that function to compensate for pitching, rolling and yawing motions of the aircraft.
For actuating the several components of the camera mechanism, a plurality of electrical, pneumatic and vacuum lines 24 connect camera it) to control unit 20 which, in turn, is connected to the aircraft electrical and pneumatic supplies via a plurality of lines 25 Housed within the control unit is an electrical circuit unit 26 including relay circuits for controlling the various automatic and interlocking functions of the several components of the camera apparatus, a pneumatic control system unit 27 for controlling the operation of a plurality of high pressure air systems and vacuum systems essen- "tial to the proper functioning of the camera mechanism,
and a dust filter unit 28 for removing xerographic developing powder from air eldiausted from the system. A plurality of control knobs and switches 29 are provided on electrical circuit unit 26 for conditioning the system for automatic operation and for testing the several components thereof in accordance with prescribed maintenance requirements. Intervalometer unit 30 is connected to control unit 20 via a cable 31. and is provided with a plurality of setting knobs 32 whereby the camera apparatus may be conditioned for taking single exposures or successive exposures in timed relation, in accordance with conventional aerial photography practice.
The relative arrangement of the several components of the interior of the xerographic camera and processing apparatus are best shown in the schematic sectional view of FIG. 3 wherein a lens and shutter assembly 40 is mounted over an opening in the lower end of housing 11 in a manner to form a light-tight seal with the housing. Assembly 40 includes a lens system 41, a diaphragm 42 which is settable under control of knob 15, as described above, and a shutter mechanism (not shown) that may be cocked and released in accordance with conventional practice in aerial photography.
For forming xerognaphic images, the system is provided with a plurality of xerographic plates 50 (see also FIG. 4), each of which comprises a conductive backing plate, preferably of brass, having a photoconductive layer 51, preferably of amorphous selenium, formed on one face thereof. Each plate 50 is provided with two side rails 52 that are integrally secured thereto and are so constructed to position the plate with reference to the several mechanisms with which it cooperates, and to form a recessed area for photoconductive layer 51 to protect a xerographic powder image formed thereon from smearing during transit of the plate through the system.
Prior to their use in the system, a supply of xerographic plates 50 is manually inserted in a magazine assembly 100 which is then placed in the camera wherein it is supported on suitable guide rails (not shown) formed on the framework of the apparatus. From the magazine, plates 50 are passed seriatim over a charging mechanism assembly 200, whereby the photoconductive surface of each plate is given a uniform electrostatic charge, and is then passed to an exposure position mechanism 230 wherein each plate is held momentarily during the exposure period. During exposure a charge pattern or elec trostatic latent image, corresponding to the subject being xerographed, is formed on each plate. After exposure, the plate is passed to a development mechanism assembly 320 wherein the electrostatic latent image of the subject is converted to a xerographic powder image thereof. After development each plate is passed through an image transfer assembly 470, wherein its xerographic powder image is transferred to an adhesive support surface, and thence to a direction-changing mechanism 490, whereby the plate is aligned with and passed through a brushcleaning apparatus 540 wherein residual powder remaining on the photoconductive surface of the plate is removed. After cleaning, the plate is returned to magazine assembly 100 for reuse.
Plate Magazine The plate magazine comprises a self-contained, lighttight, box-like structure wherein a plurality of xerographic plates are loaded preparatory to use in the system. Preferably, the magazine is of such construction to prevent the admission of light, and is provided with a dark slide covering the bottom opening thereof when the magazine is removed from the camera. When the magazine is placed in position in the system it cooperates with the framework of the machine in a manner such that a light-tight structure is maintained when the dark slide is removed. As an integral part of the magazine structure there is provided a plate spacing and advancing mechanism that is actuated by a motor through a single-revolution clutch, whereby plates fed to the magazine are retained in their respective positions and are released singly from the bottom of the magazine for use in the system. Also forming a part of the magazine structure is a plate transfer mechanism actuated by an air cylinder, whereby plates in the magazine may be withdrawn seriatim and be advanced to the plate charging apparatus.
Specifically, plate magazine assembly 100 (see FIGS. 3 and 5) includes a box-like casting having a cover portion 101, side walls 102 and 103, a front wall 104 and a rear wall 105 that forms a rear cover plate for the camera, and is provided with suitable bosses and interior wall portions for supporting the several components of the magazine mechanism. Before the magazine is inserted in the camera, a supply of xerographic plates 50 is placed therein. The plates are inserted in the magazine through a rectangular opening 106 in front wall 104, with photoconductive layer 5-1 facing downwardly, and are adapted to be supported within the magazine by four interponent members 107, one of which is fixed on each of two pairs of shafts 108 and 109 arranged on opposite sides of the magazine. Each of the shafts 108 is rotatably mounted in a bearing 110 set in cover portion 101 Cil the ratchet by a three-armed lever 6 and a bearing block 111 fixed on the respective side walls 102 and 103. Similarly, each of the shafts 109 is rotatably mounted in a bearing 112 and a bearing block 113.
On the right-hand side of the magazine (as shown in FIG. 5) each of the shafts 108 and 109 has fixed thereto a helical gear 115 that meshes with a similar helical gear 116 fixed on a shaft 117 that is provided at one end with a bevel gear 118 that is driven by a bevel gear 119' fixed on a tubular sleeve 120 that is rotatably mounted in a vertical wall portion 121. Similarly, shafts 108 and 109 on the left-hand side of the magazine are provided with helical gears 1213 that mesh with gears 124 fixed on a shaft 125 that is provided with a bevel gear 126 that meshes with a bevel gear 127 fixed on a tubular sleeve 128 that is rotatably mounted in a vertical wall portion 129. Tubular shafts 120 and 128 form part of a singlerevolution clutch mechanism 130, described below, whereby power from the drive mechanism of the camera is transmitted via a sprocket 132, shaft 133, pinion 134, gear 135, shaft 136, and the clutch mechanism to effect intermittent rotation of the .shafts 117 and 125 whereby xerographic plates may be released from interponent members 107, as described below.
For supporting xerographic plates after they are re-. leased by interponent members 107, two hook members 138 and 139 are provided on each side of the magazine, each of which is pivotally suspended from an associated block 140 that is secured to the inner face of the side walls 102 and 103. Each of the hook members is resiliently urged inwardly against the plates in the magazine by a suitable spring (not shown) and is provided with a hook portion that underlies the lowermost plate in the plate stack when the parts are in the position shown in FIG. 5.
The single-revolution clutch mechanism 130 is an adaptation of a conventional form of single-revolution clutch such as that used in the shutter winding mechanism of the K17 aerial camera. Briefly, it constitutes a solenoid-actuated device which, upon energization of the solenoid, serves to engage the several operatng mechanisms of the magazine with a constantly rotating shaft, during a single revolution thereof, to effect the required actuation of such mechanisms. As shown in FIG. 5, the clutch mechanism includes a pair of side plates and 146 that are held together for unitary movement by pins 147 and are fixed respectively to sleeves 120 and 128 which are rotatably mounted on drive shaft 136. In the space between side plates 145 and 146, there is a ratchet 148 that is fixed on drive shaft 136 and rotates constantly therewith. Cooperating with the ratchet 148 is a ratchet pawl 149 that is p-iv otally mounted on a stud 150 extending between the side plates, and is resiliently urged into engagement with 152 that has a lug extending over a tail portion of ratchet pawl 149 and is resiliently connected to the ratchet pawl by a spring 153 that is extended between a stud on the lever and a stud on the pendant end of the ratchet pawl. The entire pawl and lever assembly is resiliently urged clockwise about stud 150 by a spring 154 extended between the upward- 1y extending end of lever 152 and a stud secured on side plate .146- When the clutch mechanism is disengaged, as shown in the drawings, ratchet pawl 149 is held out of engagement with ratchet 148 by a holding pawl 155 that underlies a forward extension on ratchet pawl 149. The upper end of holding pawl 155 is pivotally mounted in a bracket 156, that is secured to the underside of cover portion 101, and is pivotally connected at its midportion to a spring-urged armature 157 of a solenoid SOL-X, that is also secured on cover 101.
When the clutch is inactive, the several parts thereof remain in the position shown so that ratchet 148 rotates freely with drive shaft 136. When the clutch is to be activated, solenoid SOL-X is energized, thereby drawing armature 157 inwardly against the tension of its spring and disengaging holding pawl 155 from ratchet pawl 149;
Claims (1)
1. A XEROGRAPHIC POWDER CLOUD GENERATING APPARATUS FOR SUPPLYING CHARGED POWDER PARTICLES TO A XEROGRAPHIC DEVELOPING APPARATUS INCLUDING A GAS-TIGHT HOUSING HAVING INLET AND OUTLET OPENINGS THEREIN, A BASE PLATE SUPPORTED WITHIN SAID HOUSING, A SUPPLY REEL FOR SUPPORTING A POWDER IMPREGNATED WEB, SAID SUPPLY REEL BEING MOUNTED FOR ROTATION ON A SHAFT SUPPORTED ON SAID BASE PLATE, A TAKE-UP REEL FOR RECEIVING A POWDER IMPREGNATED WEB FROM THE SUPPLY REEL, SAID TAKE-UP REEL BEING MOUNTED FOR ROTATION ON A SHAFT SUPPORTED ON SAID BASE PLATE AND SPACED APART FROM SAID SUPPLY REEL, A CAPSTAN MECHANISM FOR ADVANCING A POWDER IMPREGNATED WEB FROM THE SUPPLY REEL TO THE TAKE-UP REEL, SAID CAPSTAN MECHANISM INCLUDING A SHAFT ROTATABLY MOUNTED ON SAID BASE PLATE AND EXTENDING EXTERIOR OF SAID HOUSING, AN ANVIL SUPPORTED ON SAID BASE PLATE INTERMEDIATE THE SUPPLY REEL AND TAKE-UP REEL AND HAVING A SLOT THEREIN ARRANGED IN THE PATH OF MOVEMENT OF A POWDER IMPREGNATED WEB EXTENDING BETWEEN THE SUPPLY REEL AND THE TAKE-UP REEL, A POWDER PARTICLE CHARGING TUBE CONNECTING THE SLOT OF SAID ANVIL TO THE HOUSING OUTLET, DRIVING MEANS OPERABLY CONNECTED TO THE SHAFT OF SAID CAPSTAN MECHANISM EXTERIOR OF SAID HOUSING WHEREBY TO ACTUATE THE CAPSTAN MECHANISM, AND A DRIVING CONNECTION BETWEEN THE CAPSTAN MECHANISM AND SAID TAKE-UP REEL, SAID DRIVING CONNECTION INCLUDING A SLIP CLUTCH TO EFFECT ROTATION OF THE TAKE-UP REEL IN LINEAR RELATION TO THE MOVEMENT OF THE CAPSTAN.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US782772A US3060131A (en) | 1957-06-03 | 1958-12-24 | Powder cloud generating apparatus |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US663085A US3009402A (en) | 1957-06-03 | 1957-06-03 | Xerographic processing apparatus |
| US782772A US3060131A (en) | 1957-06-03 | 1958-12-24 | Powder cloud generating apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3060131A true US3060131A (en) | 1962-10-23 |
Family
ID=27098666
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US782772A Expired - Lifetime US3060131A (en) | 1957-06-03 | 1958-12-24 | Powder cloud generating apparatus |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3060131A (en) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2815330A (en) * | 1955-03-14 | 1957-12-03 | Haloid Co | Generator of aerosol of powder in gas |
-
1958
- 1958-12-24 US US782772A patent/US3060131A/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2815330A (en) * | 1955-03-14 | 1957-12-03 | Haloid Co | Generator of aerosol of powder in gas |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2901374A (en) | Development of electrostatic image and apparatus therefor | |
| US3009402A (en) | Xerographic processing apparatus | |
| US3819263A (en) | Cleaning apparatus | |
| US2831409A (en) | Xerographic camera | |
| US3520604A (en) | Photoelectrostatic copier | |
| US3615128A (en) | Apparatus for electrostatic printing | |
| US2845348A (en) | Electro-photographic means and method | |
| US3062108A (en) | Electrophotographic copying apparatus | |
| US3883242A (en) | Electronic photographic copying machine | |
| US3057275A (en) | Image keeping | |
| US3168022A (en) | Apparatus for producing photocopies | |
| US3091160A (en) | Xerographic plate feeding and supporting apparatus | |
| US3797930A (en) | Electrophotographic copier | |
| GB1019291A (en) | Xerographic exposure apparatus | |
| US3424131A (en) | Electroded cascade development system | |
| US3775007A (en) | Forms reproduction apparatus | |
| US3057997A (en) | Exposure charged electrophotography | |
| US3646866A (en) | Photoelectrostatic copier having a single station for simultaneously applying toner particles and cleaning the photoconductive medium | |
| US3674354A (en) | Microfilm viewer-printer | |
| US3017509A (en) | Xerographic plate feeding and charging apparatus | |
| US3060131A (en) | Powder cloud generating apparatus | |
| US3083869A (en) | Xerographic plate magazine and feeding apparatus | |
| ES8405962A1 (en) | Electrophotographic image recording method and apparatus. | |
| US3105426A (en) | Xerographic apparatus | |
| US3091219A (en) | Xerographic developing apparatus |