US3009402A - Xerographic processing apparatus - Google Patents

Xerographic processing apparatus Download PDF

Info

Publication number
US3009402A
US3009402A US663085A US66308557A US3009402A US 3009402 A US3009402 A US 3009402A US 663085 A US663085 A US 663085A US 66308557 A US66308557 A US 66308557A US 3009402 A US3009402 A US 3009402A
Authority
US
United States
Prior art keywords
xerographic
plate
crumrine
magazine
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US663085A
Inventor
Herbert E Crumrine
Charles L Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US663085A priority Critical patent/US3009402A/en
Priority to US782775A priority patent/US3017509A/en
Priority to US782773A priority patent/US3083869A/en
Priority to US782771A priority patent/US3091160A/en
Priority to US782772A priority patent/US3060131A/en
Priority to US782774A priority patent/US3091219A/en
Application granted granted Critical
Publication of US3009402A publication Critical patent/US3009402A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/26Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is obtained by projection of the entire image, i.e. whole-frame projection
    • G03G15/266Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is obtained by projection of the entire image, i.e. whole-frame projection using a reusable recording medium in form of a plate or a sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S222/00Dispensing
    • Y10S222/01Xerography

Definitions

  • FIG 1 TIME IN SECONDS
  • This exposure dis-' charges the plate areas in accordance with the light intensity that reaches them, and thereby creates an electrostatic latent image on or in the photoconductive layer.
  • Development of the latent image is effected with an electrostatically charged, finely divided material, such as an electroscopic powder, which is brought into surface contact with the photoconductive layer and is held thereon electrostatically in a patterncorresponding to the electrostatic latent image. Thereafter, the developed xerographic powder image is usually transferred to a support surface to which it may be fixed by any suitable means.
  • the principal object of this invention is to improve automatic xerographic processing equipment to provide a compact, high speed, and light weight apparatus for forming direct positive, continuous tone xerographs, particularly for use in aircraft.
  • a further object of the in vention is to minimize the time delay between the sensitization of a xerographic plate and the development of an electrostatic latent image formed thereon.
  • a further object of the invention is toextend the time period between successive uses of individual xerographic plates employed in automatic xerographic processing equipment.
  • a further object of the invention is to maintain a xero graphic processing apparatus free of accumulated developing powder during operation.
  • a further object of the invention is to improve xerographic plate handling devices to permit rapid, uniform and positive movement of a rigid xerographic plate through an automatic xerographic processing apparatus.
  • a further object of the invention is to improve xerographic plate storage devices to permit repetitive processing of successive xerographic plates seriatim.
  • a further object of the invention is to improve xerographic developing apparatus whereby the xerographic developing operation may be effected in a sealed chamber and wherein the development electrode surface may be cleaned between developing operations.
  • a further object of the invention is to improve xerographic plate charging devices for forming a uniform electrostatic charge on a xerographic plate surface.
  • a further object of the invention is to improve xerographic plate positioning devices for maintaining a xerographic plate in the focal plane of a lens system.
  • a further object of the invention is to improve xerographic plate cleaning mechanisms for removing residual powder from Xerographic plates in transit.
  • a further object of the invention is to improve apparatus for transferring xerographic powder images from xerographic plates to a support surface.
  • the apparatus includes a magazine assembly for storing xerographic plates, a charging assembly for forming a uniform electrostatic charge on the photoconductive surface of each plate, a lens and shutter assembly for making exposures, a development assembly for developing the latent images on the plates, a printing assembly for transferring developed images to a continuous paper strip, brush cleaning devices for removing residual developing powder from the xerographic plates and the development electrode of the developing assembly, and plate handling and control devices associated with these assemblies to form a completely integrated and fully automatic system.
  • xerographic plates are fed seriatim from the magazine to an exposure position and, in transit, each plate is charged by a scorotron or screened corona discharge device that places a uniform positive electrostatic charge over the surface of the plate.
  • the plate is then passed to an exposure position wherein it is exposed in conventional manner to form a latent pattern of electrostatic charges thereon that corresponds to the subject of the exposure, and is then transported to a development chamber wherein it is positioned adjacent to a development electrode.
  • Development is effected by a negatively charged developing powder that is injected into the chamber from a powder cloud generator connected thereto, the powder particles being electrostatically attracted to the positive charge pattern formed on the plate.
  • the chamber When development is complete, the chamber is scavenged by low pressure air to remove developing powder suspended in the air of the chamber. The chamber is then partly opened, and the plate is advanced to feed rolls that pass it through pressure rolls in conjunction with a continuous, adhesive-coated, paper strip whereby the powder image formed on the plate is transferred to the adhesive strip. Once the plate is clear of the developing chamber, the chamber is reclosed and scavenged with high pressure air to eliminate residual powder, and the development electrode is cleaned by a brush assembly that is actuated through a clutch that forms part of the development chamber assembly. After leaving the pressure transfer rolls, the transfer paper with the powder imagethereon is passed through a second set of pressure rolls conjointly with a transparent plastic web which adheres to the adhesive on the transfer strip and fixes the powder image thereon by forming a protective cover thereover.
  • the plate is passed to a pivotable direction-changing mechanism having plate driving rolls frictionally drive from a driven roll geared to the transfer pressure rolls.
  • Plate holding rolls retain the plate within the direction-changing mechanism as it is pivoted about its axis to engage the driving rolls with a second drive roll that reverses the direction of rotation of the plate driving rolls.
  • the plate On engagement with the second drive roll, the plate is withdrawn from the direction-changing mechanism and is advanced through a cleaning position wherein residual powder is dusted therefrom by a cleaning brush which, in turn, is cleaned of residual powder by a flicking bar. Suitable vacuum means are provided to remove this residual powder from the machine.
  • the plate is gripped by another set of drive rolls and is returned to the magazine wherein it is deposited on top of the other plates therein for reuse.
  • FIG. 1 is a schematic perspective View of the Xerographic camera system of the invention as adapted for installation in an aircraft;
  • FIG. 2 is an enlarged perspective view of the several components of the xerographic camera system of the invention
  • FIG. 3 is a functional schematic cross-sectional view of the xerographic camera and processing apparatus
  • FIG. 4 is an isometric view of a xerographic plate adapted for use in the invention.
  • vFIG. 5 is an isometric view of the xerographic plate magazine assembly, with side walls broken away, illustrating the several plate actuating mechanisms therein;
  • FIG. 6 is an isometric view of the plate transfer mechanism and plate charging mechanism
  • FIG. 7 is a detailed sectional view of the xerographic plate latching mechanism of the plate transfer mechanism
  • FIG. 8 is an isometric view, partly in section, of the exposure position mechanism of the invention.
  • FIG. 9 is an isometric view, partly in section, of the developing mechanism of the invention, showing the several components thereof substantially in extended position to withdraw a Xerographic plate from the exposure position mechanism;
  • FIG. 10 is a side elevation of the developing mechanism of the invention, showing the several component parts thereof in retracted position for developing a xerographic plate;
  • FIG. 11 is a schematic diagram of the pneumatic system of the invention, and includes a schematic cross-sectional view of the major components of the developing mechanism, as well as a schematic isometric view of a portion of the exposure position mechanism;
  • FIG. 12 is a sectional view illustrating the structural arrangement for electrically isolating a xerographic plate heldin the developing mechanism assembly;
  • FIG. 13 is an isometric view of the direction-changing mechanism
  • FIG. 14 is an isometric view of the xerographic powder image transfer mechanism and the image fixing mechanism
  • FIG. 15 is a schematic sectional view of the mechanisms of FIG. 14;
  • FIG. 16 is an isometric view, partly in section, of the xerographic plate brush cleaner mechanism
  • FIGS. 17 and 18 are detailed sectional views, respectively, of the left and right hand structural arrangements for supporting the xerographic plate cleaning brush of FIG. 16;
  • FIG. 19 is a schematic isometric view, partly in section, of the drive mechanism of the invention.
  • FIGS. 20 and 21, taken together, constitute a timing chart of an operational cycle of the mechanism of the invention
  • FIG. 24 is an isometric view of the powder cloud generating mechanism
  • FIG. 25 is a side elevation of a powder cloud generating assembly
  • FIG. 26 is a sectional view of the powder outlet assembly of the powder cloud generating assembly.
  • the invention is adapted for installation in an aircraft, and is shown as comprising a xerographic camera 10, containing a lens and shutter mechanism as well as all xerographic processing equipment; a control unit 20, wherein the several pneumatic electrical control circuits of the system are housed; and an intervalometer 30, for initiating operation of the system.
  • the camera and processing mechanism is preferably housed in a cast magnesium cover assembly 11 that is separable substantially at its mid-section to permit access to the interior 'of the apparatus.
  • two spaced side plates or frames are integrally connected by tie rods to form a rigid framework for supporting the several components of the xerographic processing equipment.
  • a power-driven, take-up roll spindle 12 for storing aerial xerographs 13 taken and processed by the apparatus.
  • a lever 14 is provided to actuate a web cutter inside the housing, whereby finished Xerographs may be detached from those in process.
  • Manually settable knobs 15 and 16 project through an opening 17 to permit adjustment of the diaphragm and speed-setting mechanisms, respectively, of the lens and shutter assembly of the camera.
  • housing 11 On the lower portion of housing 11 there are provided two trunnions 18, at the front and rear of the camera, whereby the camera portion of the system may be supported on the inner gimbal ring 19 of a gyroscopic stabilizing system which, together with an outer gimbal ring 21, is pivotally supported in a shock-mounted frame 22. within the aircraft.
  • a gyroscopic stabilizing system which, together with an outer gimbal ring 21, is pivotally supported in a shock-mounted frame 22.
  • the xerographic camera is maintained in a proper attitude with reference to the ground for taking aerial Xerographs by means of suitable gyroscopically controlled servomotors (not shown) that function to compensate for pitching, rolling and yawing motions of the aircraft.
  • a plurality of electrical, pneumatic and vacuum lines 24 connect camera 10 to control unit 20 which, in turn, is connected to the aircraft electrical and pneumatic supplies via a plurality of lines 25.
  • housed within the control unit is an electrical circuit unit 26 including relay circuits for controlling the various automatic and interlocking functions of the several components of the camera apparatus, a pneumatic control system unit 27 for controlling the operation of a plurality of high pressure air systems and vacuum systems essential to the proper functioning of the camera mechanism, and a dust filter unit 28 for removing xerographic developing powder from air exhausted from the system.
  • a plurality of control knobs and switches 29 are provided on electrical circuit unit 26 for conditioning the sysem for automatic operation and for testing the several components thereof in accordance with prescribed maintenance requirements.
  • Intervalorneter unit 30 is connected to control unit 20 via a cable 31 and is provided with a plurality of setting knobs 32 whereby the camera apparatus may be conditioned for taking single exposures or successive exposures in timed relation, in accordance with conventional aerial photography practice.
  • FIG. 3 The relative arrangement of the several components of the interior of the xerographic camera and processing apparatus are best shown in the schematic sectional view of FIG. 3 wherein a lens :and shutter assembly 40 is mounted over an opening in the lower end of housing 11 in a manner to form a light-tight seal with the housing.
  • Assembly 40 includes a lens system 41, a diaphragm 42 which is settable under control of knob 15, as described above, and a shutter mechanism (not shown) that may be cocked and released in accordance with conventional practice in aerial photography.
  • the system is provided with a plurality of xerognaphic plates 50 (see also FIG. 4), each of which comprises a conductive backing plate, preferably of brass, having a photoconductive layer 51, preferably of amorphous selenium, formed on one face thereof.
  • Each plate 50 is provided with two side rails 52 that are integrally secured thereto and are so constructed to position the plate with reference to the several mechanisms with which it cooperates, and to form a recessed area for photo-conductive layer 51 to protect a xerogra-phic powder image formed thereon from smearing during transit of the plate through the system.
  • a supply of xerographic plates 50 is manually inserted in a magazine assembly 100 which is then placed in the camera wherein it is supported on suitable guide rails (not shown) formed on the framework of the apparatus.
  • plates 50 are passed seriatim over a charging mechanism assembly 200, whereby the photoconductive surface of each plate is given a uniform electrostatic charge, and is then passed to an exposure position mechanism 230 wherein each plate is held momentarily during the exposure period.
  • a charge pattern or electrostatic latent image corresponding to the subject being xerographed, is formed on each plate.
  • the plate After exposure, the plate is passed to a development mechanism assembly 320 wherein the electrostatic latent image of the subject is converted to a x-erograp-hic powder image thereof. After develop ment each plate is passed through an image transfer assembly 470, wherein its xerographic powder image is transferred to an adhesive support surface, and thence to a direction-changing mechanism 490, whereby the plate is aligned with and passed through a brush-cleaning apparatus 540 wherein residual powder remaining on the photoconductive surface of the plate is removed. After cleaning, the plate is returned to magazine assembly 100 for reuse.
  • a plate spacing and advancing mechanism that is actuated by a motor through a singlerevolution clutch, whereby plates fed to the magazine are retained in their respective positions and are released singly firom the bottom of the magazine for use in the system.
  • a plate transfer mechanism actuated by an air cylinder, whereby plates in the magazine may be withdrawn seriatim and be advanced to the plate charging apparatus.
  • plate magazine assembly 100 includes a box like casting having a cover portion 101, side walls 102 and 103, a front wall 104 and a rear wall 105 that forms a rear cover plate for the camera, and is provided with suitable bosses and interior wall portions for supporting the several components of the magazine mechanism.
  • a supply of xerographic plates 50 is placed therein.
  • the plates are inserted in the magazine through a rectangular opening 106 in front wall 104, with photoconductive layer 51 facing downwardly, and are adapted to be supported within the magazine by four interponent members 107, one of which is fixed on each of two pairs of shafts 108 and 109 arranged on opposite sides of the magazine.
  • Each of the shafts 108 is rotatably mounted a bearing 110 set in cover portion 101 and a bearing block 111 fixed on the respective side 6 walls 102 and 103.
  • each of the shafts 109 is rotatably mounted in a bearing 112 and a bearing block 113.
  • each of the shafts 108 and 109 has fixed thereto a helical gear 115 that meshes with a similar helical gear 116 fixed on a shaft 117 that is provided at one end with a bevel gear 118 that is driven by a bevel gear 119 fixed on a tubular sleeve 120 that is rotatably mounted in a vertical wall portion 121.
  • shafts 108 and 109 on the left-hand side of the magazine are provided with helical gears 123 that mesh with gears 124 fixed on a shaft 125 that is provided with a bevel gear 126 that meshes with a bevel gear 127 fixed on a tubular sleeve 128 that is rotatably mounted in a vertical wall portion 129.
  • Tubular shafts 120 and 128 form part of a single-revolution clutch mechanism 130, described below, whereby power from the drive mechanism of the camera is transmitted via a sprocket 132, shaft 133, pinion 134, gear 135, shaft 136, and the clutch mechanism to effect intermittent rotation of the shafts 117 and 125 whereby xerographic plates may be released from interponent members 107, as described below.
  • two hook members .138 and 139 are provided on each side of the magazine, each of which is pivotally suspended from an associated block 140 that is secured to the inner face of the side walls 102 and 103.
  • Each of the hook members is re siliently urged inwardly against the plates in the magazine by a suitable spring (not shown) and is provided with a hook portion that underlies the lowermost plate in the plate stack when the parts are in the position shown in FIG. 5.
  • the single-revolution clutch mechanism 130 is an adaptation of a conventional form of single-revolution clutch such as that used in the shutter winding mecha nism of the K-17 aerial camera. Briefly, it constitutes a solenoid-actuated device which, upon energization of the solenoid, serves to engage the several operating mechanisms of the magazine with a constantly rotating shaft, during a single revolution thereof, to effect the required actuation of such mechanisms. As shown in FIG. 5, the clutch mechanism includes a pair of side plates and 146 that are held together for unitary movement by pins 147 and are fixed respectively to sleeves 120' and 128 which are rotatably mounted on drive shaft 136*.
  • ratchet 148 In the space between side plates 145 and 146, there is a ratchet 148 that is fixed on drive shaft 136 and rotates constantly therewith.
  • ratchet pawl 149 Cooperating with the ratchet 148 is a ratchet pawl 149 that is pivotally mounted on a stud 150 extending between the side plates, and is resiliently urged into engagement with the ratchet by a three-armed lever 152 that has a lug extending over a tail portion of ratchet pawl 149 and is resiliently connected to the ratchet pawl by a spring 153 that is extended between a stud on the lever and a stud on the pendant end of the ratchet pawl.
  • ratchet pawl 149 is held out of engagement with ratchet 148 by a holding pawl 155 that underlies a forward extension on ratchet pawl 149.
  • the upper end of holding pawl 155 is pivotally mounted in a bracket 156, that is secured to the underside of cover portion 101, and is pivotally connected at its midportion to a spring-urged armature 157 of a solenoid SOL-X, that is also secured on cover 101.

Description

Nov. 21, 1961 H. E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS l7 Sheets-Sheet 1- Filed June 3, 1957 INVENTORS. Herbert E.Crumrme Char L.luber a 1 M ATTORNEY Nov. 21, 1961 H E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS Filed June 3, 1957 17 Sheets-Sheet 2' (ill H IGH VOLTAGE POWER SUPPLY e n mm r e m mi MLH V L m an r. my Hc 7 B 3 m .r
ATTORNEY Nov. 21, 1961 H. E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS 17 Sheets-Sheet 3 Filed June 3, 1957 .INVENTORS Herbert E.Crumrine Charl M H ITORNEY Nov. 21, 1961 H. E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS 17 Sheets-Sheet 4 Filed June 3, 1957 INVENTORS Herbert E.Crumrine Chayuber AA'TORNEY Nov. 21, 1961 H. E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS l7 Sheets-Sheet 5 Filed June 3, 1957 INVENTORS Herbert E.Crumr|ne Charl eiylber ATTOVRNEY Nov. 21, 1961 H. E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS 1'7 Sheets-Sheet 6 Filed June 3, 1957 S m m m w.
Herbert E.Crumrine Charles L. Huber TTORNEY Nov. 21, 1961 H. E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS 17 Sheets-Sheet 7 Filed June 3, 1957 FIG. 9
INVENTORS Herbert E.Crumrine Charles L. Huber ATTORNEY Nov. 21, 1961 H. E. CRUMRINE ETAL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS l7 Sheets-Sheet 8 Filed June 3, 1957 INVENTORS Herbert E.Crumrine ga/y Charl L. Huber ATTORNEY Nov. 21, 1961 H. E. CRUMRINE ET AL XEROGRAPHIC PROCESSING APPARATUS Filed June 3, 1957 17 Sheets-Sheet 9 PRESSURIZED POWDER CLOUD GENERATOR AMBIENT AIR Q 91 Q o m LL 2 2 2 2 5 an an 2 W W a [L I a 3 w BRUSH x u DUST COLLECTOR AMBIENT EXHAUST FIG. 1 1
INVENTORS VACUUM PUMP Herbert E.Crumr|ne BY Charles L. Huber TTORNEY Nov. 21, 1961 H. E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSINGAPPARATUS l7 Sheets-Sheet 10 Filed June 5, 1957 INVENTORS Herberf E.Crumrine BY (?2? Huber ATTORNEY Nov. 21, 1961 H. E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS 17 Sheets-Sheet 11 Filed June 5, 1957 v INVENTORS Herbert E. Crumrine gt CharlesL.Huber wk, A TORNEY Nov. 21, 1961 H. E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS l7 Sheets-Sheet 12 Filed June 3, 1957 INVENTORS Herbert E.Crumrine Chzarlgllyber A TORNEY Nov. 21, 1961 H. E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS Fild June 5, 1957 17 Sheets-Sheet 13 F) p (O INVENTORS Herberf E. Crumrine Charles L. Huber TTORNEY Nov. 21, 1961 H. E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS 1'7 Sheets-Sheet 14 Filed June 5, 1957 Emu gmwhu fl duodum i d m .r
IN7VENTORS Herbert E. Crumrine Charles L.Huber TIME IN SECONDS Qum wJum 2 a m .0 UP
FIG. 20
4 o 246 zzw 222ma uaaa 4RR R a 4 a 460 2 680 466024680 46824T T E W 3 T w L vi a c w c m R TTORNEY Nov. 21, 1961 H. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS 9 IO ll I2 l3 I4 l5 I6 l7 3MIN.
FIG 1 TIME IN SECONDS |NVENTQR5 Herberi E. Crumrine BY a /4 E ATTORNEY Charles L.Huber Nov. 21, 1961 H. E. CRUMRINE ET AL 3,009,402
XEROGRAPHIC PROCESSING APPARATUS 17 Sheets-Sheet 16 Filed June 3, 1957 INTERVALQMETER FIG. 22
INVENTORS Herbert E.Crumrine Charles L. Huber 1'7 Sheets-Sheet 17 Charles .Huber M il BN INVENTORf} Herberr E. Crumrme Nov. 21, 1961 H. E. CRUMRINE ETAL XEROGRAPHIC PROCESSING APPARATUS Filed June 3, 1957 FIG. 23
United States Patent Ofiice 3,009,402 Patented Nov. 21, 1961 3,009,402 XEROGRAPHIC PROCESSING APPARATUS Herbert E. Crumrine, Rochester, and Charles L. Huber,
Byron, N.Y., assignors to Xerox Corporation, a corporation of New York Filed June 3, 1957, Ser. No. 663,085 5 Claims. (Cl. 95-1.7)
conventional projecting techniques. This exposure dis-' charges the plate areas in accordance with the light intensity that reaches them, and thereby creates an electrostatic latent image on or in the photoconductive layer. Development of the latent image is effected with an electrostatically charged, finely divided material, such as an electroscopic powder, which is brought into surface contact with the photoconductive layer and is held thereon electrostatically in a patterncorresponding to the electrostatic latent image. Thereafter, the developed xerographic powder image is usually transferred to a support surface to which it may be fixed by any suitable means.
Following the disclosure of the basic electrophotographic or xerographic techniques in the Carlson patent, many improvements have been made in xerogra-phic plates and developing materials to increase plate sensitivity and panchromaticity and to improve resolution of the final image structure. In addition, many improvements have been made in each of the component devices for effecting xerographic processing, i.e., in devices for electrostatically charging xerographi'c plates, in devices for exposing such plates, in apparatus for developing electrostatic latent images, in xerographic powder image transfer devices, and in powder image fixing devices. For the most part such improvements have been employed in apparatus for reproducing line copy images, and such devices are presently in wide commercial use for this purpose. However, the additional complexities involved in forming continuous tone images by xerographic techniques has heretofore hindered the application of such techniques tothe field of direct photography. I
The principal object of this invention is to improve automatic xerographic processing equipment to provide a compact, high speed, and light weight apparatus for forming direct positive, continuous tone xerographs, particularly for use in aircraft. A further object of the in vention is to minimize the time delay between the sensitization of a xerographic plate and the development of an electrostatic latent image formed thereon. A further object of the invention is toextend the time period between successive uses of individual xerographic plates employed in automatic xerographic processing equipment. A further object of the invention is to maintain a xero graphic processing apparatus free of accumulated developing powder during operation. A further object of the invention is to improve xerographic plate handling devices to permit rapid, uniform and positive movement of a rigid xerographic plate through an automatic xerographic processing apparatus. A further object of the invention is to improve xerographic plate storage devices to permit repetitive processing of successive xerographic plates seriatim. A further object of the invention is to improve xerographic developing apparatus whereby the xerographic developing operation may be effected in a sealed chamber and wherein the development electrode surface may be cleaned between developing operations. A further object of the invention is to improve xerographic plate charging devices for forming a uniform electrostatic charge on a xerographic plate surface. A further object of the invention is to improve xerographic plate positioning devices for maintaining a xerographic plate in the focal plane of a lens system. A further object of the invention is to improve xerographic plate cleaning mechanisms for removing residual powder from Xerographic plates in transit. A further object of the invention is to improve apparatus for transferring xerographic powder images from xerographic plates to a support surface.
These and other objects of the invention are attained in a preferred embodiment which comprises a self-contained, fully automatic, xerographic system that is intended for use in an aircraft for producing successive, continuous tone, aerial xerographs under the control of an intervalometer. Essentially, the apparatus includes a magazine assembly for storing xerographic plates, a charging assembly for forming a uniform electrostatic charge on the photoconductive surface of each plate, a lens and shutter assembly for making exposures, a development assembly for developing the latent images on the plates, a printing assembly for transferring developed images to a continuous paper strip, brush cleaning devices for removing residual developing powder from the xerographic plates and the development electrode of the developing assembly, and plate handling and control devices associated with these assemblies to form a completely integrated and fully automatic system.
In operation, xerographic plates are fed seriatim from the magazine to an exposure position and, in transit, each plate is charged by a scorotron or screened corona discharge device that places a uniform positive electrostatic charge over the surface of the plate. The plate is then passed to an exposure position wherein it is exposed in conventional manner to form a latent pattern of electrostatic charges thereon that corresponds to the subject of the exposure, and is then transported to a development chamber wherein it is positioned adjacent to a development electrode. Development is effected by a negatively charged developing powder that is injected into the chamber from a powder cloud generator connected thereto, the powder particles being electrostatically attracted to the positive charge pattern formed on the plate. When development is complete, the chamber is scavenged by low pressure air to remove developing powder suspended in the air of the chamber. The chamber is then partly opened, and the plate is advanced to feed rolls that pass it through pressure rolls in conjunction with a continuous, adhesive-coated, paper strip whereby the powder image formed on the plate is transferred to the adhesive strip. Once the plate is clear of the developing chamber, the chamber is reclosed and scavenged with high pressure air to eliminate residual powder, and the development electrode is cleaned by a brush assembly that is actuated through a clutch that forms part of the development chamber assembly. After leaving the pressure transfer rolls, the transfer paper with the powder imagethereon is passed through a second set of pressure rolls conjointly with a transparent plastic web which adheres to the adhesive on the transfer strip and fixes the powder image thereon by forming a protective cover thereover.
Simultaneously, the plate is passed to a pivotable direction-changing mechanism having plate driving rolls frictionally drive from a driven roll geared to the transfer pressure rolls. Plate holding rolls retain the plate within the direction-changing mechanism as it is pivoted about its axis to engage the driving rolls with a second drive roll that reverses the direction of rotation of the plate driving rolls. On engagement with the second drive roll, the plate is withdrawn from the direction-changing mechanism and is advanced through a cleaning position wherein residual powder is dusted therefrom by a cleaning brush which, in turn, is cleaned of residual powder by a flicking bar. Suitable vacuum means are provided to remove this residual powder from the machine. After passing through the cleaning position, the plate is gripped by another set of drive rolls and is returned to the magazine wherein it is deposited on top of the other plates therein for reuse.
A preferred form of the invention is disclosed in the appended drawings, in which:
FIG. 1 is a schematic perspective View of the Xerographic camera system of the invention as adapted for installation in an aircraft;
FIG. 2 is an enlarged perspective view of the several components of the xerographic camera system of the invention;
FIG. 3 is a functional schematic cross-sectional view of the xerographic camera and processing apparatus;
FIG. 4 is an isometric view of a xerographic plate adapted for use in the invention;
vFIG. 5 is an isometric view of the xerographic plate magazine assembly, with side walls broken away, illustrating the several plate actuating mechanisms therein;
FIG. 6 is an isometric view of the plate transfer mechanism and plate charging mechanism;
FIG. 7 is a detailed sectional view of the xerographic plate latching mechanism of the plate transfer mechanism;
FIG. 8 is an isometric view, partly in section, of the exposure position mechanism of the invention;
FIG. 9 is an isometric view, partly in section, of the developing mechanism of the invention, showing the several components thereof substantially in extended position to withdraw a Xerographic plate from the exposure position mechanism;
FIG. 10 is a side elevation of the developing mechanism of the invention, showing the several component parts thereof in retracted position for developing a xerographic plate;
FIG. 11 is a schematic diagram of the pneumatic system of the invention, and includes a schematic cross-sectional view of the major components of the developing mechanism, as well as a schematic isometric view of a portion of the exposure position mechanism;
FIG. 12 is a sectional view illustrating the structural arrangement for electrically isolating a xerographic plate heldin the developing mechanism assembly;
FIG. 13 is an isometric view of the direction-changing mechanism;
FIG. 14 is an isometric view of the xerographic powder image transfer mechanism and the image fixing mechanism;
FIG. 15 is a schematic sectional view of the mechanisms of FIG. 14;
FIG. 16 is an isometric view, partly in section, of the xerographic plate brush cleaner mechanism;
FIGS. 17 and 18 are detailed sectional views, respectively, of the left and right hand structural arrangements for supporting the xerographic plate cleaning brush of FIG. 16;
FIG. 19 is a schematic isometric view, partly in section, of the drive mechanism of the invention;
FIGS. 20 and 21, taken together, constitute a timing chart of an operational cycle of the mechanism of the invention;
vFIGS. 22 and 23, taken together, constitute a wiring diagram of the several electrical control circuits of the invention;
FIG. 24 is an isometric view of the powder cloud generating mechanism;
FIG. 25 is a side elevation of a powder cloud generating assembly; and
FIG. 26 is a sectional view of the powder outlet assembly of the powder cloud generating assembly.
In the particular embodiment shown in the drawings (see FIGS. 1 and 2) the invention is adapted for installation in an aircraft, and is shown as comprising a xerographic camera 10, containing a lens and shutter mechanism as well as all xerographic processing equipment; a control unit 20, wherein the several pneumatic electrical control circuits of the system are housed; and an intervalometer 30, for initiating operation of the system. The camera and processing mechanism is preferably housed in a cast magnesium cover assembly 11 that is separable substantially at its mid-section to permit access to the interior 'of the apparatus. Within the housing, two spaced side plates or frames are integrally connected by tie rods to form a rigid framework for supporting the several components of the xerographic processing equipment.
On the front wall of the exterior of housing 11 there is located a power-driven, take-up roll spindle 12 for storing aerial xerographs 13 taken and processed by the apparatus. A lever 14 is provided to actuate a web cutter inside the housing, whereby finished Xerographs may be detached from those in process. Manually settable knobs 15 and 16 project through an opening 17 to permit adjustment of the diaphragm and speed-setting mechanisms, respectively, of the lens and shutter assembly of the camera. On the lower portion of housing 11 there are provided two trunnions 18, at the front and rear of the camera, whereby the camera portion of the system may be supported on the inner gimbal ring 19 of a gyroscopic stabilizing system which, together with an outer gimbal ring 21, is pivotally supported in a shock-mounted frame 22. within the aircraft. By the latter means the xerographic camera is maintained in a proper attitude with reference to the ground for taking aerial Xerographs by means of suitable gyroscopically controlled servomotors (not shown) that function to compensate for pitching, rolling and yawing motions of the aircraft.
For actuating the several components of the camera mechanism, a plurality of electrical, pneumatic and vacuum lines 24 connect camera 10 to control unit 20 which, in turn, is connected to the aircraft electrical and pneumatic supplies via a plurality of lines 25. Housed within the control unit is an electrical circuit unit 26 including relay circuits for controlling the various automatic and interlocking functions of the several components of the camera apparatus, a pneumatic control system unit 27 for controlling the operation of a plurality of high pressure air systems and vacuum systems essential to the proper functioning of the camera mechanism, and a dust filter unit 28 for removing xerographic developing powder from air exhausted from the system. A plurality of control knobs and switches 29 are provided on electrical circuit unit 26 for conditioning the sysem for automatic operation and for testing the several components thereof in accordance with prescribed maintenance requirements. Intervalorneter unit 30 is connected to control unit 20 via a cable 31 and is provided with a plurality of setting knobs 32 whereby the camera apparatus may be conditioned for taking single exposures or successive exposures in timed relation, in accordance with conventional aerial photography practice.
The relative arrangement of the several components of the interior of the xerographic camera and processing apparatus are best shown in the schematic sectional view of FIG. 3 wherein a lens :and shutter assembly 40 is mounted over an opening in the lower end of housing 11 in a manner to form a light-tight seal with the housing. Assembly 40 includes a lens system 41, a diaphragm 42 which is settable under control of knob 15, as described above, and a shutter mechanism (not shown) that may be cocked and released in accordance with conventional practice in aerial photography.
. For forming xerographi-c images, the system is provided with a plurality of xerognaphic plates 50 (see also FIG. 4), each of which comprises a conductive backing plate, preferably of brass, having a photoconductive layer 51, preferably of amorphous selenium, formed on one face thereof. Each plate 50 is provided with two side rails 52 that are integrally secured thereto and are so constructed to position the plate with reference to the several mechanisms with which it cooperates, and to form a recessed area for photo-conductive layer 51 to protect a xerogra-phic powder image formed thereon from smearing during transit of the plate through the system.
Prior to their use in the system, a supply of xerographic plates 50 is manually inserted in a magazine assembly 100 which is then placed in the camera wherein it is supported on suitable guide rails (not shown) formed on the framework of the apparatus. From the magazine, plates 50 are passed seriatim over a charging mechanism assembly 200, whereby the photoconductive surface of each plate is given a uniform electrostatic charge, and is then passed to an exposure position mechanism 230 wherein each plate is held momentarily during the exposure period. During exposure a charge pattern or electrostatic latent image, corresponding to the subject being xerographed, is formed on each plate. After exposure, the plate is passed to a development mechanism assembly 320 wherein the electrostatic latent image of the subject is converted to a x-erograp-hic powder image thereof. After develop ment each plate is passed through an image transfer assembly 470, wherein its xerographic powder image is transferred to an adhesive support surface, and thence to a direction-changing mechanism 490, whereby the plate is aligned with and passed through a brush-cleaning apparatus 540 wherein residual powder remaining on the photoconductive surface of the plate is removed. After cleaning, the plate is returned to magazine assembly 100 for reuse.
Plate magazine The plate magazine comprises a self-contained, 1ighttight, box-like structure wherein a plurality of xerognaphic plates are loaded preparatory to use in the system. Preferably, the magazine is of such construction to prevent the admission of light, and is provided with a dark slide covering the bottom opening thereof when the magazine is removed from the camera. When the magazine is placed in position in the system it cooperates with the framework of the machine in a manner such that a light-tight structure is maintained when the dark slide is removed. As an integral part of the magazine structure there is provided a plate spacing and advancing mechanism that is actuated by a motor through a singlerevolution clutch, whereby plates fed to the magazine are retained in their respective positions and are released singly firom the bottom of the magazine for use in the system. Also forming a part of the magazine structure is a plate transfer mechanism actuated by an air cylinder, whereby plates in the magazine may be withdrawn seriatim and be advanced to the plate charging apparatus.
Specifically, plate magazine assembly 100 (see FIGS. 3 and 5) includes a box like casting having a cover portion 101, side walls 102 and 103, a front wall 104 and a rear wall 105 that forms a rear cover plate for the camera, and is provided with suitable bosses and interior wall portions for supporting the several components of the magazine mechanism. Before the magazine is inserted in the camera, a supply of xerographic plates 50 is placed therein. The plates are inserted in the magazine through a rectangular opening 106 in front wall 104, with photoconductive layer 51 facing downwardly, and are adapted to be supported within the magazine by four interponent members 107, one of which is fixed on each of two pairs of shafts 108 and 109 arranged on opposite sides of the magazine. Each of the shafts 108 is rotatably mounted a bearing 110 set in cover portion 101 and a bearing block 111 fixed on the respective side 6 walls 102 and 103. Similarly, each of the shafts 109 is rotatably mounted in a bearing 112 and a bearing block 113.
On the right-hand side of the magazine (as shown in FIG. 5) each of the shafts 108 and 109 has fixed thereto a helical gear 115 that meshes with a similar helical gear 116 fixed on a shaft 117 that is provided at one end with a bevel gear 118 that is driven by a bevel gear 119 fixed on a tubular sleeve 120 that is rotatably mounted in a vertical wall portion 121. Similarly, shafts 108 and 109 on the left-hand side of the magazine are provided with helical gears 123 that mesh with gears 124 fixed on a shaft 125 that is provided with a bevel gear 126 that meshes with a bevel gear 127 fixed on a tubular sleeve 128 that is rotatably mounted in a vertical wall portion 129. Tubular shafts 120 and 128 form part of a single-revolution clutch mechanism 130, described below, whereby power from the drive mechanism of the camera is transmitted via a sprocket 132, shaft 133, pinion 134, gear 135, shaft 136, and the clutch mechanism to effect intermittent rotation of the shafts 117 and 125 whereby xerographic plates may be released from interponent members 107, as described below.
For supporting xerographic plates after they are released by interponent members 107, two hook members .138 and 139 are provided on each side of the magazine, each of which is pivotally suspended from an associated block 140 that is secured to the inner face of the side walls 102 and 103. Each of the hook members is re siliently urged inwardly against the plates in the magazine by a suitable spring (not shown) and is provided with a hook portion that underlies the lowermost plate in the plate stack when the parts are in the position shown in FIG. 5.
The single-revolution clutch mechanism 130 is an adaptation of a conventional form of single-revolution clutch such as that used in the shutter winding mecha nism of the K-17 aerial camera. Briefly, it constitutes a solenoid-actuated device which, upon energization of the solenoid, serves to engage the several operating mechanisms of the magazine with a constantly rotating shaft, during a single revolution thereof, to effect the required actuation of such mechanisms. As shown in FIG. 5, the clutch mechanism includes a pair of side plates and 146 that are held together for unitary movement by pins 147 and are fixed respectively to sleeves 120' and 128 which are rotatably mounted on drive shaft 136*. In the space between side plates 145 and 146, there is a ratchet 148 that is fixed on drive shaft 136 and rotates constantly therewith. Cooperating with the ratchet 148 is a ratchet pawl 149 that is pivotally mounted on a stud 150 extending between the side plates, and is resiliently urged into engagement with the ratchet by a three-armed lever 152 that has a lug extending over a tail portion of ratchet pawl 149 and is resiliently connected to the ratchet pawl by a spring 153 that is extended between a stud on the lever and a stud on the pendant end of the ratchet pawl. The entire pawl and lever assembly is resiliently urged clockwise about stud 150 by a spring 154 extended between the upwardly extending end of lever 152 and a stud secured on side plate 146. When the clutch mechanism is disengaged, as shown in the drawings, ratchet pawl 149 is held out of engagement with ratchet 148 by a holding pawl 155 that underlies a forward extension on ratchet pawl 149. The upper end of holding pawl 155 is pivotally mounted in a bracket 156, that is secured to the underside of cover portion 101, and is pivotally connected at its midportion to a spring-urged armature 157 of a solenoid SOL-X, that is also secured on cover 101.
When the clutch is inactive, the several parts thereof remain in the position shown so that ratchet 148 rotates freely with drive shaft 136. When the clutch is to be activated, solenoid SOL-X is energized, thereby drawing armature 157 inwardly against the tension of its spring and disengaging holding pawl 155 from ratchet pawl 149.
US663085A 1957-06-03 1957-06-03 Xerographic processing apparatus Expired - Lifetime US3009402A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US663085A US3009402A (en) 1957-06-03 1957-06-03 Xerographic processing apparatus
US782775A US3017509A (en) 1957-06-03 1958-12-24 Xerographic plate feeding and charging apparatus
US782773A US3083869A (en) 1957-06-03 1958-12-24 Xerographic plate magazine and feeding apparatus
US782771A US3091160A (en) 1957-06-03 1958-12-24 Xerographic plate feeding and supporting apparatus
US782772A US3060131A (en) 1957-06-03 1958-12-24 Powder cloud generating apparatus
US782774A US3091219A (en) 1957-06-03 1958-12-24 Xerographic developing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US663085A US3009402A (en) 1957-06-03 1957-06-03 Xerographic processing apparatus

Publications (1)

Publication Number Publication Date
US3009402A true US3009402A (en) 1961-11-21

Family

ID=24660408

Family Applications (1)

Application Number Title Priority Date Filing Date
US663085A Expired - Lifetime US3009402A (en) 1957-06-03 1957-06-03 Xerographic processing apparatus

Country Status (1)

Country Link
US (1) US3009402A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3063351A (en) * 1959-09-10 1962-11-13 Xerox Corp Xerographic powder image transfer apparatus
US3100427A (en) * 1960-11-03 1963-08-13 Xerox Corp Projection device
US3136233A (en) * 1960-06-27 1964-06-09 Keuffel & Esser Co Electrophotographic apparatus
US3140945A (en) * 1959-06-19 1964-07-14 Commw Of Australia Electrostatic printing
US3160057A (en) * 1962-10-01 1964-12-08 Xerox Corp Xerographic processing apparatus
US3183805A (en) * 1959-10-15 1965-05-18 Ritzerfeld Wilhelm Electro-photographic apparatus
US3215116A (en) * 1962-08-15 1965-11-02 Xerox Corp Vapor fusing apparatus
US3272101A (en) * 1964-03-03 1966-09-13 Xerox Corp Xerographic apparatus
US3276312A (en) * 1964-04-08 1966-10-04 Robertson Photo Mechanix Inc Movable vacuum back for photographic apparatus
US3592167A (en) * 1969-04-02 1971-07-13 Xerox Corp Apparatus for loading toner on a developing brush
US3694069A (en) * 1969-03-15 1972-09-26 Canon Kk Copying apparatus
EP0104624A2 (en) * 1982-09-24 1984-04-04 Coulter Systems Corporation Electrophotographic image recording method and apparatus
US11448445B2 (en) * 2018-05-21 2022-09-20 Qingdao Haier Co., Ltd. Ice crushing device and refrigerator
US11448446B2 (en) * 2018-05-21 2022-09-20 Qingdao Haier Co., Ltd. Ice crushing device and refrigerator

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1543251A (en) * 1923-09-07 1925-06-23 Oliver Iron & Steel Corp Mechanism for feeding blanks and the like
US1802631A (en) * 1928-08-31 1931-04-28 Newton Mechanism for feeding metal blanks
US2540762A (en) * 1947-02-17 1951-02-06 Battle Creek Bread Wrapping Machine Co Cardboard bottom feed for food wrapping machines
US2704208A (en) * 1952-03-25 1955-03-15 F X Hooper Company Inc Printer slotter blank feed
US2726940A (en) * 1954-11-03 1955-12-13 Ibm Xerographic printer
US2742814A (en) * 1952-02-16 1956-04-24 Western Electric Co Electrostatic copy holder
US2778946A (en) * 1951-04-18 1957-01-22 Haloid Co Corona discharge device and method of xerographic charging
US2781705A (en) * 1953-10-29 1957-02-19 Herbert E Crumrine Paper handling mechanism for xerographic copying machine
US2786439A (en) * 1953-06-30 1957-03-26 Rca Corp Electrophotographic developing apparatus
US2786441A (en) * 1953-07-20 1957-03-26 Rca Corp Apparatus for applying electrostatic developer powder by means of a magnetic brush
US2790082A (en) * 1955-08-01 1957-04-23 Haloid Co Xerographic charging device
US2792151A (en) * 1954-10-25 1957-05-14 David L Jones Wholesale Floral Flocking gun
US2792971A (en) * 1955-03-03 1957-05-21 Haloid Co Particle aerosol generation
US2803541A (en) * 1953-05-29 1957-08-20 Haloid Co Xerographic plate
US2803542A (en) * 1955-07-26 1957-08-20 Haloid Co Xerographic plate
US2814233A (en) * 1956-08-27 1957-11-26 Powers Chemco Inc Flexible sheet support for photographic device
US2859673A (en) * 1954-03-29 1958-11-11 Ibm Electrophotographic printer
US2892391A (en) * 1952-11-08 1959-06-30 Haloid Xerox Inc Electrophotographic camera apparatus

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1543251A (en) * 1923-09-07 1925-06-23 Oliver Iron & Steel Corp Mechanism for feeding blanks and the like
US1802631A (en) * 1928-08-31 1931-04-28 Newton Mechanism for feeding metal blanks
US2540762A (en) * 1947-02-17 1951-02-06 Battle Creek Bread Wrapping Machine Co Cardboard bottom feed for food wrapping machines
US2778946A (en) * 1951-04-18 1957-01-22 Haloid Co Corona discharge device and method of xerographic charging
US2742814A (en) * 1952-02-16 1956-04-24 Western Electric Co Electrostatic copy holder
US2704208A (en) * 1952-03-25 1955-03-15 F X Hooper Company Inc Printer slotter blank feed
US2892391A (en) * 1952-11-08 1959-06-30 Haloid Xerox Inc Electrophotographic camera apparatus
US2803541A (en) * 1953-05-29 1957-08-20 Haloid Co Xerographic plate
US2786439A (en) * 1953-06-30 1957-03-26 Rca Corp Electrophotographic developing apparatus
US2786441A (en) * 1953-07-20 1957-03-26 Rca Corp Apparatus for applying electrostatic developer powder by means of a magnetic brush
US2781705A (en) * 1953-10-29 1957-02-19 Herbert E Crumrine Paper handling mechanism for xerographic copying machine
US2859673A (en) * 1954-03-29 1958-11-11 Ibm Electrophotographic printer
US2792151A (en) * 1954-10-25 1957-05-14 David L Jones Wholesale Floral Flocking gun
US2726940A (en) * 1954-11-03 1955-12-13 Ibm Xerographic printer
US2792971A (en) * 1955-03-03 1957-05-21 Haloid Co Particle aerosol generation
US2803542A (en) * 1955-07-26 1957-08-20 Haloid Co Xerographic plate
US2790082A (en) * 1955-08-01 1957-04-23 Haloid Co Xerographic charging device
US2814233A (en) * 1956-08-27 1957-11-26 Powers Chemco Inc Flexible sheet support for photographic device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140945A (en) * 1959-06-19 1964-07-14 Commw Of Australia Electrostatic printing
US3063351A (en) * 1959-09-10 1962-11-13 Xerox Corp Xerographic powder image transfer apparatus
US3183805A (en) * 1959-10-15 1965-05-18 Ritzerfeld Wilhelm Electro-photographic apparatus
US3136233A (en) * 1960-06-27 1964-06-09 Keuffel & Esser Co Electrophotographic apparatus
US3100427A (en) * 1960-11-03 1963-08-13 Xerox Corp Projection device
US3215116A (en) * 1962-08-15 1965-11-02 Xerox Corp Vapor fusing apparatus
US3160057A (en) * 1962-10-01 1964-12-08 Xerox Corp Xerographic processing apparatus
US3272101A (en) * 1964-03-03 1966-09-13 Xerox Corp Xerographic apparatus
US3276312A (en) * 1964-04-08 1966-10-04 Robertson Photo Mechanix Inc Movable vacuum back for photographic apparatus
US3694069A (en) * 1969-03-15 1972-09-26 Canon Kk Copying apparatus
US3592167A (en) * 1969-04-02 1971-07-13 Xerox Corp Apparatus for loading toner on a developing brush
EP0104624A2 (en) * 1982-09-24 1984-04-04 Coulter Systems Corporation Electrophotographic image recording method and apparatus
EP0104624A3 (en) * 1982-09-24 1984-11-07 Coulter Systems Corporation Electrophotographic image recording method and apparatus
US11448445B2 (en) * 2018-05-21 2022-09-20 Qingdao Haier Co., Ltd. Ice crushing device and refrigerator
US11448446B2 (en) * 2018-05-21 2022-09-20 Qingdao Haier Co., Ltd. Ice crushing device and refrigerator

Similar Documents

Publication Publication Date Title
US3009402A (en) Xerographic processing apparatus
US2901374A (en) Development of electrostatic image and apparatus therefor
US3615128A (en) Apparatus for electrostatic printing
US3062108A (en) Electrophotographic copying apparatus
US2831409A (en) Xerographic camera
US3091160A (en) Xerographic plate feeding and supporting apparatus
GB1019291A (en) Xerographic exposure apparatus
US3424131A (en) Electroded cascade development system
US3713736A (en) Toner cleaning apparatus for a photocopy machine
EP0104624A3 (en) Electrophotographic image recording method and apparatus
US3017509A (en) Xerographic plate feeding and charging apparatus
US3083869A (en) Xerographic plate magazine and feeding apparatus
US3060131A (en) Powder cloud generating apparatus
US3091219A (en) Xerographic developing apparatus
JPH05505256A (en) Image forming device with replaceable cartridge and transfer member cleaning device
US3137495A (en) Sheet feed mechanism
US3063351A (en) Xerographic powder image transfer apparatus
GB1388033A (en) Apparatus for copying film images
US3072026A (en) Automatic contact printers for electrostatic reproductions
US3881817A (en) Optical alignment system for an original document
US3873197A (en) Apparatus for regulating the toner concentration in a electrophotographic device
GB1021882A (en) Improvements in or relating to electrophotographic apparatus
US3941592A (en) Electrophotographic method of transferring toner image
JP3036144B2 (en) Electrophotographic equipment
EP0146945B1 (en) Electrographic apparatus