US3057572A - Winding machine - Google Patents

Winding machine Download PDF

Info

Publication number
US3057572A
US3057572A US585A US58560A US3057572A US 3057572 A US3057572 A US 3057572A US 585 A US585 A US 585A US 58560 A US58560 A US 58560A US 3057572 A US3057572 A US 3057572A
Authority
US
United States
Prior art keywords
drums
roll
winding
rewind roll
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US585A
Inventor
Rockstrom Leonard
Pundyk Joseph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cameron Machine Co
Original Assignee
Cameron Machine Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cameron Machine Co filed Critical Cameron Machine Co
Priority to US585A priority Critical patent/US3057572A/en
Application granted granted Critical
Publication of US3057572A publication Critical patent/US3057572A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/08Web-winding mechanisms
    • B65H18/14Mechanisms in which power is applied to web roll, e.g. to effect continuous advancement of web
    • B65H18/20Mechanisms in which power is applied to web roll, e.g. to effect continuous advancement of web the web roll being supported on two parallel rollers at least one of which is driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/32Coiling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2403/00Power transmission; Driving means
    • B65H2403/90Machine drive
    • B65H2403/94Other features of machine drive
    • B65H2403/942Bidirectional powered handling device

Definitions

  • This invention relates to winding machines and, more particularly, is directed to improved means, in such machines, for permitting precise control of a winding operation in order to yield a rewind roll, onto which web material is wound, having a desired degree of softness or hardness.
  • the need for deriving a condition of either softness or hardness in a rewind roll depends largely upon the nature of the web material, and to some ex-tent, upon the nature of the processing to which it has been subjected in passing from a pay-o-ut roll to the rewind roll.
  • the degree of softness or hardness of a rewind roll (hereinafter sometimes referred to merely as the rolls density) has been controlled, although not quite as precisely as could ⁇ be desired, by applying a braking force upon one or the other of two winding drums upon which the rewind roll is supported and turned frictionally in a winding operation.
  • the applied braking force causes application of the web to the rewind roll either in loose condition to yield a soft roll or in taut condition to yield a hard roll; the result depending largely upon which of the winding drums receives the braking force and the particular way in which the web is threaded with respect to said drums in passing to the rewind roll.
  • the applied braking force In order to profvide for desirable density throughout the entire thickness of the rewind roll, the applied braking force must be Vgradually varied ⁇ as the web accumulates upon and increases the diameter of the rewind roll. Such variation in the applied Ibraking force is diicult to control; hence, it is ditlicult to obtain desired control of density when the just-described braking method is employed.
  • the means for controlling the relative speeds of the winding drums have -been friction drives involving substantial uncontrollable slippage and the means for controlling the speeds of the two winding drums have been unstable, leading usually to a density not precisely as desired.
  • a main motor has been employed to drive directly one of vtwo winding drums and to drive the other drum indirectly through a non-reducing or 1 to 1 ratio differential gear mechanism which normally would cause the two drums t-o operate at similar speeds.
  • an auxiliary motor has been employed to control rotation of one of three rotary gear elements in the dilferential mechanism.
  • One drawback of such an arrangement is that in order to maintain the desired limited speed difference between the two drums, despite 4the tendency of the enlarged and heavy rewind roll to drive those drums in unison, the differential gears would have to he inordinately large and cumbersome, making the arrangement impracticable.
  • the auxiliary motor must be reversible to provide for either hard-roll or soft-roll winding.
  • Auxiliary motors employed in such .prior speed-control arrangements and/or the transmission means between such a motor and a differential controlled therebyv have been arranged to stall quite early in the formation of t-he rewind roll following which the rewind roll constitutes a direct friction drive ybetween the two winding drums and causes the two drums to run at similar speeds rather than at the slightly different speeds which are desirable for density control.
  • some such prior auxiliary motors and transmission means have lbeen so designed or arranged that they do not deliver sufficient power to a related differential to so control the latter as to maintain satisfactory density control throughout the entire winding of the rewind roll.
  • this invention avoids the mentioned drawbacks. It utilizes a novel and very effective combination of instrumentalities for driving the winding drums positively and at slightly different speeds, to maintain very precise, continuous control over the winding drum speeds,
  • an important kobject of this invention' is the provision of a winding machine which yields a rewind roll of a desired, controlled density.
  • Another important object is the provision, in such a winding machine, of speed-control means for accurately and continuously controlling the relative speeds of two winding drums in the machine to cause said ⁇ drums to apply web material to a rewind roll continuously at a controlled degree of looseness or tightness to derive a rewind roll of desired density.
  • Another important object is the provision of driving means for such two winding drums and related relativespeed-control means which substantially avoid the drawbacks hereinbefore attributed to prior winding machines.
  • FIGURE 1 is a schematic plan View of winding drums of a winding machine and a motor drive for simultaneously rotating said drums.
  • FIG. 2 is an axial, sectional View of a differential reducer employed in said drive, the section being su-bstantially on the line ,2-2 of FIG. 1.
  • FIG. 3 is a transverse, sectional View of substantially on the line 3-3 of FIG. 2.
  • FIG. 4 is a transverse, sectional view of said reducer, substantially on the line 4-4 of FIG. 2.
  • FIGS. 5-8 inclusive are vdiagrams showing several possible vvariations in the use of the mechanisms disclosed in FIGS. 1-4 and the results of such variations in use.
  • FIGS. 1-10 Before setting forth the details of this invention,it should be helpful to note that the portion of a winding machine with respect to which the present invention is directly related, is shown diagrammatically in FIGS.
  • a front winding drum 10 a rear winding drum 12 and a rewind roll 14 which, as shown in said figures, is in the condition of having received a substantial volume of web material W from a mill roll or pay-out roll not shown in the drawings.
  • the winding drums ordinarily are mounted for rotation on fixed horizontal, parallel axes, and usually one or both of said drums are driven by suitable motor means.
  • the rewind roll 14 initially is a core approximately as shown in broken lines at 14a, to which the leading end of the web W is glued or otherwise fastened, and the rewind core is supported upon and between the drums and 12 and is frictionally turned by said drums. As the web accumulates on the core 14a during a -winding operation, the core becomes larger and then constitutes the shown rewind roll 14.
  • the present invention deals with control of the relative speeds of rotation given to the winding drums 10 Iand 12 by suitable driving means.
  • the winding drums 10 and 12 are driven by a lmain driving motor 16 through transmission means including a driving spur gear 18 driven through a shaft 20 connected between said motor and gear, a driven spur gear 22 meshing with gear 18 and drivingly connected by shaft 24 to front drum 10 to turn the latter, an outer ring gear 26 fixed upon and constrained to turn with a housing 28 of a differential reducer 30, and a shaft 32 drivingly connected between said differential reducer and the rear winding drum 12 for turning the latter.
  • transmission means including a driving spur gear 18 driven through a shaft 20 connected between said motor and gear, a driven spur gear 22 meshing with gear 18 and drivingly connected by shaft 24 to front drum 10 to turn the latter, an outer ring gear 26 fixed upon and constrained to turn with a housing 28 of a differential reducer 30, and a shaft 32 drivingly connected between said differential reducer and the rear winding drum 12 for turning the latter.
  • the differential reducer 30 exerts control, in a manner hereinafter expl-ained, upon the relative speeds of the shafts 20 and 32 and, hence, also controls the rela tive speeds of the shafts 24 and 32 and the drums ⁇ 10 and 12.
  • This control afforded by the differential reducer 30, arises from operation of certain gears within the housing 28, by means of a supplemental, v-ariable speed, reducer-operating motor 34 which is connected to the differential reducer by a shaft 36.
  • a supplemental, v-ariable speed, reducer-operating motor 34 which is connected to the differential reducer by a shaft 36.
  • motor 34 serves, in combination with other instrumentalities, to change the ratio of transmission from the gear 18 to the shaft 32, enabling the latter to be turned, as desired, either faster or slower than shaft 24, with the further result of enabling the operator of the machine to control the density of a related rewind roll as hereinafter explained.
  • the present invention relates to the novel combination of a differential reducer (such as shown, for example, at 30) with other means for simultaneously driving the winding drums 10 and 12 at desired different speeds.
  • a differential reducer such as shown, for example, at 30
  • the set of gears within the differential reducer 30 transmits a very small portion of the power required to maintain the speed difference between the drums, making a highly practical arrangement.
  • the following description of said reducer should aid in understanding this invention and its operation and results.
  • the shaft 36 is borne, concentrically of the housing 28, in a hub portion 38 of said housing.
  • Said shaft extends substantially within the housing, and upon its inner end is formed or keyed a control gear in the form of a pinion 40.
  • the shaft 32 is borne, concentrically of the housing 28, within a hub portion 42 of said housing located at the opposite side of the latter from hub portion 38.
  • an annular, dish-shaped gear support 44 integral with and concentric with the shaft 32, rigidly supports at its rim a. driven, internal ring gear 46.
  • the shaft 32 has a further inwardly extending integral stub 48.
  • FPhe shaft 32 and its stub 48 are coaxial with the shaft 36, and a spider frame 50 is mounted for rotation within the housing 28 and upon the stub 48 and the shaft 36, said spider frame being freely rotatable relatively to said housing, stub and shaft except as restrained by gears hereinafter described.
  • the said gears include an epicyclic gear train of which three planetary gears 52 are similarly mounted equidistantly and concentrically in spider frame 50, and keyed on stub shafts 54 which are freely rotatable in said frame. These planetary gears 52 mesh with the pinion 40 and also with a driving, internal ring gear 56 which is formed or xed within and in rigid association with the housing 28. Also keyed on each of stub shafts 54 is a planetary spur gear 58 meshing with the inwardly facing teeth of the ring gear 46.
  • gears 52 and 56 constitute one set of epicyclic gears and that gears 46 and 58 constitute another set of epicyclic gears and that these two sets are connected by shaft 54 with which both of gears 52 and 58 are constrained to turn in unison. Because of this use of two sets of epicyclic gears the reducing gear train to drum 12 is sometimes referred to herein as a compound gear train (or mechanism).
  • motor 34 by operation of a rheostat or other suitable control means, is caused to run faster or slower to cause shaft 36 to turn faster or slower than the housing 28, the described gear arrangement in the housing causes the shaft 32 and its related drum 12 to turn either slightly faster or slightly slower than shaft 24 and its related drum 10.
  • speed of motor 34 may be precisely controlled, it follows that the speed of drum 12 may be still more precisely controlled; also that the relative speeds of the drums 10 and 12 may be gradually varied with precision during the winding of lweb on a rewind roll to compensate for the increasing thickness of the rewind roll to maintain a desired degree of density in said roll.
  • the differential reducer 30 is a straight-through or one-to-one transmission unless the gears therein are positively operated relatively to the housing 28. This condition and conditions of only slight differences in speeds to be given to the two drums 10 and 12 are achieved by providing that motor 34 be a high speed motor in the sense that its range of normal operational speeds extends above and/or below a speed which will cause the speed of shaft 36 to match the speed of gear 26 and would not be low enough in normal operation to permit load variations to cause material variation in the speed of the motor at which it is set to operate.
  • the mentioned difference of 5 r.p.m. requires such a very substantial difference in the speed of motor 345 as to either reduce or increase the speed of shaft 36 to the extent of about 466 rpm., depending upon whether soft-roll or hard-roll winding is desired. And in such density control, the direction of rotation of shaft 36 need never be reversed.
  • the power transmitted by the set of gears disposed ywithin the housing will be in the ratio of 5 -to 1030, or approximately 1/2 to 1% of the power in drum shaft 32.
  • the differential gears carry approximately 200 times the power load to which the differential gears are subjected according to the present invention.
  • the motors 16 and 34 are synchronized to so operate as to provide a predetermined speed ⁇ differential of the two drums 10 and 12 so that if motor 16 is slowed down or speeded up, the operation of motor 34 will automatically be similarly, proportionately varied.
  • some suitable synchronizing means diagrammatically shown at 60 is operatively connected between the two motors.
  • electrical equipment for thus synchronizing two electric motors are well known and ⁇ are provided on order by manufacturers of electrical equipment.
  • the web W is threaded partly about front drum 10 and between the latter and rewind roll 14, thence between the latter and rear drum 12 and upon the rewind roll.
  • the motor 34 is so controlled ⁇ as to cause the front drum 10 to turn slightly slower than the rear drum 12, it follows that the web, in passing underneath the rewind roll from drum 10 to drum 12, is pulled rather tightly by the more rapidly turning drum 12, to apply the web more tightly -to the CFI rewind roll and thereby cause the latter to be a rather tightly wound or hard roll.
  • FIG. 8 wherein the web threading is similar to that shown in FIG. 7, it may be seen that if the motor 34 is so operated as to cause the front drum 10 to be turned slightly faster than the rear drum 12, the web portion passing underneath the rewind roll from the rear drum to the front drum is rather loosely applied to the rewind roll, and, as a result, the rewind roll will be a rather loosely wound or soft roll.
  • driving means for driving said drums at slightly different surface speeds comprising a driving motor connected in driving relation to one of said drums; a compound, epicyclic differential gear mechanism having a rotary input element connected in driving-relation to said motor, a rotary output element connected in driving relation to the other of said drums, and a reducing train comprising plural sets of epicyclic gears in driving relation between said input and output elements and a rotary control gear meshing with a gear in said differential gear mechanism; an -auxiliary motor connected in driving relation to said control gear yand substantially non-stallable at torques imposed upon said control gear; and synchronizing means connected between said
  • a winding machine having a rotatable rewind roll adapted to have web material wound thereon and a pair of rotatable winding drums upon which said rewind roll rests with said drums in frictional engagement with web lmaterial on said reWi-nd roll at spaced circumferential points of the latter, said rewind roll being capable of ascending as web material accumulates thereon, and driving means, for driving said drums at precisely controlled, slightly different surface speeds; said driving means comprising a driving motor, driving connections between said motor and said drums, said driving connection to one of said drums comprising a compound, epicyclic, differential, reducing gear train having two sets of epicyclic reducing gears, each of which sets comprises a ring Igear and a planetary gear, said planetary gears of the mentioned two sets being integral; and thercombination further including a rotary control gear in mesh with one of said planetary gears, and control gear operating means for operating said control gear continuously and unidirectionally at a substantial speed
  • a rotatable rewind roll adapted taoleer mbh etviaiiff ESE ET ETE rewind roll adapted to have web material wound thereon, a pair of rotatable winding drums upon which said rewind roll rests with said drums in frictional engagement with web material on said rewind roll at spaced circumferential points of the latter, a driving motor, driving connections between said motor and said drums, a unidirectionally rotatable control gear coacting with the mentioned driving connection to one of said drums to control the speed of the latter drum in relation to the speed of the other of said drums, and means for varying the speed of said control gear to precisely control and vary, as desired, the relative speeds of the two drums throughout a winding operation;
  • the mentioned driving connection to said one of said drums comprising a gear housing having an integral, internal ring gear and an integral, external ring gear in driving relation to said motor to derive rotation of said housing from said motor, a
  • a spider frame supported within said housing for rotation coaxially relatively to the latter, a planetary gear meshing with said internal gear of the housing, a second planetary gear meshing with said internal gear of said shaft, and a second shaft on which both said planetary gears are mounted and constrained to turn in unison, said second shaft being eceentrically carried by said spider frame, and said control gear meshing with one of said planetary gears,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Winding Of Webs (AREA)

Description

L. RocKsTRoM ErAL 3,057,572
Oct. 9, 1962 WINDING MACHINE 3 Sheets-Sheet 1 Filed Jan. 5. 1960 QM. ww QN QIw. I I I IMI Il I I wm, ww @m I ww. I. III I |\PII!I. v\ QN.
J.. .rn L
1N V EN TORS Oct. 9, 1962 L. RocKs-rRoM ETAL 3,057,572
WINDING MACHINE Filed Jan. 5, 1960 3 Sheets-Sheet 2 INVENTOR5: fd/V4@ @ammo/14 Jax/ff PaA/w/ oct. 9, 1962 L. ROCKSTROM ET AL WINDING MACHINE Filed Jan. 5. 1960 THIS PART/HL Fawn HA@ Pou 5 Sheets-Sheet 3 @Esau :SOFT 0@ INVENTORS.' [fan/Afm {ocx/WMM Uited States tent Y patented oct. 9, 1962 3,057,572 WINDING MACHINE lLeonard Rockstrom, Madison, NJ., and Joseph Pundyk, New York, NX., assignors to Cameron Machine Corn-l pany, Dover, NJ., a corporation of New York Filed Jan. 5, 1960, Ser. No. 585 4 Claims. (Cl. 242-66) This invention relates to winding machines and, more particularly, is directed to improved means, in such machines, for permitting precise control of a winding operation in order to yield a rewind roll, onto which web material is wound, having a desired degree of softness or hardness. The need for deriving a condition of either softness or hardness in a rewind roll depends largely upon the nature of the web material, and to some ex-tent, upon the nature of the processing to which it has been subjected in passing from a pay-o-ut roll to the rewind roll.
In some winding machines hitherto developed, the degree of softness or hardness of a rewind roll (hereinafter sometimes referred to merely as the rolls density) has been controlled, although not quite as precisely as could `be desired, by applying a braking force upon one or the other of two winding drums upon which the rewind roll is supported and turned frictionally in a winding operation. In such an arrangement, the applied braking force causes application of the web to the rewind roll either in loose condition to yield a soft roll or in taut condition to yield a hard roll; the result depending largely upon which of the winding drums receives the braking force and the particular way in which the web is threaded with respect to said drums in passing to the rewind roll. In order to profvide for desirable density throughout the entire thickness of the rewind roll, the applied braking force must be Vgradually varied `as the web accumulates upon and increases the diameter of the rewind roll. Such variation in the applied Ibraking force is diicult to control; hence, it is ditlicult to obtain desired control of density when the just-described braking method is employed.
Attempts have also been made in the past by employing substantially adequate known means at a pay-out roll for maintaining an approximately non-varying tension in the web passing to the rewind roll and by driving the two winding drums at slightly different speeds to apply the web eitherloosely to the rewind rol-l to cause the latter to be a soft roll or tightly to the rewind roll to yield a hard roll; the result depending largely upon the course of threading of the webto the rewind roll and the effectiveness of the control of the relative speeds of the two winding drums.
In some such prior speed-control arrangements, the means for controlling the relative speeds of the winding drums have -been friction drives involving substantial uncontrollable slippage and the means for controlling the speeds of the two winding drums have been unstable, leading usually to a density not precisely as desired.
In some other such prior speed-control arrangements, a main motor has been employed to drive directly one of vtwo winding drums and to drive the other drum indirectly through a non-reducing or 1 to 1 ratio differential gear mechanism which normally would cause the two drums t-o operate at similar speeds. In order to alter the speed of one drum, an auxiliary motor has been employed to control rotation of one of three rotary gear elements in the dilferential mechanism. One drawback of such an arrangement is that in order to maintain the desired limited speed difference between the two drums, despite 4the tendency of the enlarged and heavy rewind roll to drive those drums in unison, the differential gears would have to he inordinately large and cumbersome, making the arrangement impracticable. Also, in such a prior arrangement, the auxiliary motor must be reversible to provide for either hard-roll or soft-roll winding.
In considering such driving of the two winding drums at slightly different speeds, it should be remembered that as the size and weight of the rewind roll increase during a winding operation, the rewind roll has an increasing tendency to become a direct friction drive between the two drums, thereby tending to equalize the surface speeds of the drums and nullify attempts to control the rolls density. To maintain a desired difference in the speeds of the two winding drums whereby to achieve desired roll-density control, it is important that the primary means for driving the two drums be such as to overcome the frictional drive of the rewind roll between the two drums. Auxiliary motors employed in such .prior speed-control arrangements and/or the transmission means between such a motor and a differential controlled therebyv have been arranged to stall quite early in the formation of t-he rewind roll following which the rewind roll constitutes a direct friction drive ybetween the two winding drums and causes the two drums to run at similar speeds rather than at the slightly different speeds which are desirable for density control. In other words, some such prior auxiliary motors and transmission means have lbeen so designed or arranged that they do not deliver sufficient power to a related differential to so control the latter as to maintain satisfactory density control throughout the entire winding of the rewind roll.
In solving the problem of controlling the density of the rewind roll, this invention avoids the mentioned drawbacks. It utilizes a novel and very effective combination of instrumentalities for driving the winding drums positively and at slightly different speeds, to maintain very precise, continuous control over the winding drum speeds,
' resulting in rewind rolls of a desired density or densities throughout said rolls.
Accordingly, an important kobject of this invention' is the provision of a winding machine which yields a rewind roll of a desired, controlled density.
Another important object is the provision, in such a winding machine, of speed-control means for accurately and continuously controlling the relative speeds of two winding drums in the machine to cause said `drums to apply web material to a rewind roll continuously at a controlled degree of looseness or tightness to derive a rewind roll of desired density.
Another important object is the provision of driving means for such two winding drums and related relativespeed-control means which substantially avoid the drawbacks hereinbefore attributed to prior winding machines.
The foregoing and other more or less obvious objects are achieved by this invention, of which a single embodiment is disclosed herein without, however, limiting the invention to that particular embodiment.
In the accompanying drawings:
FIGURE 1 is a schematic plan View of winding drums of a winding machine and a motor drive for simultaneously rotating said drums.
FIG. 2 is an axial, sectional View of a differential reducer employed in said drive, the section being su-bstantially on the line ,2-2 of FIG. 1.
FIG. 3 is a transverse, sectional View of substantially on the line 3-3 of FIG. 2.
FIG. 4 is a transverse, sectional view of said reducer, substantially on the line 4-4 of FIG. 2.
FIGS. 5-8 inclusive are vdiagrams showing several possible vvariations in the use of the mechanisms disclosed in FIGS. 1-4 and the results of such variations in use.
Before setting forth the details of this invention,it should be helpful to notethat the portion of a winding machine with respect to which the present invention is directly related, is shown diagrammatically in FIGS.
said reducer,
-8, wherein are shown a front winding drum 10, a rear winding drum 12, and a rewind roll 14 which, as shown in said figures, is in the condition of having received a substantial volume of web material W from a mill roll or pay-out roll not shown in the drawings. The winding drums ordinarily are mounted for rotation on fixed horizontal, parallel axes, and usually one or both of said drums are driven by suitable motor means.
The rewind roll 14 initially is a core approximately as shown in broken lines at 14a, to which the leading end of the web W is glued or otherwise fastened, and the rewind core is supported upon and between the drums and 12 and is frictionally turned by said drums. As the web accumulates on the core 14a during a -winding operation, the core becomes larger and then constitutes the shown rewind roll 14. The present invention, in part, deals with control of the relative speeds of rotation given to the winding drums 10 Iand 12 by suitable driving means.
Referring to FIG. 1, the winding drums 10 and 12 are driven by a lmain driving motor 16 through transmission means including a driving spur gear 18 driven through a shaft 20 connected between said motor and gear, a driven spur gear 22 meshing with gear 18 and drivingly connected by shaft 24 to front drum 10 to turn the latter, an outer ring gear 26 fixed upon and constrained to turn with a housing 28 of a differential reducer 30, and a shaft 32 drivingly connected between said differential reducer and the rear winding drum 12 for turning the latter.
The differential reducer 30 exerts control, in a manner hereinafter expl-ained, upon the relative speeds of the shafts 20 and 32 and, hence, also controls the rela tive speeds of the shafts 24 and 32 and the drums `10 and 12. This control, afforded by the differential reducer 30, arises from operation of certain gears within the housing 28, by means of a supplemental, v-ariable speed, reducer-operating motor 34 which is connected to the differential reducer by a shaft 36. It will readily be understood that if the condition or characteristics of the reducer 30 are such as to yield a rigid or straightthrough drive between gear 18 and shaft 32, there will result a non-variable speed ratio between shafts 24 and 32. In that condition, if the gears 22 and 26 are of the same size, it follows that the drurns 10 and 12 will rotate at identical speeds.
According to this invention, however, the reducer 30,4
operated by motor 34, serves, in combination with other instrumentalities, to change the ratio of transmission from the gear 18 to the shaft 32, enabling the latter to be turned, as desired, either faster or slower than shaft 24, with the further result of enabling the operator of the machine to control the density of a related rewind roll as hereinafter explained.
The present invention relates to the novel combination of a differential reducer (such as shown, for example, at 30) with other means for simultaneously driving the winding drums 10 and 12 at desired different speeds. In this combination, the set of gears within the differential reducer 30 transmits a very small portion of the power required to maintain the speed difference between the drums, making a highly practical arrangement. The following description of said reducer should aid in understanding this invention and its operation and results.
Referring to FIGS. 2, 3 and 4, showing the working parts of the reducer 30, the shaft 36 is borne, concentrically of the housing 28, in a hub portion 38 of said housing. Said shaft extends substantially within the housing, and upon its inner end is formed or keyed a control gear in the form of a pinion 40. The shaft 32 is borne, concentrically of the housing 28, within a hub portion 42 of said housing located at the opposite side of the latter from hub portion 38. Within the housing an annular, dish-shaped gear support 44, integral with and concentric with the shaft 32, rigidly supports at its rim a. driven, internal ring gear 46. Within the gear support 44 the shaft 32 has a further inwardly extending integral stub 48.
FPhe shaft 32 and its stub 48 are coaxial with the shaft 36, and a spider frame 50 is mounted for rotation within the housing 28 and upon the stub 48 and the shaft 36, said spider frame being freely rotatable relatively to said housing, stub and shaft except as restrained by gears hereinafter described. The said gears include an epicyclic gear train of which three planetary gears 52 are similarly mounted equidistantly and concentrically in spider frame 50, and keyed on stub shafts 54 which are freely rotatable in said frame. These planetary gears 52 mesh with the pinion 40 and also with a driving, internal ring gear 56 which is formed or xed within and in rigid association with the housing 28. Also keyed on each of stub shafts 54 is a planetary spur gear 58 meshing with the inwardly facing teeth of the ring gear 46.
llt is to be noted that gears 52 and 56 constitute one set of epicyclic gears and that gears 46 and 58 constitute another set of epicyclic gears and that these two sets are connected by shaft 54 with which both of gears 52 and 58 are constrained to turn in unison. Because of this use of two sets of epicyclic gears the reducing gear train to drum 12 is sometimes referred to herein as a compound gear train (or mechanism).
It will ybe seen that if shaft 36 is rotated by the motor 34 in the same direction and at exactly the same constant angular speed as that given to the housing 28 by the motor 16, all of the gears disposed within said housing will remain non-rotatable relatively thereto, with the result that the precise speed of rotation given to the housing 28 by the motor 16 will be transmitted through the shaft 32 to the rear drum 12. In that situation, if gears 22 and 26 are the same in size, as shown, the drums 10 and 12 will rotate in similar directions, as indicated by arrows applied to the shafts 24 and 32, and at exactly identical speeds.
However, if motor 34, by operation of a rheostat or other suitable control means, is caused to run faster or slower to cause shaft 36 to turn faster or slower than the housing 28, the described gear arrangement in the housing causes the shaft 32 and its related drum 12 to turn either slightly faster or slightly slower than shaft 24 and its related drum 10. If the speed of motor 34 may be precisely controlled, it follows that the speed of drum 12 may be still more precisely controlled; also that the relative speeds of the drums 10 and 12 may be gradually varied with precision during the winding of lweb on a rewind roll to compensate for the increasing thickness of the rewind roll to maintain a desired degree of density in said roll.
Certain characteristics of importance should here be noted. The differential reducer 30 is a straight-through or one-to-one transmission unless the gears therein are positively operated relatively to the housing 28. This condition and conditions of only slight differences in speeds to be given to the two drums 10 and 12 are achieved by providing that motor 34 be a high speed motor in the sense that its range of normal operational speeds extends above and/or below a speed which will cause the speed of shaft 36 to match the speed of gear 26 and would not be low enough in normal operation to permit load variations to cause material variation in the speed of the motor at which it is set to operate.
For the purpose of further explaining the character and operation of reducer-operating motor 34, let it be supposed that main motor 16 is so controlled as to turn drum 10 at a speed of 1030 r.p.m. Then, in order for drum 12 to turn at the same speed, motor 34 would have to operate to turn shaft 36 and pinion 40 at 1030 r.p.m. Remembering that relative speed differences between the drums 10 and 12 should -be slight for satisfactory density control, a speed differential between the drums of, for example, only about 5 r.p.m. (approximately 1/2 of 1%) may be all that ordinarily would be desirable or needed. This invention permits control of the drum speeds to even lesser speed differences. Due to the design of the present differential and the fact that the gears therein function both for differential and reduction purposes (the reduction ratio in the disclosed embodiment being about 93 to 1), the mentioned difference of 5 r.p.m. requires such a very substantial difference in the speed of motor 345 as to either reduce or increase the speed of shaft 36 to the extent of about 466 rpm., depending upon whether soft-roll or hard-roll winding is desired. And in such density control, the direction of rotation of shaft 36 need never be reversed.
For the purpose of explaining the load carried by the gears disposed within the housing 28, let it be supposed that there is ythe mentioned difference of 5 r.p.m. between the drums. Then this difference exists between shaft 32 and housing 28, and ring gear 46 is also rotating at 5 r.p.m. relative to housing 28. When there is no difference in rpm. between the drums, then, as previously explained, all the gears disposed within the housing 28 remain non-rotatable relatively thereto. It will Ibe seen that the work performed by the set of gears disposed within the housing 28, when said gears rotate relatively to said housing, is to add or subtract 5 r.p.m. to shaft 32, previously rotating at 1030 r.p.m. Then, the power transmitted by the set of gears disposed ywithin the housing will be in the ratio of 5 -to 1030, or approximately 1/2 to 1% of the power in drum shaft 32. This is in contrast to the mentioned prior art arrangements wherein, at the desirable speed difference of about 1/2 of 1%, the differential gears carry approximately 200 times the power load to which the differential gears are subjected according to the present invention.
It will readily be understood that at the indicated or comparable speeds, there is no tendency for motor 34 to slow down materially under load; also that it can very easily be controlled to operate at such speed as to afford very precise control of the relative speeds of the two drums and 12.
In practical operation, the motors 16 and 34 are synchronized to so operate as to provide a predetermined speed `differential of the two drums 10 and 12 so that if motor 16 is slowed down or speeded up, the operation of motor 34 will automatically be similarly, proportionately varied. For this purpose, some suitable synchronizing means diagrammatically shown at 60 is operatively connected between the two motors. Various arrangements of electrical equipment for thus synchronizing two electric motors are well known and `are provided on order by manufacturers of electrical equipment.
Referring to FIG. 5, showing one way in which the web W may be threaded, a portion of the web being applied to the rewind roll 14 passes between the latter and drum 12, thence completely around and upon the rewind roll. Assuming that the drum 10, under control of the speed of motor 34, is being driven slightly slower than drum 12, it will be seen that each turn of web which is wound upon rewind roll 14 is rather loosely applied to that roll, with the result that the rewind roll will be a rather loosely wound or soft roll.
Referring to FIG. 6, in which the course or threading of the web W is the same as in FIG. 5, it will be seen that if, through control of the speed of motor 34, the drum 10 is caused to turn slightly faster than drum 12, each turn of web material being wound upon the rewind roll 14 is applied rather tightly thereto, with the result that the rewind roll will tbe a rather tightly wound or hard roll. f
Referring to FIG. 7, the web W is threaded partly about front drum 10 and between the latter and rewind roll 14, thence between the latter and rear drum 12 and upon the rewind roll. In this arrangement, if the motor 34 is so controlled `as to cause the front drum 10 to turn slightly slower than the rear drum 12, it follows that the web, in passing underneath the rewind roll from drum 10 to drum 12, is pulled rather tightly by the more rapidly turning drum 12, to apply the web more tightly -to the CFI rewind roll and thereby cause the latter to be a rather tightly wound or hard roll.
Referring to FIG. 8, wherein the web threading is similar to that shown in FIG. 7, it may be seen that if the motor 34 is so operated as to cause the front drum 10 to be turned slightly faster than the rear drum 12, the web portion passing underneath the rewind roll from the rear drum to the front drum is rather loosely applied to the rewind roll, and, as a result, the rewind roll will be a rather loosely wound or soft roll.
It should be obvious that this inventive concept may be utilized in various structures other than that disclosed herein without, however, departing from the invention as set forth in the following claims.
We claim: Y
1. In combination in a winding machine having a rotatable rewind roll adapted to have web material wound thereon and a pair of rotatable winding drums upon which said rewind roll rests with said drums in frictional engagement with web material on said rewind roll at spaced circumferential points of the latter, said rewind roll being capable of ascending as web material accumulates thereon; driving means for driving said drums at slightly different surface speeds, comprising a driving motor connected in driving relation to one of said drums; a compound, epicyclic differential gear mechanism having a rotary input element connected in driving-relation to said motor, a rotary output element connected in driving relation to the other of said drums, and a reducing train comprising plural sets of epicyclic gears in driving relation between said input and output elements and a rotary control gear meshing with a gear in said differential gear mechanism; an -auxiliary motor connected in driving relation to said control gear yand substantially non-stallable at torques imposed upon said control gear; and synchronizing means connected between said motors for maintaining the relative speeds of said motors at a predetermined ratio.
2. In combination, a winding machine having a rotatable rewind roll adapted to have web material wound thereon and a pair of rotatable winding drums upon which said rewind roll rests with said drums in frictional engagement with web lmaterial on said reWi-nd roll at spaced circumferential points of the latter, said rewind roll being capable of ascending as web material accumulates thereon, and driving means, for driving said drums at precisely controlled, slightly different surface speeds; said driving means comprising a driving motor, driving connections between said motor and said drums, said driving connection to one of said drums comprising a compound, epicyclic, differential, reducing gear train having two sets of epicyclic reducing gears, each of which sets comprises a ring Igear and a planetary gear, said planetary gears of the mentioned two sets being integral; and thercombination further including a rotary control gear in mesh with one of said planetary gears, and control gear operating means for operating said control gear continuously and unidirectionally at a substantial speed to cause operation of said drums at substantially similar angular speeds; said control gear operating means being variable to vary the speed of said control gear to vary the speed of said one of said drums and thereby cause operation of said drums at slightly different, predetermined surface speeds throughout a winding operation.
3. The combination according to claim 2, further including synchronizing means coacting between said motor and said control gear to maintain a iixed speed ratio between the two and thereby maintain a fixed speed ratio between the two drums.
4. In combination in a winding machine, a rotatable rewind roll adapted taoleer mbh etviaiiff ESE ET ETE rewind roll adapted to have web material wound thereon, a pair of rotatable winding drums upon which said rewind roll rests with said drums in frictional engagement with web material on said rewind roll at spaced circumferential points of the latter, a driving motor, driving connections between said motor and said drums, a unidirectionally rotatable control gear coacting with the mentioned driving connection to one of said drums to control the speed of the latter drum in relation to the speed of the other of said drums, and means for varying the speed of said control gear to precisely control and vary, as desired, the relative speeds of the two drums throughout a winding operation; the mentioned driving connection to said one of said drums comprising a gear housing having an integral, internal ring gear and an integral, external ring gear in driving relation to said motor to derive rotation of said housing from said motor, a rst shaft coaxial with said housing and rotatable relatively to the latter and in driving relation to said one of said drums, an internal ring gear integral with said shaft,
a spider frame supported within said housing for rotation coaxially relatively to the latter, a planetary gear meshing with said internal gear of the housing, a second planetary gear meshing with said internal gear of said shaft, and a second shaft on which both said planetary gears are mounted and constrained to turn in unison, said second shaft being eceentrically carried by said spider frame, and said control gear meshing with one of said planetary gears,
References Cited in the file of this patent UNITED STATES PATENTS 1,838,967 Staege Dec. 29, 1931 2,890,000 Beachler June 9, 1959 3,000,584 Clem Sept. 19, 1961 UNITED STATES PATENT OFFICE "CERTIFICATE OF CORRECTION Patent No., 3,057,572 October 9, 1962 Leonard Rockstrom et al.
It is hereby certified that error appears in the above numbered patent requiring correction an d that the said Letters Patent should read as corrected below.
Column 6, line 72, strike out rewind roll adapted taoleer mbh etviafiff ESE ET ETE".
Signed and sealed this 26th dvay of February 1963.
SEAL) Attest:
ISTON G. JOHNSON ttesting Officer DAVID L. LADD Commissioner of Patents
US585A 1960-01-05 1960-01-05 Winding machine Expired - Lifetime US3057572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US585A US3057572A (en) 1960-01-05 1960-01-05 Winding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US585A US3057572A (en) 1960-01-05 1960-01-05 Winding machine

Publications (1)

Publication Number Publication Date
US3057572A true US3057572A (en) 1962-10-09

Family

ID=21692139

Family Applications (1)

Application Number Title Priority Date Filing Date
US585A Expired - Lifetime US3057572A (en) 1960-01-05 1960-01-05 Winding machine

Country Status (1)

Country Link
US (1) US3057572A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1948727A1 (en) * 1968-10-18 1970-04-30 Samcoe Holding Corp Take-up device for web-shaped goods
US4760314A (en) * 1985-10-11 1988-07-26 Naotake Mohri Rotation controller for a differential actuator
USRE33399E (en) * 1982-12-30 1990-10-23 Tension control for web handling apparatus
EP0468842A1 (en) * 1990-07-06 1992-01-29 Société Anonyme dite: SUBLISTATIC INTERNATIONAL Method for cutting and dispensing multi-width printed webs and positioning device to carry out this method
US5150848A (en) * 1988-10-21 1992-09-29 Alberto Consani S.P.A. Re-reeling machine working at constant speed and related cutting device
EP0594850A1 (en) * 1992-04-15 1994-05-04 Yugen Kaisha Kaji Seisakusho Method for producing roll of core-less toilet paper and roll of core-less toilet paper produced by the same method
EP0635445A1 (en) * 1993-07-23 1995-01-25 Knaus, Dennis A. Method and apparatus for winding
US6199789B1 (en) 1998-06-01 2001-03-13 A. Celli S.P.A. Winding or rewinding machine for forming large-diameter reels of weblike material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1838967A (en) * 1930-10-20 1931-12-29 Westinghouse Electric & Mfg Co Generator braking system for winder drives
US2890000A (en) * 1955-09-26 1959-06-09 Beloit Iron Works Winder drive
US3000584A (en) * 1957-07-29 1961-09-19 Rice Barton Corp Windup roll drive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1838967A (en) * 1930-10-20 1931-12-29 Westinghouse Electric & Mfg Co Generator braking system for winder drives
US2890000A (en) * 1955-09-26 1959-06-09 Beloit Iron Works Winder drive
US3000584A (en) * 1957-07-29 1961-09-19 Rice Barton Corp Windup roll drive

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1948727A1 (en) * 1968-10-18 1970-04-30 Samcoe Holding Corp Take-up device for web-shaped goods
USRE33399E (en) * 1982-12-30 1990-10-23 Tension control for web handling apparatus
US4760314A (en) * 1985-10-11 1988-07-26 Naotake Mohri Rotation controller for a differential actuator
US5150848A (en) * 1988-10-21 1992-09-29 Alberto Consani S.P.A. Re-reeling machine working at constant speed and related cutting device
EP0468842A1 (en) * 1990-07-06 1992-01-29 Société Anonyme dite: SUBLISTATIC INTERNATIONAL Method for cutting and dispensing multi-width printed webs and positioning device to carry out this method
EP0594850A1 (en) * 1992-04-15 1994-05-04 Yugen Kaisha Kaji Seisakusho Method for producing roll of core-less toilet paper and roll of core-less toilet paper produced by the same method
EP0594850A4 (en) * 1992-04-15 1994-08-31 Yugen Kaisha Kaji Seisakusho Method for producing roll of core-less toilet paper and roll of core-less toilet paper produced by the same method
EP0635445A1 (en) * 1993-07-23 1995-01-25 Knaus, Dennis A. Method and apparatus for winding
US5556052A (en) * 1993-07-23 1996-09-17 Knaus; Dennis A. Method and apparatus for winding
US5842660A (en) * 1993-07-23 1998-12-01 Knaus; Dennis A. Method and apparatus for winding
US6199789B1 (en) 1998-06-01 2001-03-13 A. Celli S.P.A. Winding or rewinding machine for forming large-diameter reels of weblike material

Similar Documents

Publication Publication Date Title
US3057572A (en) Winding machine
US3871598A (en) Winding tension control system
US2469706A (en) Electronic tension control apparatus
US3757912A (en) Load equalizing clutch controls
US2412551A (en) Film feeding device
US1786917A (en) Device for the automatic adjustment of the tensions of films
US2168071A (en) Constant tension winding control
US1837803A (en) Electrical sectional drive for paper machines
US3000584A (en) Windup roll drive
US3977621A (en) Differential driven rewinder-unwinder
US2633954A (en) Synchronizing clutch
US2196612A (en) Web replenishing mechanism and control system
US3450364A (en) Web winding mechanism
US2890000A (en) Winder drive
US3375992A (en) Apparatus for the beaming and winding of thread bolts and material webs
US3595495A (en) Eddy current clutch actuated rewinder
US2088599A (en) Clutch
US2865232A (en) Multi-speed drive device
US2332310A (en) Web tension apparatus
US2583674A (en) Textile inspection apparatus
US1731879A (en) Control system
US2632967A (en) Ironer unit
US2658692A (en) Winding mechanism
US3292873A (en) Winches for paying out cables
US3360837A (en) Torque reaction constant tension winder