US3038019A - Primary cell and anode for use therein - Google Patents
Primary cell and anode for use therein Download PDFInfo
- Publication number
- US3038019A US3038019A US771652A US77165258A US3038019A US 3038019 A US3038019 A US 3038019A US 771652 A US771652 A US 771652A US 77165258 A US77165258 A US 77165258A US 3038019 A US3038019 A US 3038019A
- Authority
- US
- United States
- Prior art keywords
- weight percent
- anode
- zinc
- aluminum
- over
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C24/00—Alloys based on an alkali or an alkaline earth metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C25/00—Alloys based on beryllium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This invention relates to battery anodes and particularly to magnesium alloy anode metals for use in primary cells.
- magnesium alloys containing zinc and aluminum were preferred for such usage. It was found that by increasing the aluminum level of the alloy to 3 or 3 weight percent thereof that anode efliciency could be increased substantially. It was also believed that as the aluminum level of the alloy increased, irrespective of the zinc level in the alloy, that the delay time increased.
- a principal object of this invention is to provide an improved magnesium anode alloy which has inherently high anode efiiciency and low delayed action characteristics.
- FIG. 1 is a graph showing the effect of aluminum and zinc levels on anode efliciency of a magnesium anode alloy
- FIG. 2 is a graph showing the effect of aluminum and zinc levels on maximum delayed action in magnesium anode alloys
- FIG. 3 is a side elevational view partly in section, showing a primary cell having an anode in accordance with this invention.
- a magnesium alloy anode metal comprising 1.6 percent to 2.5 percent aluminum, zinc from one-half to one times the aluminum concentration (the aluminum/zinc ratio must be in the range of 1 to 2), up to .5 percent calcium, the balance being commercial magnesium containing not over .005 percent iron, not over .002 percent nickel and not over .1 percent manganese.
- FIG. 2 shows that delayed action time is, in general, lower if the zinc content of the alloy is low.
- the 0.5 weight percent zinc line approaches zero delayed action time when the aluminum content of the alloy is about .4 weight percent.
- an anode made of such an alloy has low efficiency in the aluminum content range where low delay time occurs.
- maximum delay time in seconds rather than minimum or average delay time in seconds is used as the ordinate in the graph of FIG. 2 because maximum delay time value gives the one set of values which define the re liable delay performance characteristics of the anodes of a particular type.
- the four ohm general purpose test used in compiling data used in the graph involved D size batteries discharged through a four ohm resistance, 5 minutes per day, 7 days per week, to a cut-off voltage of 1.2 volts per cell. Anode efiiciency is measured by weighing the anode before and after the completion of the test and dividing the actual weight loss into the theoretical weight loss (based on total ampere hours delivered by the cell) times 100.
- aluminum content of the anode alloy is between 1.6 and 2.0 weight percent, between 1.0 and 1.5 weight percent zinc, between .1 and .25 weight percent calcium, balance commercial magnesium with iron, nickel and manganese as stated above in reciting the broad range of the alloy of the invention.
- a preferred anode composition is 1.8 weight percent aluminum, 1.3 percent zinc, .15 weight percent calcium, balance commercial magnesium containing not more than .005 weight percent iron, .0 02 Weight percent nickel and .01 weight percent manganese.
- the minimum aluminum concentration was established at 1.6 weight percent, as below this concentration low anode efi'iciencies (35 percent or below) resulted. On the other hand aluminum concentrations above 2.5 weight percent resulted in high delayed action.
- the zinc level should be controlled to give an aluminum, zinc ratio of between 1 and 2, as discussed above, to maintain acceptable anode efficiency and low delay.
- the battery 10 shown in FIG. 3 illustrates a primary cell incorporating an anode 12 made in accordance with this invention.
- the battery 10 includes a coaxially disposed cathode electrode 14 within a cylindrical casing 16 which has a metal bottom 18.
- the anode 12, disposed between the cathode electrode 14 and casing 16, is electrically connected to the bottom 18 by means of a strip connector 20 which is secured to both the anode and casing bottom.
- the cathode electrode 14 is insulated from the bottom 18.
- a separator bag 22 filled with suitable cathode mix and electrolyte 24 encases the lower part of the cathode electrode 14 and is disposed against the anode 12.
- Above the anode a wax seal 26 extends across the casing 16 with the upper part of the cathode electrode 14 extending therethrough.
- a vent tab 28 extends through the seal 26 to vent gases generated as the cell is used.
- anode of this invention may be used in a wide variety of types of primary cells as well as several types of electrolytes and'cathode mixes.
- Anodes made in accordance with this invention have been tested and show good results, for example, when used in cathode mix and bromide type electrolyte mixes as described in US. Patent No. 2,547,907 and also using sea water as an electrolyte.
- An anode metal for use in a primary cell comprising from 1.6 to 2.0 weight percent of aluminum, between 1.0 and 1.5 Weight percent of zinc, the amount of zinc in" a given alloy being between one half and onetimes the amount of aluminum therein, between .1 and .25 weight percent'of calcium, not over .OOSWeight percent iron, not
- An anode metal for use in a primary cell comprising 71.8 weight percentof aluminum, 1.3 weight percent of zinc, .15 weight percent of calcium, not over .005 weight percent iron, not over .002 weight percent nickel, and not over .1 weight percent manganese, the remainder being substantially. all magnesium.
- a primary cell comprising at least a cathode, electrolyte and an anode, said anode comprising from 1.6 to 2.5 weightpercent of aluminum, between .8 and 2.5 weight percent of zinc, the amount of Zinc in a given alloy being between one half and one times the amount of aluminum therein, between about .1 weight percent and .5 percentof calcium, not over .005 weight percent iron, not over .002 weight percent nickel, and not over .1 weight percent manganese, the remainder being substantially all magnesium.
- a primary cell comprising at least a cathode, electrolyte and an anode, said anode comprising from 1.6 to 2.0 weight percent of aluminum, between 1.0 and 1.5 weight percent of zinc, the amount of zinc in a given alloy beingbetween one half and one times the amount of aluminum therein, between .1 and .25 Weight percent of calcium, not over .005 weight percent iron, not over .002 weight percent nickel, and not over .1 weight percent manganese, the remainder being substantially all magnesium.
- a primary cell comprising at least a cathode, electrolyte and an anode, said anode comprising 1.8 weight percent of aluminum, 1.3 weight percent of zinc, .15 Weight percent of calcium, not over .005 weight percent iron, not over .002 weight percent nickel, and not over 1 weight percent manganese, the remainder being substantia'lly all magnesium.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Primary Cells (AREA)
- Prevention Of Electric Corrosion (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA665318A CA665318A (en) | 1958-11-03 | Primary cell and anode for use therein | |
US771652A US3038019A (en) | 1958-11-03 | 1958-11-03 | Primary cell and anode for use therein |
DED30096A DE1081090B (de) | 1958-11-03 | 1959-03-02 | Magnesiumelektrode fuer Primaerelemente |
JP665759A JPS369056B1 (en(2012)) | 1958-11-03 | 1959-03-05 | |
GB9053/59A GB853543A (en) | 1958-11-03 | 1959-03-16 | Magnesium-base anode metal for use in a primary cell |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA665318T | |||
US771652A US3038019A (en) | 1958-11-03 | 1958-11-03 | Primary cell and anode for use therein |
DED30096A DE1081090B (de) | 1958-11-03 | 1959-03-02 | Magnesiumelektrode fuer Primaerelemente |
FR788386A FR1227391A (fr) | 1959-03-04 | 1959-03-04 | élément primaire de pile et anode destinée à y être utilisée |
JP665759A JPS369056B1 (en(2012)) | 1958-11-03 | 1959-03-05 | |
GB9053/59A GB853543A (en) | 1958-11-03 | 1959-03-16 | Magnesium-base anode metal for use in a primary cell |
Publications (1)
Publication Number | Publication Date |
---|---|
US3038019A true US3038019A (en) | 1962-06-05 |
Family
ID=73039734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US771652A Expired - Lifetime US3038019A (en) | 1958-11-03 | 1958-11-03 | Primary cell and anode for use therein |
Country Status (5)
Country | Link |
---|---|
US (1) | US3038019A (en(2012)) |
JP (1) | JPS369056B1 (en(2012)) |
CA (1) | CA665318A (en(2012)) |
DE (1) | DE1081090B (en(2012)) |
GB (1) | GB853543A (en(2012)) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3765944A (en) * | 1971-11-26 | 1973-10-16 | Dow Chemical Co | Battery having a molten alkali metal polysulfide catholyte and carbon coated metallic electrode for use therein |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2264309A (en) * | 1940-03-09 | 1941-12-02 | Dow Chemical Co | Magnesium base alloy |
US2264310A (en) * | 1940-03-09 | 1941-12-02 | Dow Chemical Co | Magnesium base alloy |
US2712564A (en) * | 1952-11-26 | 1955-07-05 | Dow Chemical Co | Primary cell |
US2759986A (en) * | 1953-11-20 | 1956-08-21 | Rca Corp | Primary cell |
US2836645A (en) * | 1956-06-13 | 1958-05-27 | Rca Corp | Primary cell |
US2934583A (en) * | 1958-02-13 | 1960-04-26 | Dow Chemical Co | Anode for magnesium primary cells |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2621220A (en) * | 1950-03-03 | 1952-12-09 | Dow Chemical Co | Primary cell |
-
0
- CA CA665318A patent/CA665318A/en not_active Expired
-
1958
- 1958-11-03 US US771652A patent/US3038019A/en not_active Expired - Lifetime
-
1959
- 1959-03-02 DE DED30096A patent/DE1081090B/de active Pending
- 1959-03-05 JP JP665759A patent/JPS369056B1/ja active Pending
- 1959-03-16 GB GB9053/59A patent/GB853543A/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2264309A (en) * | 1940-03-09 | 1941-12-02 | Dow Chemical Co | Magnesium base alloy |
US2264310A (en) * | 1940-03-09 | 1941-12-02 | Dow Chemical Co | Magnesium base alloy |
US2712564A (en) * | 1952-11-26 | 1955-07-05 | Dow Chemical Co | Primary cell |
US2759986A (en) * | 1953-11-20 | 1956-08-21 | Rca Corp | Primary cell |
US2836645A (en) * | 1956-06-13 | 1958-05-27 | Rca Corp | Primary cell |
US2934583A (en) * | 1958-02-13 | 1960-04-26 | Dow Chemical Co | Anode for magnesium primary cells |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3765944A (en) * | 1971-11-26 | 1973-10-16 | Dow Chemical Co | Battery having a molten alkali metal polysulfide catholyte and carbon coated metallic electrode for use therein |
Also Published As
Publication number | Publication date |
---|---|
GB853543A (en) | 1960-11-09 |
CA665318A (en) | 1963-06-18 |
DE1081090B (de) | 1960-05-05 |
JPS369056B1 (en(2012)) | 1961-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2863933A (en) | Electric current producing cell and method of producing current using the same | |
US4150204A (en) | Aluminum anode alloy for primary high power density alkaline fuel cells and batteries | |
US2536696A (en) | Primary cell | |
US3306776A (en) | Galvanic primary cell | |
JPH0684521A (ja) | アルカリ電池 | |
WO1985001615A1 (en) | Battery cell with improved capacity, open circuit voltage and start-up time | |
US4992343A (en) | Lead-containing anode current collector for alkaline cells | |
US2838591A (en) | Primary cell | |
US4007316A (en) | Deferred action battery having an improved depolarizer | |
US3038019A (en) | Primary cell and anode for use therein | |
US2257130A (en) | Magnesium primary cell | |
US3853623A (en) | Additive for an alkaline battery employing divalent silver oxide positive active material | |
US2759986A (en) | Primary cell | |
US3040114A (en) | Primary battery cell | |
US2023717A (en) | Electric battery cell | |
US4146678A (en) | Primary electric cell of the dry cell type | |
US2983777A (en) | Rechargeable battery | |
JP2563109B2 (ja) | アルカリ電池 | |
JP2609609B2 (ja) | アルカリ電池 | |
US3533843A (en) | Zinc electrode and method of forming | |
US3679488A (en) | Silver oxide-magnesium cell or electrochemical generator | |
JPH0622122B2 (ja) | 亜鉛アルカリ電池 | |
US3502508A (en) | Cathode for a deferred action battery having a high capacity depolarizer encased in a humidity resistant depolarizer material | |
US2547909A (en) | Primary cell | |
JP2563106B2 (ja) | アルカリ電池 |