US3031649A - Matrix for computers - Google Patents
Matrix for computers Download PDFInfo
- Publication number
- US3031649A US3031649A US822055A US82205559A US3031649A US 3031649 A US3031649 A US 3031649A US 822055 A US822055 A US 822055A US 82205559 A US82205559 A US 82205559A US 3031649 A US3031649 A US 3031649A
- Authority
- US
- United States
- Prior art keywords
- cores
- wires
- matrix
- plate
- matrices
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011159 matrix material Substances 0.000 title description 18
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/06—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using single-aperture storage elements, e.g. ring core; using multi-aperture plates in which each individual aperture forms a storage element
- G11C11/06007—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using single-aperture storage elements, e.g. ring core; using multi-aperture plates in which each individual aperture forms a storage element using a single aperture or single magnetic closed circuit
- G11C11/06014—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using single-aperture storage elements, e.g. ring core; using multi-aperture plates in which each individual aperture forms a storage element using a single aperture or single magnetic closed circuit using one such element per bit
- G11C11/06021—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using single-aperture storage elements, e.g. ring core; using multi-aperture plates in which each individual aperture forms a storage element using a single aperture or single magnetic closed circuit using one such element per bit with destructive read-out
- G11C11/06028—Matrixes
- G11C11/06035—Bit core selection for writing or reading, by at least two coincident partial currents, e.g. "bit"- organised, 2L/2D, or 3D
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/4902—Electromagnet, transformer or inductor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/4902—Electromagnet, transformer or inductor
- Y10T29/49069—Data storage inductor or core
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/5313—Means to assemble electrical device
- Y10T29/53165—Magnetic memory device
Definitions
- This invention relates to a ferromagnetic core matrix for computers and process of making the same.
- a compact matrix formed from a number of smaller matrices to provide a large number of independent storage cores each wired for coincident current reading or writing in which the necessity for frames to hold the separate matrices is eliminated and in which the number of connections which must be made by soldering, welding, brazing or mechanical wrapping, is reduced.
- the matrix of the present invention is made up of a plurality of rings or cores arranged in planes employing X and Y wires of sufficient stiffness that they may be preformed, and maintain this form during all subsequent assembly and test operation, so that a plurality of the planes or small matrices supported on plates can be arranged one above the next to form a three-dimensional compound matrix.
- the X and Y wires are of sufiicient stiffness to support the plane, thus eliminating the plate.
- the various planes or matrices on the metal plates are spaced from one another by spacer means, but the wires thereof are interconnected from one plane to another.
- preformed wires are preferably employed.
- Wires are of proper length and form, being made of wires which are sufiiciently stiff that they will maintain their preformed shape during subsequent assembly and test operations, with one elbow portion containing a hook at the end adapted to extend downwardly and surround the straight end of the corresponding wire therebelow.
- the plates may be solid or perforated to permit air circulation so as to cool or maintain the temperature of the cores within a desired range.
- the cores may be secured to the plate by an adhesive.
- the plate is made of metal such as aluminum, brass, iron, etc., or can be made of plastic material.
- FIG. 1 is a plan view of a plate for supporting the individual matrices.
- FIG. 2 is a top plan view of a matrix made according to the invention.
- FIG. 3 is a perspective view of the matrix similar to FIG. 2 but slightly modified.
- the conventional matrix comprises a hollow frame with the cores suspended on the wire drive windings, etc. in the hollow portion of the frame extending between opposite sides of the frame.
- a very satisfactory method of stringing or wiring such a frame has been developed and involves providing a jig with a properly aligned slot for each core, manipulating the jig with a multiplicity of cores until each slot contains a core, then adhering the exposed edge portions of the cores in the jig to a sheet material, removing the jig after turning it so that the adhesive coated sheet material is on the bottom to provide an adhesive support with the cores adhesively held in proper position on the surface thereof.
- coincident current wires are threaded th-erethrough and attached to the sides of the frame, to binding posts or lugs.
- the inhibit and sense wirings are also put in place at this point.
- each of the ends of the coincident current wires must be connected to an outside lead wire, as at a frame lug.
- the present invention dispenses with the hollow frame and instead the cores may be transferred directly from the jig to the final supporting plate 10 such as shown in FIG. 1.
- This plate 10 may be solid or it may contain perforations 11 providing for circulation of cooling or temperature regulating fluid therethrough.
- the surface of the plate is coated with an adhesive especially in the center portion 12 which is adapted to hold the cores.
- At least two opposite corners 13 of the plate protrude and contain an opening 14 therein through which a rod 16' is adapted to pass for aligning the various small matrix plates 10 with each other.
- FIGS. 1 and. 2 show a plate with four aligning covers and FIG. 3 shows a plate with two such covers.
- Spacer means 17 are provided to space the plates apart, at convenient distance (see FIG. 3). As shown in FIG. 3 slots 18 may be cut in the edges of the plates to provide a guide for the coincident current drive wires to be inserted.
- the coincident current drive wires 20 and 20' are best shown in FIG. 3 and comprise a long shank portion 21 or 21 and a short angle portion 22 or 22 terminating in a hook 23 or 23'.
- these wires 20 or 20' are slightly larger in diameter and/or stiffer than the wires conventionally employed.
- These wires 20 are preformed and shaped into the exact dimensions, that is, the length of the shank 21 is adapted to extend across the plate 10 with the end 24 thereof extending through the hook 23 of the wire 20 above the same and the length of the angle and hook portion 2223 is slightly greater than the length of spacer means 17 plus the thickness of the plate 10. The connections between the hooks 23 and ends 24 are subsequently soldered.
- the plates 10 or 10' are square so that the drive wires 20 extending in the columns are the same length as drive wires 20' extending in the rows thereof.
- the plates 10 or 10 can be rectangular, if desired, in which case the length of the shanks 21 of drive wires 20 would be less than the length of shanks 21 of drive wires 26, for example.
- each of the separate matrices contains cores capable of storing 100 bits of information.
- the separate matrices may contain a larger or a smaller number of cores, the 10 x 10 matrices of FIG. 3 illustrates the principle of the invention as well as larger matrices.
- cores are positioned in a jig and these cores are transferred to the adhesively coated surface of a plate 10.
- a plurality of preformed wires or rods 20, 20' is provided and these rods are threaded through the cores to the positions shown in FIG. 3.
- Each of the wires 20 or 20' acts as its own needle.
- the cores are stabilized and a sense winding and inhibit Winding (not shown) may be threaded through said cores in the conventional manner.
- a spacer element 17 and new plate is added. It will be appreciated that the coincident current drive wires 20 and 2% on adjacent plates will be threaded into the cores from opposite sides.
- a matrix assembly comprising a plurality of smaller matrices, each of said matrices comprising a plurality of ferromagnetic cores arranged in a two dimensional array of columns and rows, means for supporting the matrices one above the next, a plurality of individual drive wires for said cores, a separate one of said drive Wires extending through each column and each row of each smaller matrix, each of said individual drive Wirescomprising a shank portion with a substantially straight free end each shank portion extending through the cores in its particular row or column, the other end of each of said drive wires being oriented at an angle to its shank portion and extending into contact with the free end of the corre sponding drive wire of an adjacent matrix, the angle ends of corresponding drive Wires in adjacent matrices being on opposite sides of said assembly.
- a matrix assembly comprising a plurality of substantially identical plates supported one above the next in spaced relation, each of said plates containing a plurality of ferromagnetic cores arranged in columns and rows, a plurality of individual drive Wires for said cores, one for each column and one of each row of each of said plates, each of said drive Wires comprising a shank portion extending through the cores in its particular column or roW and an angle portion having hook means at the extending downwardly and into contact with the free end of the corresponding drive Wire of the next lower plate.
- each of said plates contains an array of slots along its edge region, each slot coacting with an associated angle portion of the drive Wires for the respective plate.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Magnetic Heads (AREA)
- Insulated Conductors (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL252833D NL252833A (enrdf_load_html_response) | 1959-06-22 | ||
US822055A US3031649A (en) | 1959-06-22 | 1959-06-22 | Matrix for computers |
GB20146/60A GB889822A (en) | 1959-06-22 | 1960-06-08 | Matrix for computers |
FR830438A FR1265460A (fr) | 1959-06-22 | 1960-06-18 | Matrice pour machines à calculer |
CH702960A CH383441A (de) | 1959-06-22 | 1960-06-21 | Speicherkernmatrix für Rechengeräte |
DEJ18318A DE1132362B (de) | 1959-06-22 | 1960-06-22 | Dreidimensionale Kernmatrix |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US822055A US3031649A (en) | 1959-06-22 | 1959-06-22 | Matrix for computers |
Publications (1)
Publication Number | Publication Date |
---|---|
US3031649A true US3031649A (en) | 1962-04-24 |
Family
ID=25234997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US822055A Expired - Lifetime US3031649A (en) | 1959-06-22 | 1959-06-22 | Matrix for computers |
Country Status (5)
Country | Link |
---|---|
US (1) | US3031649A (enrdf_load_html_response) |
CH (1) | CH383441A (enrdf_load_html_response) |
DE (1) | DE1132362B (enrdf_load_html_response) |
GB (1) | GB889822A (enrdf_load_html_response) |
NL (1) | NL252833A (enrdf_load_html_response) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3229265A (en) * | 1962-06-29 | 1966-01-11 | Ibm | Arrays of magnetic circuit elements |
US3273135A (en) * | 1955-11-21 | 1966-09-13 | Ibm | Apparatus for winding and assembling magnetic cores |
US3314131A (en) * | 1964-04-29 | 1967-04-18 | Ibm | Wire threading method and apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2667542A (en) * | 1950-09-26 | 1954-01-26 | Int Standard Electric Corp | Electric connecting device |
US2700150A (en) * | 1953-10-05 | 1955-01-18 | Ind Patent Corp | Means for manufacturing magnetic memory arrays |
US2778005A (en) * | 1955-01-20 | 1957-01-15 | Ibm | Core matrix |
US2908983A (en) * | 1958-09-19 | 1959-10-20 | Berke Aaron | Self-rotatable and replaceable heel |
-
0
- NL NL252833D patent/NL252833A/xx unknown
-
1959
- 1959-06-22 US US822055A patent/US3031649A/en not_active Expired - Lifetime
-
1960
- 1960-06-08 GB GB20146/60A patent/GB889822A/en not_active Expired
- 1960-06-21 CH CH702960A patent/CH383441A/de unknown
- 1960-06-22 DE DEJ18318A patent/DE1132362B/de active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2667542A (en) * | 1950-09-26 | 1954-01-26 | Int Standard Electric Corp | Electric connecting device |
US2700150A (en) * | 1953-10-05 | 1955-01-18 | Ind Patent Corp | Means for manufacturing magnetic memory arrays |
US2778005A (en) * | 1955-01-20 | 1957-01-15 | Ibm | Core matrix |
US2908983A (en) * | 1958-09-19 | 1959-10-20 | Berke Aaron | Self-rotatable and replaceable heel |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3273135A (en) * | 1955-11-21 | 1966-09-13 | Ibm | Apparatus for winding and assembling magnetic cores |
US3229265A (en) * | 1962-06-29 | 1966-01-11 | Ibm | Arrays of magnetic circuit elements |
US3314131A (en) * | 1964-04-29 | 1967-04-18 | Ibm | Wire threading method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
CH383441A (de) | 1964-10-31 |
DE1132362B (de) | 1962-06-28 |
GB889822A (en) | 1962-02-21 |
NL252833A (enrdf_load_html_response) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2985948A (en) | Method of assembling a matrix of magnetic cores | |
US3633189A (en) | Cable structure for magnetic head assembly | |
US3484536A (en) | Encapsulated component | |
US3134163A (en) | Method for winding and assembling magnetic cores | |
US2934814A (en) | Method of making an electronic components package | |
US3031649A (en) | Matrix for computers | |
US2910673A (en) | Core assembly | |
US2778005A (en) | Core matrix | |
US3300767A (en) | Woven screen magnetic storage matrix | |
US3117368A (en) | Method and apparatus for wiring memory arrays | |
US3051930A (en) | Magnetic coil array | |
US3139610A (en) | Magnetic-core memory construction | |
US3243870A (en) | Method of making an array of magnetic storage elements | |
US3157721A (en) | Method and apparatus for positioning and assembling wires and the like | |
JP2549534B2 (ja) | 読取り/書込み磁気ヘツドのコイル付き平坦磁性支持体の製造方法 | |
US3439087A (en) | Method of making memory core plane | |
US3305848A (en) | Toroidal core memory array | |
US3073588A (en) | Memory jig | |
US3142889A (en) | Method of making an array of helical inductive coils | |
US3284579A (en) | Magnetic recording and reading head mounting assembly | |
US3273135A (en) | Apparatus for winding and assembling magnetic cores | |
US3214740A (en) | Memory device and method of making same | |
US3391397A (en) | Thin magnetic film storage apparatus having adjustable inductive coupling devices | |
US3155948A (en) | Magnetic core assemblies | |
US3294393A (en) | Apparatus for use in handling ferrite cores |