US3007459A - Forced flow vapor generating unit - Google Patents
Forced flow vapor generating unit Download PDFInfo
- Publication number
- US3007459A US3007459A US685119A US68511957A US3007459A US 3007459 A US3007459 A US 3007459A US 685119 A US685119 A US 685119A US 68511957 A US68511957 A US 68511957A US 3007459 A US3007459 A US 3007459A
- Authority
- US
- United States
- Prior art keywords
- tubes
- tube
- fluid
- tubular section
- header
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 description 129
- 238000010438 heat treatment Methods 0.000 description 38
- 239000007789 gas Substances 0.000 description 37
- 230000008646 thermal stress Effects 0.000 description 9
- 238000010276 construction Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 210000005239 tubule Anatomy 0.000 description 2
- 241000024109 Spiris Species 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
- F22B29/10—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating with sliding point of final state of complete evaporation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
- F22B29/061—Construction of tube walls
- F22B29/062—Construction of tube walls involving vertically-disposed water tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G5/00—Controlling superheat temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S122/00—Liquid heaters and vaporizers
- Y10S122/04—Once through boilers
Definitions
- This invention relates in general to forced flow fluid heating units and more particularly to the construction and arrangement of the fluid heating walls for a oncethrough forced circulation fluid heating unit.
- the tubular heating surface for the boundary walls of a forced flow fluid heating unit has been so arranged that the fluid to be heated passes successively through the tube panels or sections of each boundary wall.
- This tube arrangement has given difficulty in that the fluid temperature continuously increases as it flows in series through the boundary walls. This change in fluid temperature creates differential expansions in the walls of a magnitude resulting in high fatigue stresses in the wall forming components.
- the bound my wall fluid heating surface of a unit of the general character described is so proportioned and arranged that the distribution of flow to all fluid flow paths is substantially even; that in any plan cross-section of the gas flow chamber the average temperature of the tubes in each boundary wall is about the same and the maximum temperature differential between adjacent tubes is below a predetermined critical limit, thereby maintaining differential expansions in the walls within safe limits; and that the tubes are of suflicient inside diameter to prevent plugging and to provide adequate fluid circulation velocities.
- the invention is concerned with the provision of an improved construction of a forced circulation fluid heating unit comprising walls including fluid heating tubes defining a vertically elongated gas flow chamber, each well being horizontally divided into a plurality of vertically adjacent tubular sections.
- Each tubular section includes groups of upwardly extending closely spaced parallel tubes connected for series flow of fluid to corresponding vertically adjacent tube groups to form parallel flow fluid passages receiving heat from the gases flowing through the chamber.
- Each tube group comprises three tubes connected for series flow of fluid and arranged for upflow and downflow of fluid. This particular routing and arrangement of the tubes affords a pressure drop of a magnitude suflicient to assure substantially uniform flow of fluid to the parallel flow fluid passages; permits the use of tubes having an inside diameter sufficiently large to preclude plugging due to solids deposition or other foreign matter and to assure safe fluid circulation velocities at all loads; and gives an average temperature of about the same value in each wall of the chamber inany horizontal cross-section of the chamber.
- header means are provided to receive and mix the fluid discharged from each of the tube groups of one of the tubular sections of each wall and flow the mixed fluids to the tube groups of the vertically adjacent tubular section of each wall,
- FIG. 1 is a partially diagrammatic sectional elevation of a once-through forced flow steam generator embodying the invention
- FIG. 2 is a diagrammatic representation of the vaporizable fluid flow path within the steam generator of FIG. 1;
- FIG. 3 is a fragmentary sectional elevation showing a representative pair of parallel flow fluid passages in the rear wall.
- FIG. 4 is a plan section taken on the line 4-4 of FIG. 3; a
- FIG. 5 is a plan section taken on the line 5-5 of FIG. 3; V
- FIG. 6 is a sectional elevation taken on the line 66 of FIG. 3;
- FIG. 7 is a fragmentary diagrammatic sectional elevation showing a modification to the boundary wall tube arrangement.
- FIG. 8 is a fragmentary diagrammatic sectional elevation showing another modification to the boundary wall tube arrangement.
- fluid heating wall constructions illustrated and hereinafter described can also be advantageously used in once-through and recirculating forced flow fluid heating units designed for sub-critical pressures and temperatures and for furnace operation under internal gaseous pressures at or below atmospheric pressure.
- the forced circulation steam generating unit illustrated includes a vertically elongated setting of substantially rectangular horizontal cross-section having a furnace chamber A and a superjacent convection gas cooling chamber B defined in most part by a front wall 10, a rear wall 12 and opposing side walls 14 (of which only one is shown).
- Each boundary wall includes fluid heating tubes, the arrangement of which will be hereinafter described, having their intertube spaces closed by metallic webs 13, as shown in FIGS. 4 and 5, to provide a gastight enclosure and their outer faces covered by suitable insulation material.
- the lower portion of the furnace chamber is formed by a hopper having inclined front 15 and rear 16 wall portions converging downwardly from the lower ends of the front and rear walls 10 and 12, respectively, to define a rectangular throat passage 17 for discharging ash or other solids into an ash pit, not shown, positioned therebelow.
- the furnace chamber A is fired by two vertically spaced rows of horizontally extending burners 18 arranged to direct fuel and air in mixing relationship into the furnace chamber through corresponding burner ports 19 in the lower portion of the front, rear and side walls.
- Gas passes 22 and 24 are separated from the furnace chamber A by screens 25 and 26, respectively, formed by fluid heating tubes projecting downwardly and outwardly from the baflles 20 and 21, respectively.
- the parallel gas passes are occupied by economizer surface and steam superheating and reheating surface in the form of return bend horizontally arranged tubes connected to headers of which most are arranged externally of the chamber B.
- the upper central portion of the gas pass 24 is occupied by a first primary superheater 27; the central portion of the gas pass 22 by a second primary superheater 28, the lower portion of all gas passes by a secondary superheater 29, which also includes a section extending subjacent the entrances to the parallel gas passes; the central portion of the gas pass 23 by a first stage reheater 30; the central portion of the gas pass 24 by a second stage reheater 31; and the upper portion of all gas passes by an economizer 32.
- Dampers 33, 34 and 35 control gas flow through the gas passes 22, 23 and 24, respectively.
- Breeching 36 receives gases flowing from the parallel gas passes and flows them to other heat exchange apparatus, not shown.
- the gaseous products of combustion passing from the furnace chamber A are regularly divided into three parallel streams beyond the screens 25, 26 and simultaneously flow over the superheating, reheating, and econornizer surface located in the respective passes.
- the steam generator setting is top-supported by structural steel members including upright members 37, cross beam 38, and beams 39 from which hangers 40 support all walls.
- FIG. 2 diagrammatically shows the flow path of the vaporizable fluid to, through and from one of the parallel flow passages in both the front and rear walls and 12, the fluid flow path through all parallel flow passages in these walls and in the side walls 14 being essentially the same.
- Feed water at a pressure of 4500 p.s.i. is supplied by a feed pump, not shown, to the economizer 32 wherein it is partially heated.
- the heated fluid then flows through a downcomer 41 and supply tubes 42 to a rear wall fluid distribution or supply header 43.
- the rear wall 12 is horizontally divided into tubular sections 44, 45, 46 and 47 comprising tube groups 48, 49, 50 and 51, respectively.
- Each of the tube groups comprises upwardly extending tubes connected for series flow of fluid to the vertically adjacent group of tubes to forma once-through fluid flow passage.
- Each of the tube groups of sections 44, 45 and 46 comprises three tubes connected for series flow of fluid and of which two tubes (48A, 48B in group 48, 49A, 49B, in group 49, 50A, 50B in group 50) are arranged for upflow of fluid and one tube (48C in group 48, 49C in group 49, 50C in group 50) for downflow of fluid.
- Upflow tube 50B of group 50 is trifurcated at its discharge end to provide parallel fluid flow through the tubes of group 51.
- Fluid discharging from the header 43 passes through tubes 48A and 48C to a fluid drain header 52, then flows through tubes 48B, 49A and 49C to a combination fluid drain and collecting header 53.
- the fluid discharges from the header 53 to a fluid enthalpy equalization header 54 wherein the fluids are mixed so that the enthalpy, and thereby the temperature, of the fluid will be substantially uniform in passing to the vertically adjacent tubular section.
- the fluid discharges to a combination fluid drain and distributing header 55, then flow through tubes 4913, 50A and 50C to a second fluid drain and collecting header 56, a second fluid enthtalpy equalization header 57 and a second drain and distributing header 58.
- the fluid flows through tube 50B and the tubes of group 51 to a header 59 at the top of the rear wall 12. Thereafter the fluid passes through a fluid enthalpy equalization header 60 and then in parallel flow paths through downcomers 86, screen supply headers 61 by way of supply tubes 62, screen tubes 25, 26 and baflie tubes 63, 64 to a header 87. While not shown in FIG. 2, the fluid then flows through the primary superheater 27, the primary superheater 28, and the secondary superheater 29 to a turbine, not shown. The fluid after having been partially expanded in the turbine passes through the reheater 30 and then to an intermediate stage of the turbine. After the intermediate expansion stage, the fluid flows through the reheater 31 and then returns to the turbine for final expansion.
- the described fluid flow path is the same for the front wall 10 illustrated in FIG. 2 and for the tube groups in the side walls 14.
- FIG. 3 shows a pair of once-through parallel flow fluid passages in the rear wall 12, each flow passage in this wall and all other boudary walls being basically the same.
- Each boundary wall is horizontally divided into vertically adjacent tubular sections 44, 45, 46 and 47, each section being substantially planar and comprising upwardly extending closely spaced parallel tubes.
- Each wall includes metallic webs 13 between and welded to adjacent tubes, as shown in FIGS. 4 and 5, to provide a gas-tight enclosure covered by suitable insulation material on the outer side thereof.
- the walls may also be formed, for example, by tubes having their intertube spaces closed with refractory material and/or metallic studs or by tangent tubes, with metallic casing secured to the outer faces of the tubes in either construction.
- Corresponding sections on all walls extend upwardly to substantially the same level, the tubes of section 44 extending to about the top of the hopper, the tubes of section 45 to a point superjacent the top row of burners, the tubes of section 46 to about the gas entrance to the chamber B, and the tubes of section 47 to the top of chamber B.
- the height of each tubular section is set so that in the event of unbalanced heat and fluid flow the maximum differential temperature between adjacent tubes will not exceed a predetermined critical limit beyond which undue thermal stresses on the wall forming components would be expected to occur. This limit was set at about F.
- tubular sections 44, 45, 46, and 47 comprises tube groups 48, 49, 50 and 51, respectively, the tube groups of each of these sections being arranged in a row in side by side parallel relationship and connected for series flow of fluid with corresponding vertically adjacent groups to form, in effect, once-through parallel flow fluid passages receiving heat from the gases flowing through the furnace chamber A and chamber B.
- correspondingly located tubes of each vertically adjacent group are arranged to lie in a plane extending substantially normal to the planes of the tubular sections.
- Each group of tubes 48 in the tubular section 44 comprises three tubes connected for series fluid flow and of which two tubes are arranged for upflow of fluid and one for downflow.
- Tube 48A has its inlet end connected to the horizontally disposed lower rear wall header 43 and a return bend tube portion 48D connects the outlet end of tube 48A to the inlet end of tube 48C.
- the outlet end of tube 480 and the inlet end of tube 48B are connected to the horizontally arranged drain header 52 disposed superjacent the header 43.
- Tube 49A is a continuation of tube 48B and has its outlet end connected to the inlet end of tube 49C by a return bend tube portion 49D. As shown in FIG.
- the discharge portion of the tube 49C is bent outwardly from the plane of tubular section 45 at a point immediately above the tube portion 48D and connected to a header 53A which constitutes one leg of a continuous horizontally arranged drain and collecting header 53 disposed externally and about the periphery of the furnace chamber A' and receiving fluid from the downflow tube of all boundary wall tube groups in the tubular sections corresponding to the tubular section 45 of the rear wall 12.
- the discharge ends of the continuous header 53 are connected to a vertically arranged fluid enthalpy equalization header 54 adjacent the juncture of the front and side walls wherein the fluids are mixed to a substantially uniform temperature and discharged to the inlet ends of a drain and distributing header 55 of like con struction and arrangement as the header 53 and disposed superjacent thereto.
- the header 55 distributes the mixed fluid to tube groups 50 and to the tube groups of the tubular sections of all other walls corresponding to the tubular section 46 of the rear wall 12.
- tube 493 has its inlet end connected to leg 55A of the continuous header 55 and enters the wall 12. at a point immediately above tube; portion 48D.
- Tube 50A is a vertical continuation of tube 493 and has its outlet end connected to the inlet end of tube 500 by a return bend tube portion 50D.
- the discharge portion of tube 50C is bent outwardly from the plane of tubular section 46 at a point immediately above tube portion 49D and connected to a header 56A which constitutes one leg of a continuous header 56 of the same character as the header 53A and receives fluid from the downflow tube of all boundary wall tube'groups in the tubular sections corresponding to the tubular section 46 of the rear wall 12.
- tinuous header 56 are connected to afluid enthalpy cqual ization header 57 at the juncture of the rear and side walls of like arrangement and function as the header 54.
- the mixedfluid is discharged from the header 57 to the inlet ends of a and distributing header.58 of like arrangement and construction as the header 56 anddisposed superjacent thereto.
- tube 503 has its inlet end connected to leg 58A of the continuous header 58 and enters the wall 12 at a point immediately above tube portion 49D,
- the outlet end of tube 50B is trifurcatcd from which upright tubes 51 extend to the header 59.
- All the headers in the embodiment of FIG. 3 and those of FIGS. 7 and 8 include suitable drain connections, such as at 85 in FIG. 6.
- all boundary wall tubes are 1'' OD. x .18" thick on 1% centerlines up to the point of trifurcation beyond which the tubes arelVs" OD. x .22" thick on 1%" centerlines up to the top of chamber B.
- the lengths of the tubular sections 44, 45, 46 and 47 are approximately 34', 31', 78' and 49', respectively.
- FIGS. 7 ancl8 schematically illustrate modifications to the-wall tube arrangement of FIGS. 2-and 3.
- the fluid heating wall of which only a part is shawn,-is of substantiallythe same character as the wall of FIGS. 2 and 3, except for the tube routing and header locations.
- FIG.-7 shows a pair of once-through parallel flow fluid passages.
- the yaporizable fluid enters-a fluid distribution or supply header 70 and then successively passes through upflow tube, 71A, downflow tube 71B, drain header 72, upflow tube 710, drain and collecting header 73, fluid enthalpy equalization header 74, drain and distributing header 75, upflow tube 76A, downflow tube 76B, drain header 77 and upflow tube 76C to the next group of tubes.
- Flow in the other passage is in the same order.
- FIG. 8 embodiment also illustrates a pair of onccthrough parallel flow fluid passages. As indicated by the arrows in FIG. 8, in one of the parallel flow fluid passages the vaporizable fluid enters a fluid distribution or supply header 78 and then successively passes through upflow tube 79A, downflow tube 79B, drain header 80, upflow tube 79C, upflow tube 81A, downflow tube 81B,
- a wall sub ject to high temperature heating gases including a pai of vertically adjacent tubular sections; each tubular sec tion comprising laterally adjacent groups of upwardly ex tending closely spaced tubes which are rigidly secured t1 each other along at least a portion of the lengths thereof each group including an initial upflow tube, a second up flow tube, and a downflow tube positioned between an next adjacent to said upflow tubes and connected for memori flow of fluid from said initial upflow tube and to sail second upflow tube; the tubes of one tubular section bein; longitudinally aligned with the tubes of the other section so that the tube surface presented to the heating gases ex tends substantially throughout the height of the tubula sections; means for interconnecting the second, 'upflox tubes of said one tubular section to the initial upflow tubes of the other tubular section; header' means com municating with and receiving and mixing fluids flowin from the downflow tubes of the tube-groupsof said on tubular section and distributing the mixed fluids to cor respondingly
- a wa subject to high temperature heating gases including pair of vertically adjacent tubular sections; each tubule section comprising laterally adjacent groups of uprigl closely spaced parallel tubes which are rigidly secured t each other along at least a portion of the lengths thereo each group including an initial upflow tube, a second u flow tube and a downflow tube positioned between an next adjacent to said upflow tubes along the lengths then of and connected for series flow of fluid from said initi: upflow tube and to said'second upflow tube; the tubes one tubular section being longitudinally aligned with tl: tubes of the other section so that the tube surface prl sented to the heating gases extend substantially througl out the height of the tubular sections; means for inte connecting the second upflow tube of each tube group i said one tubular section to the initial upflow tube of ti correspondingly located tube group of the other tubul: section; header means communicating with and receivir and mixing fluids flowing from the downflow tubes of ti tube groups of said
- a Wall subject to high temperature heating gases including upper and lower vertically adjacent tubular sections; each tubular section comprising laterally adjacent groups of upright closely spaced parallel tubes which are rigidly secured to each other along at least a portion of the lengths thereof; each group including an initial upfiow tube, a second upflow tube, and a downflow tube positioned between and next adjacent to said upfiow tubes and connected for series flow of fluid from said initial upflow tube and to said second upfiow tube; the tubes of the lower tubular section being longitudinally aligned with the tubes of the upper section so that the tube surface presented to the heating gases extends substantially throughout the height of the tubular sections; means for interconnecting the second upfiow tube of each tube group of the lower tubular section to the initial upflow tube of the overlying tube group of the upper tubular section, header means communicating with and receiving and mixing fluids flowing from the downflow tubes of the tube groups of said lower tubular section and distributing the mixed fluids to correspondingly located upfiow tubes
- a wall subject to high temperature heating gases including a plurality of vertically adjacent tubular sections; each tubular section comprising laterally adjacent groups of upright closely spaced parallel tubes which are rigidly secured to each other along at least a portion of the lengths thereof; each group including an initial upfiow tube, a second upflow tube, and a downflow tube positioned between and next adjacent to said upfiow tubes along the lengths thereof and connected for series flow of fluid from said initial upflow tube and to said second upflow tube; the tubes of each tubular section being longitudinally aligned with the tubes of the other sections so that the tube surface presented to the heating gases extends substantially througl out the height of the tubular sections; means for interconnecting the second upfiow tubes of each tubular section to the initial upfiow tubes of the next vertically adjacent tubular section; header means communicating with and receiving and mixing fluids flowing from the downflow tubes of the tube groups of the lowermost tubular section and distributing the mixed fluids to correspondingly located upf
- a wall subject to high temperature heating gases including upper and lower vertically adjacent tubular sections; each tubular section comprising laterally adjacent groups of upwardly extending closely spaced tubes which are rigidly secured to each other along at least a portion of the lengths thereof; each group including an initial upfiow tube, a second upfiow tube, and a downflow tube positioned between and next adjacent to said upflow tubes and connected for series fiow of fluid from said initial upfiow tube and to said second upfiow tube; the tubes of the lower tubular section being longitudinally aligned with the tubes of the upper section so that the tube surface presented to the heating gases extends substantially throughout the height of the tubular sections; means for interconnecting the second upfiow tubes of the lower tubular section to the initial upflow tubes of the upper tubular section; a header directly connected to the outlet end of the downflow tube of each tube group of the lower tubular section and to the inlet end of the second upfiow tube of each tube group of the lower tubular section;
- a wall subject to high temperature heating gases including upper and lower vertically adjacent tubular sections; each tubular section comprising laterally adjacent groups of upwardly. extending closely. spaced tubes which are rigidly secured to each other along at least a portion of the lengths thereof; each group including an initial upflow tube, a second upfiow tube, and a downflow tube positioned between and next adjacent to said upfiow tubes and connected for series flow of fluid from said initial upflow tube and to said second upflow tube; the tubes of the lower tubular section being longitudinally aligned with the tubes of the upper section so that the tube surface presented to the heating gases extends substantially throughout the height of the tubular sections; means for interconnecting the second upfiow tubes of the lower tubular section to the initial upfiow tubes of the upper tubular section; a header directly connected to the outlet end of the downflow tube of each tube group of the lower tubular section and to the inlet end of the second upfiow tube of each tube group of the lower tubular section; header
- a forced circulation fluid heating unit walls forming an upright gas flow chamber; means supplying high temperature heating gases to said chamber for flow therethrough; each of said walls including upper and lower vertically adjacent tubular sections; each tubular section comprising laterally adjacent groups of upright closely spaced parallel tubes which are rigidly secured to each other along at least a portion of the lengths thereof; each group inclpding an initial upflow tube, a second upfiow tube, and a downflow tube positioned between and next adjacent to said upflow tubes and connected for series flow of fluid from said initial upfiow tube and to said second upflow tube; the tubes of the lower tubular section of each wall being longitudinally aligned with the tubes of the upper section of the corresponding wall so that the tube surface presented to the heating gases extends substantially throughout the height of the tubular sections; means for interconnecting the second upflow tubes of the lower tubular section of each wall to the initial upflow tubes of the upper tubular section of the corresponding wall; header means communicating with and receiving and mixing fluids flowing from the downfiow tubes
- each of said walls including upper and lower vertically adjacent tubular sections; each tubular section comprising laterally adjacent groups of upright closely' spaced parallel tubes which are rigidly secured to each other along at least a portion of the lengths thereof; each group including an initial upflow tube, a second upflow tube, and a downflow tube positioned between and next adjacent to said upfiow tubes and connected for series flow of fluid from said initial upflow tube and to said second upflow tube; means for draining each of said tubes; the tubes of the lower tubular section of each wall being longitudinally aligned with the tubes of the upper tubular section of the corresponding wall so that the tube surface presented to the heating gases extends substantially throughout the height of the tubular sections; means for interconnecting the second upflow tube of each tube group of the lower tubular section of each wall tothe initial upflow tube of the overlying tube group of the up per tubular section of the corresponding wall; header means communicating with and receiving and mixing fluids flowing from the downflow tubes of the tube groups of said lower tub
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL126467D NL126467C (en)) | 1957-09-20 | ||
BE571390D BE571390A (en)) | 1957-09-20 | ||
NL231525D NL231525A (en)) | 1957-09-20 | ||
US685119A US3007459A (en) | 1957-09-20 | 1957-09-20 | Forced flow vapor generating unit |
GB30036/58A GB899359A (en) | 1957-09-20 | 1958-09-19 | Improvements in or relating to forced-flow vapour generators |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US685119A US3007459A (en) | 1957-09-20 | 1957-09-20 | Forced flow vapor generating unit |
Publications (1)
Publication Number | Publication Date |
---|---|
US3007459A true US3007459A (en) | 1961-11-07 |
Family
ID=24750855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US685119A Expired - Lifetime US3007459A (en) | 1957-09-20 | 1957-09-20 | Forced flow vapor generating unit |
Country Status (4)
Country | Link |
---|---|
US (1) | US3007459A (en)) |
BE (1) | BE571390A (en)) |
GB (1) | GB899359A (en)) |
NL (2) | NL126467C (en)) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3105466A (en) * | 1959-07-10 | 1963-10-01 | Babcock & Wilcox Ltd | Vapor generator |
US3125995A (en) * | 1964-03-24 | forced flow vapor generating unit | ||
US3344777A (en) * | 1965-10-22 | 1967-10-03 | Foster Wheeler Corp | Once-through vapor generator furnace buffer circuit |
US3364901A (en) * | 1964-03-17 | 1968-01-23 | Siemens Ag | Heating tube system for boiler firing chamber |
US3476090A (en) * | 1968-12-05 | 1969-11-04 | Riley Stoker Corp | Steam generating unit |
US3834358A (en) * | 1965-07-09 | 1974-09-10 | Babcock & Wilcox Co | Vapor generator |
US3927646A (en) * | 1965-04-13 | 1975-12-23 | Babcock & Wilcox Co | Vapor generator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1059866A (en) * | 1912-05-22 | 1913-04-22 | Samuel Gropper | Top. |
US1925026A (en) * | 1931-12-10 | 1933-08-29 | William A Austin | Water tube locomotive boiler |
DE911264C (de) * | 1951-04-22 | 1954-05-13 | Siemens Ag | Zwangstromdampferzeuger mit Strahlungsheizflaeche |
GB770456A (en) * | 1954-06-03 | 1957-03-20 | Duerrwerke Ag | Improvements in tubulous, forced flow, ouce-through, vapour generating and superheating units |
-
0
- NL NL231525D patent/NL231525A/xx unknown
- BE BE571390D patent/BE571390A/xx unknown
- NL NL126467D patent/NL126467C/xx active
-
1957
- 1957-09-20 US US685119A patent/US3007459A/en not_active Expired - Lifetime
-
1958
- 1958-09-19 GB GB30036/58A patent/GB899359A/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1059866A (en) * | 1912-05-22 | 1913-04-22 | Samuel Gropper | Top. |
US1925026A (en) * | 1931-12-10 | 1933-08-29 | William A Austin | Water tube locomotive boiler |
DE911264C (de) * | 1951-04-22 | 1954-05-13 | Siemens Ag | Zwangstromdampferzeuger mit Strahlungsheizflaeche |
GB770456A (en) * | 1954-06-03 | 1957-03-20 | Duerrwerke Ag | Improvements in tubulous, forced flow, ouce-through, vapour generating and superheating units |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3125995A (en) * | 1964-03-24 | forced flow vapor generating unit | ||
US3105466A (en) * | 1959-07-10 | 1963-10-01 | Babcock & Wilcox Ltd | Vapor generator |
US3364901A (en) * | 1964-03-17 | 1968-01-23 | Siemens Ag | Heating tube system for boiler firing chamber |
US3927646A (en) * | 1965-04-13 | 1975-12-23 | Babcock & Wilcox Co | Vapor generator |
US3834358A (en) * | 1965-07-09 | 1974-09-10 | Babcock & Wilcox Co | Vapor generator |
US3344777A (en) * | 1965-10-22 | 1967-10-03 | Foster Wheeler Corp | Once-through vapor generator furnace buffer circuit |
US3476090A (en) * | 1968-12-05 | 1969-11-04 | Riley Stoker Corp | Steam generating unit |
Also Published As
Publication number | Publication date |
---|---|
GB899359A (en) | 1962-06-20 |
BE571390A (en)) | |
NL126467C (en)) | |
NL231525A (en)) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3368534A (en) | Multiple pass design for once-through steam generators | |
US3125995A (en) | forced flow vapor generating unit | |
US3007459A (en) | Forced flow vapor generating unit | |
US3927646A (en) | Vapor generator | |
US2003419A (en) | Boiler | |
US3324837A (en) | Multiple pass design for once-through steam generators | |
US3135243A (en) | Furnace wall arrangement | |
US3665893A (en) | Vapor generator tube arrangement | |
US2962005A (en) | Forced flow vapor generating unit | |
US3237612A (en) | Forced flow vapor generating unit | |
US3545409A (en) | Offset mix tubes | |
US4331105A (en) | Forced-flow once-through boiler for variable supercritical pressure operation | |
US2948267A (en) | Steam generating unit having a superheater and reheater each including a radiant section and a convection section | |
US3172396A (en) | Wall arrangement for vapor generator | |
US3323496A (en) | Tubulous support wall | |
US3288117A (en) | Arrangement of tube circuits in supercritical forced through-flow vapor generator | |
US2088724A (en) | Boiler and furnace installation | |
US3020894A (en) | Steam generating and superheating unit | |
US3060908A (en) | Fluid heating unit | |
US3834358A (en) | Vapor generator | |
US3245385A (en) | Forced flow vapor generating unit | |
US3090603A (en) | Apparatus for mixing fluids | |
US3001514A (en) | Support and expansion apparatus for a vapor generating and superheating unit | |
US3754533A (en) | Tube support system | |
US2123860A (en) | Steam generator |