US3006618A - Automatic choke mechanism - Google Patents

Automatic choke mechanism Download PDF

Info

Publication number
US3006618A
US3006618A US790957A US79095759A US3006618A US 3006618 A US3006618 A US 3006618A US 790957 A US790957 A US 790957A US 79095759 A US79095759 A US 79095759A US 3006618 A US3006618 A US 3006618A
Authority
US
United States
Prior art keywords
idle
air
engine
choke valve
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US790957A
Inventor
Harold A Carlson
Wenford E Highley
Morris C Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACF Industries Inc
Original Assignee
ACF Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACF Industries Inc filed Critical ACF Industries Inc
Priority to US790957A priority Critical patent/US3006618A/en
Application granted granted Critical
Publication of US3006618A publication Critical patent/US3006618A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M1/00Carburettors with means for facilitating engine's starting or its idling below operational temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2700/00Supplying, feeding or preparing air, fuel, fuel air mixtures or auxiliary fluids for a combustion engine; Use of exhaust gas; Compressors for piston engines
    • F02M2700/43Arrangements for supplying air, fuel or auxiliary fluids to a combustion space of mixture compressing engines working with liquid fuel
    • F02M2700/4302Arrangements for supplying air, fuel or auxiliary fluids to a combustion space of mixture compressing engines working with liquid fuel whereby air and fuel are sucked into the mixture conduit
    • F02M2700/4304Arrangements for supplying air, fuel or auxiliary fluids to a combustion space of mixture compressing engines working with liquid fuel whereby air and fuel are sucked into the mixture conduit working only with one fuel
    • F02M2700/4311Arrangements for supplying air, fuel or auxiliary fluids to a combustion space of mixture compressing engines working with liquid fuel whereby air and fuel are sucked into the mixture conduit working only with one fuel with mixing chambers disposed in parallel

Definitions

  • This invention relates to carburetors, and more particularly to automatic choke mechanisms for carburetors for internal combustion engines.
  • an automatic choke system including a fast idle cam for controlling the throttle opening at idle to provide a fast idle to prevent engine stalling
  • the position of the fast idle is controlled by a connection to the choke shaft, the arrangement being such that as the choke valve opens, the fast idle cam operates in phase with the choke valve, reaching its normal idle position (hot engine idle position) at the same time that the choke valve reaches its full open position.
  • the choke valve acts as a restriction in the air inlet of the carburetor to provide an enriched air-fuel mixture during the cranking of the engine for starting purposes, opening and clos ing with each intake stroke of the engine. After the engine has started, and during the warm up of the engine, the choke valve assumes a partly open position in which it continues to act as a restriction to some extent to provide a lesser amount of mixture enrichment for smooth operation of the engine.
  • the automatic choke system includes a thermostatic device responsive to engine temperature for controlling the opening of the choke valve, the arrangement being such that the choke valve gradually opens as the engine warms up, reaching full open position substantially when the engine has fully warmed up.
  • the fast idle cam operating in phase with the choke valve, similarly changes position gradually as the engine warms up, reaching its normal idle position (as destinguished from its fast idle position) when the choke valve reaches full open position.
  • the automatic choke system is also adapted for control of the choke valve in response to intake manifold vacuum and air velocity against the choke valve, the arrangement being such when the throttle is opened for acceleration, with accompanying decrease in manifold vacuum, the choke valve is moved toward closed position for supplying an enriched accelerating mixture to the manifold.
  • a further object of the invention is the provision of a novel automatic choke mechanism which, while adapted to prolong the operation of the fast idle cam after the choke valve has fully opened as above described, is adapted for movement of the choke valve toward closed position when the throttle is opened for acceleration to supply an enriched accelerating mixture to the manifold during the warm-up period.
  • a further object of this invention is the provision of a novel system for such a multi-stage carburetor which, while allowing for early opening of the choke valve before the engine has warmed up, delays the release of the secondary lockout until the engine has warmed up and the fast idle cam moves to its normal idle position, thereby insuring against opening of the secondary throttles until the engine is at sufiicient operating temperature for satisfactory response when the secondary throttles are opened.
  • FIG. 1 is a view in elevation of left side of carburetor illustrating the invention.
  • FIG. 2 is a view in elevation of the right side of the carburetor of FIG. 1.
  • FIG. 3 is a plan view of the carburetor structure of FIG. 1.
  • FIG. 4 is a vertical section of the carburetor of FIG. 1 taken on line 44 of FIG. 3.
  • FIG. 5 is a vertical section taken on line 5--5 of FIG. 3.
  • FIG. 6 is a vertical section taken on line 66 of FIG. 3.
  • FIG. 7 is a horizontal section taken on line 77 of FIG. 4.
  • FIG. 8 is a vertical section taken on line 88 of FIG. 3.
  • FIG. 9 is a horizontal half section taken on line 99 of FIG. 8, and appearing as if the cover and suspended float for the carburetor were removed.
  • FIGS. 10 and 11 are enlarged vertical sections respectively on lines 10-10 and 1111 of FIG. 3.
  • FIG. 1 there is indicated at A-in FIG. 1 an automotive vehicle having an engine E on which is a carburetor C. Fuel is supplied to the carburetor C from the fuel tank of the vehicle.
  • the carburetor C is of the type having two primary mixture conduits or barrels 35 and 37, respectively, and two secondary mixture conduits or barrels 39 and 41, respectively, referred to as a four-barrel carburetor. It is mounted on the intake'manifold M of the engine with the two primary barrels 35 and 37 toward the front and the two secondary barrels toward the rear. is mounted on the air horn of the carburetor.
  • Carburetor C (FIGS. 1, 2 and comprises a main body casting 1 which is formed to provide a throttle body section 3 and a float bowl section 5 on the throttle body section.
  • the throttle body section 3 has lugs 7 (FIG. 3) for attachment to the intake manifold of the engine on which the carburetor is used.
  • the float bowl section is generally of rectangular shape in plan, its side walls being designated 9 and 11 and its end walls being designated 13 and 15 (FIGS. 4, 5 and 8).
  • Partitions 17 and 19 (FIG. 5) extend between the side walls 9 and 11 adjacent the end walls 13 and 15 to define two float bowls 21 and 23, one at each end of the fuel bowl section 5.
  • Each of the partitions 17 and 19 has a central inwardly directed oflset 25 providing a vertically extending recess such as indicated at 27.
  • a partition 29 (FIGS. 4 and 9) extends between offsets 25 dividing the space bounded by side walls 9 and 11 and partitions 17 and 19 into a primary section 31 and a secondary section 33.
  • the primary section is formed to provide two side-by-side primary mixture conduits or barrels 35 and 37
  • the secondary section is formed to provide two side-by-side secondary mixture conduits or barrels 39 and 41.
  • Each primary barrel is formed as a venturi.
  • a float bowl cover 43 Secured to the top of the fuel bowl section is a float bowl cover 43 formed to provide a circular air horn 45.
  • the horn has a diametrical partition 47 (FIG. 3) coplanar with partition 29 dividing it into a primary air inlet 31a above section 31 and a secondary air inlet 33a above section 33.
  • the cover 43 has a fuel inlet 49 (FIGS. 2 and 3) and an inlet passage 51 connecting the inlet to the two float bowls 21 and 23. Entry of fuel to the bowls from passage 51 is controlled by two float valves 53, one for each bowl (see FIG. 8). Each of these valves is controlled by a float 55 in the respective bowl.
  • the valves and floats may be of any suitable construction, their details not being critical so far as this invention is concerned.
  • the bowl 21 supplies the barrel 35 and the bowl 23 supplies the barrel 37 via identical systems. Only the system for barrel 35 will be described, and it will be understood that the system for barrel 37 is identical.
  • Barrel 35 has an upwardly facing shoulder 57 at the side thereof toward the respective float bowl 21 (see FIG. 5). Extending down from this shoulder is a vertical well 59.
  • the casting 1 is formed with a passage 61 from the bottom of recess 27 of bowl 21 or 23 to the bottom of the respective well 59 (see FIG. 6 relative to bowl 23).
  • This passage is formed by drilling a vertical hole 63 extending down from the bottom of each recess 27 to an intersection with an inclined hole 65 drilled from the bottom of throttle body section 3 to the lower end of the well 59.
  • the outer end of hole 65 is plugged as indicated at 67. Threaded in the upper end of each hole 63 is a metering jet 69.
  • a metering jet 71 extends down in recess 27 and through the jet from a vacuum-responsive control contained in the float bowl section 5 under a cap 73.
  • the metering rod and control are of known construction and need not be further described, details thereof not being critical so far as this invention is concerned. It will be understood that the control for the rod acts to move the metering rod up and down in response to change in intake manifold vacuum, for high speed fuel metering.
  • Shoulder 57 serves to support a nozzle body 75 (see FIGS. 5, 10 and 11) at the upper end of the primary barrel.
  • This body comprises a casting formed to provide a head 77, an arm 79 extending from the head, and a boost venturi 81 at the outer end of the arm.
  • the head is secured on shoulder 57 as by screws 83.
  • a hole 85 is drilled through the head 77 and the arm 83 from the outside of the head to open into the boost venturi 81. The outer end of this hole is closed as by a welch plug 87.
  • the hole 85 is angled downward from the outside of the head to the boost venturi 81.
  • a hole 89 is drilled up An air filter from the bottom of the head to an intersection with angled hole 85.
  • a hole 91 of smaller diameter than hole 89 is drilled to extend up from angled hole coaxial with hole 89, and to an intersection with a horizontally extending hole 93 drilled in head 77 adjacent its upper end (see FIG. 11
  • a fuel tube 95 has its upper end pressed in hole 89 and extends down into the well 59.
  • An indle fuel tube 97 of smaller diameter than tube 95 has its upper end pressed into hole 91 and extends down within the tube 95.
  • Idle tube 97 has a restricted lower end 99 which extends down below the lower end of tube 95.
  • a nozzle tube 101 is pressed in the angled hole 85, extending from hole 89 through the arm 79 into the venturi 81.
  • the space 103 between tubes 95 and 97 and the nozzle tube 101 provides a high speed fuel passage from the well 59 to the boost venturi 81.
  • Idle orifice tube 97 is part of the low speed circuit for delivering fuel at low speed operation to idle port 105 (see FIG. 4) in the primary barrel.
  • This low speed circuit includes holes 91 and 93 in the nozzle head 77.
  • Head 77 has a vertical hole 107 (see FIG. 11) extending up from its bottom with a restricted air bleed hole 109 through the upper end of the head.
  • Hole 93 has a restricted economizer passage 111 extending from its inner end into the vertical hole 107.
  • An air metering plug 113 is pressed in the outer end of hole 93. Air from the air horn 45 passes through and is metered by plug 113 into the hole or passage 93.
  • the vertical hole 107 is aligned with a hole 115 (see FIG. 7) extending down from shoulder 57 which constitutes part of a passage 117 for flow of fuel-air mixture from hole 107 to the idle port 105.
  • Passage 117 is formed by a horizontal hole 119 drilled at an angle through side wall 9 to an intersection with hole 115, and a vertical hole 121 drilled down through side wall 9 to an intersection with a horizontal hole 123 which is drilled to provide the idle port 105.
  • the upper end of vertical hole 121 above horizontal hole 119 is plugged as indicated at 125.
  • idle port hole 123 is plugged as indicated at 127.
  • the outer end of horizontal hole 119 is plugged as indicated at 128 in FIG. 7.
  • the vertical hole 121 extends down past idle port hole 123 to an intersection with an idle adjusting screw port hole 129.
  • An idle adjusting screw 131 having a fuel needle end 133 is threaded in hole 129.
  • a coil compression spring 135 surrounds screw 131, reacting from the side wall 9 against the head 137 of the screw 131.
  • Head 77 has a second vertical hole 139 (see FIG. 10) in the upper end of which is pressed a nozzle bleed tube 141 having a restricted upper end 143.
  • the bottom of the head is formed with a slot 145 connecting the lower end of the vertical hole 139 and the hole 89 for communication between the hole 139 and the Well 59.
  • Fuel tube 95 has a hole 147 adjacent its upper end directed toward the slot 145. This allows air to bleed into the space 103 between tubes 95 and 97.
  • Each of the primary barrels 35 and 37 has a primary throttle valve 149 (see FIGS. 5 and 4) at its lower end, the two primary throttle valves being fixed on a primary throttle shaft 151 journalled in the throttle body section.
  • Each primary throttle bore is designated 153.
  • Each throttle valve when at dead idle, is fully seated around its perimeter on the bore, and is grooved on the bottom as indicated at 155 on the side toward the idle port 105 to provide a restricted opening from the idle port into the throttle bore when the throttle valve is fully seated.
  • the main body casting 1 is formed with a by-pass designated in its entirety by the reference character 157 (see "FIGS.
  • this idle air by-pass 157 is common to the two primary barrels, being constituted by a vertical hole 159 extending downward in the portion 161 of casting 1 between the primary barrels 35 and 37 to an intersection with a horizontal hole 163 extending inward from side Wall 9 of the casting, and a vertical hole 165 extending up from the bottom of the casting 1 to hole 163 and offset outward from the hole 159.
  • An idle air adjusting screw 167 is threaded in the horizontal hole 163.
  • This screw has an unthreaded inner end portion 169 which traverses the upper end of the hole 165, and is adapted to be threaded in or out to vary the size of the opening from hole 163 into hole 165.
  • a coil compression spring 171 surrounds screw 167, reacting from side wall 9 against the head 173 of the screw.
  • Horizontal holes 175 are drilled approximately at right angles to the horizontal holes 119 intersecting the latter and extending to the verticd hole 159 which constitutes the upper part of the idle air bypass 157 upstream from (above) the idle air adjusting screw 167. These holes 175 thus serve to interconnect the two idle mixture passages 117 and the idle air bypass 157, with the connection to passages 117 at points downstream (below) economizers 111 and air bleeds 159 therefor, and with the connection to by-pass 157 at a point upstream from (above) the idle air adjusting screw 167. Pressed in each of the holes 175, and located between the vertical holes 121 and 159, is a restriction jet 177. The outer end of each hole 175 is plugged as indicated at 179.
  • the carburetor has the usual accelerator pump such as indicated at 185 in FIG. 8 for supplying fuel to the primary barrels in response to opening of the primary throttles via a pump discharge jet cluster indicated at 187 in FIGS. 3, 5 and 6. Vents such as indicated at 189 are provided for venting the float bowls to the interior of the air horn 45.
  • each secondary barrel 39 and 41 At the upper end of each secondary barrel 39 and 41 is a venturi cluster 193 having a fuel nozzle 195 supplied with fuel from the respective float bowl via a passage part of which is indicated at 197 in FIG. 7.
  • Each secondary barrel has a secondary throttle valve 199 at its lower end, the two secondary throttle valves being fixed on secondary throttle shaft 201 journalled in the throttle body section 3.
  • Each secondary barrel also has a velocity valve 203 therein, the two velocity valves being fixed on shaft 205 which carries weights such as indicated at 207 (FIGS. 6 and 9) for biasing the velocity valves closed.
  • the holes 175 constitute metering passages interconnecting the upper part (the inlet side) of the idle air by-pass 157 to the two idle mixture passages 117 for the two primary barrels 35 and 37, and act to supply air from the by-pass 157 to the idle mixture passages 117.
  • This air constitutes a further part of the air for the idle mixture, additive to the air supplied through metering plug 113 and bleed hole 109. All this air constitutes part of the air required for idling the engine. Additional air for idling passes directly through the idle air by-pass 157. Some further air for idling may be supplied by leakage of air such as may occur past the primary and secondary throttle valves, around the throttle shafts, etc.
  • the amount of air bled through metering passages into the idle mixture passages 1 17 is dependent upon the rate of flow of air through the idle air by-pass 157.
  • the rate of flow through the latter is dependent upon the setting of the idle air adjusting screw 167.
  • With increased flow of air through by-pass 157 the pressure at the ends of passages 175 toward the bypass 157 decreases.
  • bleeding of air through passages 175 into the idle mixture passages 117 decreases, and the mixture supplied through passages 117 richens up to compensate for increased air flow through lay-pass 157 (which would otherwise lean the mixture supplied to the engine).
  • the passages 1'75 provide such compensation as to maintain the mixture ratio at the desired value throughout the entire idle delivery (including off idle and early part-throttle), and eliminate the leaning effect on the mixture which would be present in a system without such passages in the off idle and early partthrottle range.
  • the outer primary throttle arm carries a fast idle adjusting screw 213 engageable with a fast idle cam 215 pivoted at 217 on the left side of the float bowl section 5 of the caburetor.
  • the fast idle cam 215 is overbalanced so as to be gravity-biased to tend to rotate in clockwise direction as viewed in FIG. 1 from an initial fast idle position (cold engine) to a normal warm engine idle position.
  • the cam 215 has a starting step 219 opposed to and engageable by the screw 213 when the cam is in fast idle position for blocking the primary throttle valves 149 open a predetermined amount to determine a fast idle position of the primary throttle valves, intermediate steps 221 successively opposed to and engageable by the screw upon rotation of the cam for blocking the primary throttle valves open lesser amounts, and a normal idle step 223 which is opposed to the screw 213 when the cam is fully backed olf permitting the primary throttle valves to assume their normal warm engine idle position.
  • the position of the fast idle earn 215 is controlledby means responsive to engine temperature including a thermostatic coil 225 contained in a coil housing 227 shown as mounted on the right side of the carburetor.
  • the coil 225 is a spiral coil having its center secured to a shaft 229 journalled in the housing 227.
  • a sleeve 231 surrounds one end of the shaft 229, being free on the shaft and rotatable relative to the shaft, and projects out through the left side of the housing 227.
  • a crank arm 233 extends radially from the sleeve 231 within the housing 227. At the outer end of the arm 233 is a crank pin 235 which is engageable by a hook formation 237 at the outer end of the thermostatic coil 225.
  • a shaft 239 extends across the front of the carburetor, having its right end fixed in the sleeve 231, and being journalled in lugs 241 on the front of the carburetor. At its right end, shaft 239 carries a crank arm 243. A link 245 connects this crank arm 243 to the fast idle cam 215.
  • the arrangement is such that when the thermostatic coil 225 is cold (corresponding to the cold engine condition), the spring force of the coil acts to hold the fast idle earn 215 in its fast idle position against the gravity bias tending to make the cam back off (swing clockwise) from its fast idle position.
  • the thermostatic coil 225 warms up (corresponding to warming up of the engine)
  • the coil relaxes and permits the fast idle cam to back off from its fast idle position, whenever the primary throttle arm 211 is swung clockwise as viewed in FIG. 1 to disengage the screw 213 from the cam.
  • the coil 225 is heated to the point where it relaxes sufficiently to allow the fast idle cam 215 to back off completely to its normal Warm engine idle position.
  • the fast idle cam 215 is provided with an elongate arcuate slot 247 on an are centered in the axis of the fast idle cam.
  • Received in this slot 247 is a pin 249 formed at the lower end of a rod 251, the upper end of which extends slidably through -a guide 253 swivelled at 255 at the end of a crank arm 257 fixed on the left end of the choke shaft 183.
  • the rod 251 is threaded at its upper end, and has a nut 259 threaded thereon.
  • a coil compression spring 261 surrounds the rod between the nut 259 and the corresponding end of the swivelled guide 253.
  • the choke valve 181 is adapted to swing between the closed position in which it is illustrated in FIG. 1 and a fully open position in which it is vertical. It is mounted off center on the choke shaft 183 in such manner as to be unbalanced to tend to swing open. t therefore tends to swing open in response to velocity of air flowing down through the carburetor and differential in air pressure above and below it.
  • the position of the choke valve 181 is also controlled by means responsive to intake manifold vacuum (which indicates the load on the engine).
  • This means comprises a choke cylinder 263 (FIG. 6) formed on the air horn 45.
  • a piston 265 is slidable in this cylinder and connected to the choke valve 181 by a link 267.
  • the inner end of the cylinder 263 is open to the interior of the air horn 45 and the outer end of the cylinder is closed.
  • a vacuum passage 269 extends from within the cylinder 263 adjacent its outer end to one of the primary mixture conduits or barrels below to the primary throttle valve therein so that the piston 265 is subject at its outer end to intake manifold vacuum. The vacuum tends to cause the piston 265 to move outward in the cylinder 263 and open the choke valve 181.
  • the cylinder 263 has longitudinal slots such as indicated at 271 extending part way along the cylinder wall for by-passing air around the piston 265 when the piston has been moved outward far enough to uncover the inner ends of the slots.
  • full manifold vacuum is applied to the piston 265 until the piston has pulled the choke valve open part Way, after which air is by-passed around the piston to decrease the vacuum (increase the pressure) in the outer end of the cylinder.
  • the thermostatic coil shaft 229 (FIGS. 2 and 3) extends out of the thermostatic coil housing 227 to the right, and has a crank arm 273 fixed on its outer end.
  • a link 275 connects this crank arm 27-3 to a crank arm 277, fixed on the right end of the primary throttle shaft 151.
  • This linkage is such that When the primary throttle shaft 151 is turned clockwise as viewed in FIG. 1 to open the primary throttle valves 149 for acceleration (counterclockwise as viewed in FIG. 2), shaft 229 is rotated to rotate the thermostatic coil 225 bodily in such direction as to rotate crank arm 233 and shaft 239 to drag the link 245 toward the left as viewed in FIG. 1 and swing the fast idle cam 215 counterclockwise.
  • the cam 215 thereupon acts to pull down the rod 251 and swing the choke valve 181 toward closed position, thereby to accomplish enrichment upon acceleration of the mixture of air and fuel being delivered by the primary barrels 35 and 37.
  • the primary throttle shaft 151 has an inner arm 279, a dog 281, and an outer arm 283 at its right end.
  • the inner arm 279 and the dog 281 are rotatable relative to the shaft 151 and to one another.
  • the outer arm 283 is fixed to the shaft 151.
  • the dog 281 has a first lateral lug 285 engageable with the outer arm 283 and a second lateral lug 2S7 engageable with the inner arm 279.
  • a coil spring 289 biases the dog 281 to rotate in the direction for engagement of its lug 285 with the outer arm 283.
  • a link 291 connects the inner arm 279 and an arm 293 fixed on the right end of the secondary throttle shaft 201.
  • a coil spring 295 is provided for biasing the secondary throttle valves 199 closed.
  • the outer arm 2S3 rotates counterclockwise as viewed in FIG. 2 along with the primary throttle shaft 151.
  • Dog 281 having lugs 285 and 287 thereon follows the arm 2'83 around under the bias of spring 289.
  • lug 287 comes into engagement with the inner arm 279 and rotates it counterclockwise. This results in opening of the secondary throttle valves 199.
  • the secondary throttle linkage is so propontioned that the secondary throttle valves arrive at their wide open position at the same time as the primary throttle valves.
  • a shoe 297 on am 293 is engageable with a shoe 299 on mm 283 to preclude opening of the secondary throttle valvm until the primary throttle valves have been opened approximately the stated predetermined amount.
  • a secondary lockout lever 301 is pivoted at 217 along with the fast idle cam 215, being rotatable relative to the cam.
  • This lockout lever is gravity-biased toward latching engagement with a lug 303 on the secondary throttle shaft 201 to lock the secondary throttle valves 199 closed, and is engageable by a lug 305 on the fast idle cam 215 to be released (swung out of latching engagement with lug 303) when the fast idle cam backs off to its normal idle position.
  • a lug 307 on the inner throttle arm 209 is engageable with the cam to swing it to open the choke valve 181 for unloading purposes.
  • the heads 77 of the primary nozzle bodies 75 extend upward above the level of the top of the float bowl section 5 into idle air bleed supply chambers 309 formed in the float bowl cover or air horn section 43.
  • Each chamber 309 is sealed off from the primary 'air inlet 31a, section 43 including partitions 311 which seal against the nozzle bodies 75 for this purpose.
  • Section 43 is formed with a bottom recess 313 which curves around the front thereof and connects the two chambers 309, this recess being closed at the bottom by a flange 315 formed on the float bowl section 5.
  • This recess in conjunction with the two chambers 309 constitutes a duct for supplying preheated air to the idle air bleeds 19 3", 113 and 143.
  • Air is supplied to the recess or duct 313 from the primary air inlet 31a upstream of the choke valve 181 via passages such as indicated at 317 (FIG. 3) provided in the float bowl cover or air horn section 43. Air flowing through the duct 313 to the idle air bleed supply chambers 3%? is adapted to be heated by a heat exchange tube 319 which extends through the duct 313 and one end 329 of which is supplied with air heated by the engine via a heat tube from a heat pocket on the exhaust manifold of the engine, and the other end of which is connected by a tube indicated at 325 to the thermostatic coil housing 227.
  • a passage 327 connects housing 227 to the intake manifold so that when the engine is in operation air is drawn from pocket 323 through 321, 31 325 and the housing 227.
  • the arrangement is such that air heated by the engine is adapted to flow from the heat pocket 323 through the duct constituted by tube 321, heat exchange tube 31% and connection 325 to the thermostatic coil housing 227.
  • this air flows through the heat exchange tube 319 (which is in heat exchange relation to a portion of duct 313), it gives up some heat to the air surrounding the heat exchange tube in the duct 313.
  • the air suppli d to the idle air bleeds is preheated in the duct 33;"; more quickly to bring it up to its stabilized operating tempera ture for smoother engine operation during the warm-up period and to reduce the tendency toward icing of the idle air bleeds and the idle port.
  • the air flowing through the heat exchange tube 3133 downstream to the thermostatic coil housing 227 is cooled.
  • This cooling is a reflection of icing conditions (i.e., the colder the ambient temperature, the more the air flowing to the tnerrnostatic coil housing will be cooled), and this tends to retard the relaxation of the thermostatic coil to tend to hold the englue on fast idle for a longer period when such conditions are present.
  • the thermostatic coil 225 acting as a spring, holds the fast idle earn 215 in its fast idle position.
  • the fast idle earn 215 acts through the rod 251 and the spring 261 to hold the choke valve 131 closed.
  • the choke piston 265 With the choke valve closed, the choke piston 265 is positioned at the inner end of the choke cylinder 263.
  • the resultant low pressure pulsations caused in the intake manifold of the engine are transferred to the outer end of the choke cylinder via passage 269 and to the underside of the choke valve.
  • the linkage between the fast idle cam and the choke valve is so proportioned that the choke valve is permitted fully to open shortly after the starting of the engine before the fast idle cam backs off completely to its normal idle position.
  • the fast idle cam may back off farther to complete its movement to normal idle position by reason of the lost motion between the cam and the rod 251 afforded by the pin and slot connection 24-9, 247 between the rod and the cam.
  • the cam actuates the secondary lockout lever 3111 to release the secondary throttle valves 199.
  • link 275 acts to rotate the thermostatic coil 225 bodily in the direction to swing the fast idle cam toward its fast idle position.
  • the fast idle cam thereupon acts to pull down the rod 251 and swing the choke valve 181 back toward its closed position to supply an enriched accelerating mixture to the intake manifold.
  • the air supplied to idle air bleeds 1139, 113, 143 is preheated in the duct 313 by the heat exchange tube 3-19 to bring this air up to its stabilized operating temperature more quickly for smoother engine operation during the warm-up period and to tend to prevent icing of the idle air bleeds and the idle port. Also, since some of the heat in the air flowing to the thermostatic coil housing 2-27 is given up to preheat the air for the idle air bleeds, the coil relaxes at a slower rate. Thus, the control reflects the presence of icing conditions to extend the Warm-up period, the operation of the fast idle cam 215 being modified so that it does not reach its normal idle position until after warmup is completed.
  • a carburetor for an internal combustion engine said carburetor hav ng a mixture conduit, a throttle valve and a choke valve for said mixture conduit, means responsive to engine temperature for controlling the position of the throttle valve at idle and for controlling the position of the choke valve, said control means being adapted to establish a fast idle position of the throttle valve when the engine is cold and a normal idle position of the throttle valve when the engine is warmed up, said control means being adapted to hold the choke valve closed when the engine is cold and to allow the choke valve fully to open before the engine is warmed up, and means interconnecting the throttle valve and said control means for moving the choke valve in closing direction in response to opening of the throttle valve.
  • a carburetor for an internal combustion engine having an intake manifold, said carburetor having a mixture conduit, a throttle valve and a choke valve for said mixture conduit, means responsive to engine temperature for controlling the position of the throttle valve at idle and for controlling the position of the choke valve,
  • control means being adapted to establish a fast idle position of the throttle valve when the engine is cold and a normal idle position of the throttle valve when the engine is warmed up, said control means being adapted to hold the choke valve closed when the engine is cold and to allow the choke valve fully to open before the engine is warmed up, means responsive to intake manifold vacuum for opening the choke valve independently of said control means, and separate means connected to said throttle valve for mechanically actuating said control means to move the choke valve in closing direction in response to opening of the throttle valve.
  • a carburetor for an internal combustion engine said carburetor having a mixture conduit, a throttle valve and a choke valve for the mixture conduit, fast idle means for controlling the idle position of the throttle valve, thermostatic means responsive to temperature of the engine for controlling said fast idle means for movement thereof from a fast idle position to a normal idle position as the engine warms up, lost-motion means interconnecting said fast idle means and said choke valvev adapted to hold the choke valve closed when the fast idle means is in fast idle position and to allow full opening of the choke valve before the fast idle means reaches normal idle position and completion of movement of the fast idle means to normal idle position after the choke valve is fully open, and means connected to and movable with said throttle valve for directly actuating said thermostatic means to move said fast-idle means in the direction for closing the choke valve upon opening of said throttle valve.
  • a carburetor for an internal combustion engine having an intake manifold, said carburetor having a mixture conduit, a throttle valve and a choke valve in said mixture conduit, means adapted to open said choke valve in response to vacuum in the intake manifold, fast idle means for controlling the idle position of the throttle valve, thermostatic means responsive to temperature of the engine for controlling said fast idle means for movement thereof from a fast idle position to a normal idle position as the engine warms up, lost-motion means interconnecting said fast idle means and said choke valve adapted to hold the choke valve closed when the fast idle means is in fast idle position and to allow full opening of the choke Valve before the fast idle means reaches normal idle position and completion of movement of the fast idle means to normal idle position after the choke valve is fully open, and means connected to and movable with said throttle valve for directly actuating said thermostatic means to move said fast idle means in the direction for closing the choke valve upon opening of said throttle valve.
  • a carburetor for an internal combustion engine having an intake manifold, said carburetor having a primary and a secondary mixture conduit, a primary throttle valve and a choke valve for the primary conduit, a secondary throttle valve for the secondary conduit, fast idle means for controlling the idle position of the primary throttle valve, thermostatic means responsive to temperature of the engine for controlling said fast idle means for movement thereof from a fast idle position to a normal idle position as the engine warms up, means for locking the secondary throttle valve in closed position, said looking means being releasable by said fast idle means when the latter moves to normal idle position, lost-motion means interconnecting said fast idle means and said choke valve adapted to hold the choke valve closed when the fast idle means is in fast idle position and to allow full opening of the choke valve before the fast idle means reaches normal idle position and before release of said locking means and completion of movement of the fast idle means to normal idle position after the choke valve is fully open, and means connected to and movable with said primary throttle valve for directly actuating said thermostatic means to move said fast idle means
  • a carburetor for an internal combustion engine having an intake manifold
  • said carburetor having a primary and a secondary mixture conduit, a primary throttle valve and a choke valve for the primary conduit, a secondary throttle valve for the secondary conduit, means adapted to open said choke valve in response to vacuum in the intake manifold, fast idle means for controlling the idle position of the primary throttle valve, thermostatic means responsive to temperature of the engine for controlling said fast idle means for movement thereof from a fast idle position to a normal idle position as the engine warms up, means for locking the secondary throttle valve in closed position, said locking means being releasable by said fast idle means when the latter moves to normal idle position, lost-motion means interconnecting said fast idle means and said choke valve adapted to hold the choke valve closed when the fast idle means is in fast idle position and to allow full opening of the choke valve before the fast idle means reaches normal idle position and before release of said locking means and completion of movement of the fast idle means to normal idle position after the choke valve is fully open, said lost-motion means including a yield

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Means For Warming Up And Starting Carburetors (AREA)

Description

Oct. 31, 1961 H. A. CARLSON ET AL 3,006,618
AUTOMATIC CHOKE MECHANISM 5 Sheets-Sheet 1 Filed Feb. 3, 1959 FIGI INVENTORS HAROLD A. CARLSON WENFORD E. HIGHLEY MORRIS C. BROWN FIG 2.
ATTORNEY 1951 H. A. CARLSON EI'AL 3,006,618
AUTOMATIC CHOKE MECHANISM Filed Feb. 3, 1959 5 Sheets-Sheet 2 la N N N INVENTORS HAROLD A.CARLSON WENFORD E. HIGHLEY MORRIS C. BROWN ATTORNEY H. A. CARLSON ET AL 3,006,618
AUTOMATIC CHOKE MECHANISM Oct. 31, 1961 5 Sheets-Sheet 3 Filed Feb. 3, 1959 FIG.6.
Y S E R O L OSHW T G N R O E V B N mAwc 1 wm 0 Dn I... nNR I AEO HMM m 3 2 /3 3 A c ATTORNEY H. A. CARLSON ET AL 3,006,618
AUTOMATIC CHOKE MECHANISM Oct. 31, 1961 5 Sheets-Sheet 4 Filed Feb. 3, 1959 INVENTORS HAROLD A. CARLSON WENFORD E. HIGHLEY MORRIS C. BROWN ATTORNEY 31, 1961 H. A. CARLSON ETAL 3,006,618
AUTOMATIC CHOKE MECHANISM 5 Sheets-Sheet 5 INVENTORS HAROLD A. CARL SON WENFORD E. HIGHLEY MORRIS c. BROWN Filed Feb. 3, 1959 FIGJO.
ww yw ATTORNEY United States Patent 3,006,618 AUTQMATIC CHOKE MECHANISM Harold A. Carlson, Brentwood, and Wenford E. Highley,
Normandy, Mo., and Morris C. Brown, Pontiac, Mich,
assignors to ACE Industries, Incorporated, New York,
N.Y., a corporation of New Jersey Filed Feb. 3, 1959, Ser. No. 790,957 6 Claims. (Cl. 261-39) This invention relates to carburetors, and more particularly to automatic choke mechanisms for carburetors for internal combustion engines.
-In certain prior carburetors provided with an automatic choke system including a fast idle cam for controlling the throttle opening at idle to provide a fast idle to prevent engine stalling, the position of the fast idle is controlled by a connection to the choke shaft, the arrangement being such that as the choke valve opens, the fast idle cam operates in phase with the choke valve, reaching its normal idle position (hot engine idle position) at the same time that the choke valve reaches its full open position. It will be understood that the choke valve acts as a restriction in the air inlet of the carburetor to provide an enriched air-fuel mixture during the cranking of the engine for starting purposes, opening and clos ing with each intake stroke of the engine. After the engine has started, and during the warm up of the engine, the choke valve assumes a partly open position in which it continues to act as a restriction to some extent to provide a lesser amount of mixture enrichment for smooth operation of the engine.
The automatic choke system includes a thermostatic device responsive to engine temperature for controlling the opening of the choke valve, the arrangement being such that the choke valve gradually opens as the engine warms up, reaching full open position substantially when the engine has fully warmed up. The fast idle cam, operating in phase with the choke valve, similarly changes position gradually as the engine warms up, reaching its normal idle position (as destinguished from its fast idle position) when the choke valve reaches full open position. The automatic choke system is also adapted for control of the choke valve in response to intake manifold vacuum and air velocity against the choke valve, the arrangement being such when the throttle is opened for acceleration, with accompanying decrease in manifold vacuum, the choke valve is moved toward closed position for supplying an enriched accelerating mixture to the manifold.
With certain modern engines and under certain conditions, it may be desirable to provide a mode of operation wherein the choke valve is fully opened before the engine has fully warmed up, thereby to provide for an early transition from the enriched warm-up mixture to a mixture having a normal air fuel ratio, provided the engine idle speed is fast enough. However, with the prior system wherein the fast idle cam operates in phase with the choke valve, early opening of the choke valve may re sult in early dropping off of the fast idle cam away from its fast idle position to its normal idle position With resultant decrease in idle speed of the engine which precludes such mode of operation.
Accordingly, it is an object of this invention to provide a novel automatic choke mechanism which permits early opening of the choke valve to a degree which substantially eliminates its effect on mixture ratio shortly after the starting of the engine, and which provides for continuing operation of the fast idle cam during the opening of the choke valve and after the choke valve has fully opened thereby to provide a prolonged fast idle, so that while the choke valve may fully open before the engine has completely warmed up, the fast idle cam does "ice not reach its normal idle position until the engine has completely warmed up.
A further object of the invention is the provision of a novel automatic choke mechanism which, while adapted to prolong the operation of the fast idle cam after the choke valve has fully opened as above described, is adapted for movement of the choke valve toward closed position when the throttle is opened for acceleration to supply an enriched accelerating mixture to the manifold during the warm-up period.
In certain prior multi-stage carburetors of the abovedescribed class (such as a four-barrel carburetor having two primary mixture conduits or barrels and two secondary mixture conduits or barrels, with primary throttles in the primary barrels and secondary throttles in the secondary barrels, the choke valve controlling flow of air through the primary barrels), there has been provided a lockout for the secondary throttles which functions to lock them in closed position until the choke valve has fully opened and the fast idle cam has reached normal idle position.
A further object of this invention is the provision of a novel system for such a multi-stage carburetor which, while allowing for early opening of the choke valve before the engine has warmed up, delays the release of the secondary lockout until the engine has warmed up and the fast idle cam moves to its normal idle position, thereby insuring against opening of the secondary throttles until the engine is at sufiicient operating temperature for satisfactory response when the secondary throttles are opened.
Other objects and features will be in part apparent and in part pointed out hereinafter.
The invention accordingly comprises the constructions hereinafter described, the scope of the invention being indicated in the following claims.
In the accompanying drawings, in which one of various possible embodiments of the invention is illustrated:
-FIG. 1 is a view in elevation of left side of carburetor illustrating the invention.
FIG. 2 is a view in elevation of the right side of the carburetor of FIG. 1.
FIG. 3 is a plan view of the carburetor structure of FIG. 1.
FIG. 4 is a vertical section of the carburetor of FIG. 1 taken on line 44 of FIG. 3.
FIG. 5 is a vertical section taken on line 5--5 of FIG. 3.
FIG. 6 is a vertical section taken on line 66 of FIG. 3.
FIG. 7 is a horizontal section taken on line 77 of FIG. 4.
FIG. 8 is a vertical section taken on line 88 of FIG. 3.
FIG. 9 is a horizontal half section taken on line 99 of FIG. 8, and appearing as if the cover and suspended float for the carburetor were removed.
FIGS. 10 and 11 are enlarged vertical sections respectively on lines 10-10 and 1111 of FIG. 3.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawmgs.
Referring to the drawings, there is indicated at A-in FIG. 1 an automotive vehicle having an engine E on which is a carburetor C. Fuel is supplied to the carburetor C from the fuel tank of the vehicle. As shown in FIG. 3, the carburetor C is of the type having two primary mixture conduits or barrels 35 and 37, respectively, and two secondary mixture conduits or barrels 39 and 41, respectively, referred to as a four-barrel carburetor. It is mounted on the intake'manifold M of the engine with the two primary barrels 35 and 37 toward the front and the two secondary barrels toward the rear. is mounted on the air horn of the carburetor.
Carburetor C (FIGS. 1, 2 and comprises a main body casting 1 which is formed to provide a throttle body section 3 and a float bowl section 5 on the throttle body section. The throttle body section 3 has lugs 7 (FIG. 3) for attachment to the intake manifold of the engine on which the carburetor is used. The float bowl section is generally of rectangular shape in plan, its side walls being designated 9 and 11 and its end walls being designated 13 and 15 (FIGS. 4, 5 and 8). Partitions 17 and 19 (FIG. 5) extend between the side walls 9 and 11 adjacent the end walls 13 and 15 to define two float bowls 21 and 23, one at each end of the fuel bowl section 5. Each of the partitions 17 and 19 has a central inwardly directed oflset 25 providing a vertically extending recess such as indicated at 27. A partition 29 (FIGS. 4 and 9) extends between offsets 25 dividing the space bounded by side walls 9 and 11 and partitions 17 and 19 into a primary section 31 and a secondary section 33. The primary section is formed to provide two side-by-side primary mixture conduits or barrels 35 and 37, and the secondary section is formed to provide two side-by-side secondary mixture conduits or barrels 39 and 41. Each primary barrel is formed as a venturi. Secured to the top of the fuel bowl section is a float bowl cover 43 formed to provide a circular air horn 45. The horn has a diametrical partition 47 (FIG. 3) coplanar with partition 29 dividing it into a primary air inlet 31a above section 31 and a secondary air inlet 33a above section 33.
The cover 43 has a fuel inlet 49 (FIGS. 2 and 3) and an inlet passage 51 connecting the inlet to the two float bowls 21 and 23. Entry of fuel to the bowls from passage 51 is controlled by two float valves 53, one for each bowl (see FIG. 8). Each of these valves is controlled by a float 55 in the respective bowl. The valves and floats may be of any suitable construction, their details not being critical so far as this invention is concerned. The bowl 21 supplies the barrel 35 and the bowl 23 supplies the barrel 37 via identical systems. Only the system for barrel 35 will be described, and it will be understood that the system for barrel 37 is identical.
Barrel 35 has an upwardly facing shoulder 57 at the side thereof toward the respective float bowl 21 (see FIG. 5). Extending down from this shoulder is a vertical well 59. The casting 1 is formed with a passage 61 from the bottom of recess 27 of bowl 21 or 23 to the bottom of the respective well 59 (see FIG. 6 relative to bowl 23). This passage is formed by drilling a vertical hole 63 extending down from the bottom of each recess 27 to an intersection with an inclined hole 65 drilled from the bottom of throttle body section 3 to the lower end of the well 59. The outer end of hole 65 is plugged as indicated at 67. Threaded in the upper end of each hole 63 is a metering jet 69. A metering jet 71 extends down in recess 27 and through the jet from a vacuum-responsive control contained in the float bowl section 5 under a cap 73. The metering rod and control are of known construction and need not be further described, details thereof not being critical so far as this invention is concerned. It will be understood that the control for the rod acts to move the metering rod up and down in response to change in intake manifold vacuum, for high speed fuel metering.
Shoulder 57 serves to support a nozzle body 75 (see FIGS. 5, 10 and 11) at the upper end of the primary barrel. This body comprises a casting formed to provide a head 77, an arm 79 extending from the head, and a boost venturi 81 at the outer end of the arm. The head is secured on shoulder 57 as by screws 83. A hole 85 is drilled through the head 77 and the arm 83 from the outside of the head to open into the boost venturi 81. The outer end of this hole is closed as by a welch plug 87. The hole 85 is angled downward from the outside of the head to the boost venturi 81. A hole 89 is drilled up An air filter from the bottom of the head to an intersection with angled hole 85. A hole 91 of smaller diameter than hole 89 is drilled to extend up from angled hole coaxial with hole 89, and to an intersection with a horizontally extending hole 93 drilled in head 77 adjacent its upper end (see FIG. 11).
A fuel tube 95 has its upper end pressed in hole 89 and extends down into the well 59. An indle fuel tube 97 of smaller diameter than tube 95 has its upper end pressed into hole 91 and extends down within the tube 95. Idle tube 97 has a restricted lower end 99 which extends down below the lower end of tube 95. A nozzle tube 101 is pressed in the angled hole 85, extending from hole 89 through the arm 79 into the venturi 81. The space 103 between tubes 95 and 97 and the nozzle tube 101 provides a high speed fuel passage from the well 59 to the boost venturi 81.
Idle orifice tube 97 is part of the low speed circuit for delivering fuel at low speed operation to idle port 105 (see FIG. 4) in the primary barrel. This low speed circuit includes holes 91 and 93 in the nozzle head 77. Head 77 has a vertical hole 107 (see FIG. 11) extending up from its bottom with a restricted air bleed hole 109 through the upper end of the head. Hole 93 has a restricted economizer passage 111 extending from its inner end into the vertical hole 107. An air metering plug 113 is pressed in the outer end of hole 93. Air from the air horn 45 passes through and is metered by plug 113 into the hole or passage 93. Air bleeds into the vertical hole 107 from the air horn through bleed hole 109 to lean the mixture delivered through the economizer 111. The vertical hole 107 is aligned with a hole 115 (see FIG. 7) extending down from shoulder 57 which constitutes part of a passage 117 for flow of fuel-air mixture from hole 107 to the idle port 105. Passage 117 is formed by a horizontal hole 119 drilled at an angle through side wall 9 to an intersection with hole 115, and a vertical hole 121 drilled down through side wall 9 to an intersection with a horizontal hole 123 which is drilled to provide the idle port 105. The upper end of vertical hole 121 above horizontal hole 119 is plugged as indicated at 125. The outer end of idle port hole 123 is plugged as indicated at 127. The outer end of horizontal hole 119 is plugged as indicated at 128 in FIG. 7. The vertical hole 121 extends down past idle port hole 123 to an intersection with an idle adjusting screw port hole 129. An idle adjusting screw 131 having a fuel needle end 133 is threaded in hole 129. A coil compression spring 135 surrounds screw 131, reacting from the side wall 9 against the head 137 of the screw 131.
Head 77 has a second vertical hole 139 (see FIG. 10) in the upper end of which is pressed a nozzle bleed tube 141 having a restricted upper end 143. The bottom of the head is formed with a slot 145 connecting the lower end of the vertical hole 139 and the hole 89 for communication between the hole 139 and the Well 59. Fuel tube 95 has a hole 147 adjacent its upper end directed toward the slot 145. This allows air to bleed into the space 103 between tubes 95 and 97.
Each of the primary barrels 35 and 37 has a primary throttle valve 149 (see FIGS. 5 and 4) at its lower end, the two primary throttle valves being fixed on a primary throttle shaft 151 journalled in the throttle body section. Each primary throttle bore is designated 153. Each throttle valve, when at dead idle, is fully seated around its perimeter on the bore, and is grooved on the bottom as indicated at 155 on the side toward the idle port 105 to provide a restricted opening from the idle port into the throttle bore when the throttle valve is fully seated. The main body casting 1 is formed with a by-pass designated in its entirety by the reference character 157 (see "FIGS. 3 and 6) for by-passing air for idling from the upper end of the primary section 31 to the primary throttle bores 153 below the primary throttle valves 149. As shown, this idle air by-pass 157 is common to the two primary barrels, being constituted by a vertical hole 159 extending downward in the portion 161 of casting 1 between the primary barrels 35 and 37 to an intersection with a horizontal hole 163 extending inward from side Wall 9 of the casting, and a vertical hole 165 extending up from the bottom of the casting 1 to hole 163 and offset outward from the hole 159. An idle air adjusting screw 167 is threaded in the horizontal hole 163. This screw has an unthreaded inner end portion 169 which traverses the upper end of the hole 165, and is adapted to be threaded in or out to vary the size of the opening from hole 163 into hole 165. A coil compression spring 171 surrounds screw 167, reacting from side wall 9 against the head 173 of the screw.
Horizontal holes 175 (see FIG. 7) are drilled approximately at right angles to the horizontal holes 119 intersecting the latter and extending to the verticd hole 159 which constitutes the upper part of the idle air bypass 157 upstream from (above) the idle air adjusting screw 167. These holes 175 thus serve to interconnect the two idle mixture passages 117 and the idle air bypass 157, with the connection to passages 117 at points downstream (below) economizers 111 and air bleeds 159 therefor, and with the connection to by-pass 157 at a point upstream from (above) the idle air adjusting screw 167. Pressed in each of the holes 175, and located between the vertical holes 121 and 159, is a restriction jet 177. The outer end of each hole 175 is plugged as indicated at 179.
In the primary air inlet portion 31a of the air horn 45 is a choke valve 1 81 fixed on choke shaft 183. The carburetor has the usual accelerator pump such as indicated at 185 in FIG. 8 for supplying fuel to the primary barrels in response to opening of the primary throttles via a pump discharge jet cluster indicated at 187 in FIGS. 3, 5 and 6. Vents such as indicated at 189 are provided for venting the float bowls to the interior of the air horn 45.
At the upper end of each secondary barrel 39 and 41 is a venturi cluster 193 having a fuel nozzle 195 supplied with fuel from the respective float bowl via a passage part of which is indicated at 197 in FIG. 7. Each secondary barrel has a secondary throttle valve 199 at its lower end, the two secondary throttle valves being fixed on secondary throttle shaft 201 journalled in the throttle body section 3. Each secondary barrel also has a velocity valve 203 therein, the two velocity valves being fixed on shaft 205 which carries weights such as indicated at 207 (FIGS. 6 and 9) for biasing the velocity valves closed.
It will be understood that at dead idle, the primary throttle valves 149 are fully seated in the primary throttle bores 153. As to each of the primary barrels 35 and 37, fuel for idling is supplied from well 59, metered through the idle orifice tube 97, and thence passes through holes 91 and 93, economizer passage 11]., idle mixture passage 117 and thence through idle port 165 and port 129. Air entering hole 93 through the metering plug 113 initiates atomization of the fuel, and the flow of the air/fuel mixture is accelerated in passing through the economizer 111. Air entering hole 157 through the bleed hole 199 leans the mixture and accelerates its delivery to the idle port 1115. The holes 175 constitute metering passages interconnecting the upper part (the inlet side) of the idle air by-pass 157 to the two idle mixture passages 117 for the two primary barrels 35 and 37, and act to supply air from the by-pass 157 to the idle mixture passages 117. This air constitutes a further part of the air for the idle mixture, additive to the air supplied through metering plug 113 and bleed hole 109. All this air constitutes part of the air required for idling the engine. Additional air for idling passes directly through the idle air by-pass 157. Some further air for idling may be supplied by leakage of air such as may occur past the primary and secondary throttle valves, around the throttle shafts, etc.
The amount of air bled through metering passages into the idle mixture passages 1 17 is dependent upon the rate of flow of air through the idle air by-pass 157. The rate of flow through the latter is dependent upon the setting of the idle air adjusting screw 167. With increased flow of air through by-pass 157, the pressure at the ends of passages 175 toward the bypass 157 decreases. Thus, with increased flow of air through bypass 157, bleeding of air through passages 175 into the idle mixture passages 117 decreases, and the mixture supplied through passages 117 richens up to compensate for increased air flow through lay-pass 157 (which would otherwise lean the mixture supplied to the engine).
Accordingly, adjustment of the idle air adjusting screw 167 within relatively wide limits has no effect on the idle mixture ratio, since backing off the screw 167 resuits in reducing the bleeding of air through passages 175 and advancing the screw 167 results in increasing the bleeding of air through passages 175. Consequently, once the idle fuel adjusting needles 133 have been set to obtain the proper idle mixture for any given idle speed of the engine, it is possible to change the speed over a relatively wide range simply by adjusting the idle air adjusting screw 157, without any necessity for resetting the idle fuel adjusting needles. Moreover, adjustment of the idle air adjusting screw 167 even over a relatively wide range (four to five turns of the screw with the construction as herein illustrated) has little effect to change the mixture ratio supplied by the idle system at oif idle and early part-throttle. Thus, the passages 1'75 provide such compensation as to maintain the mixture ratio at the desired value throughout the entire idle delivery (including off idle and early part-throttle), and eliminate the leaning effect on the mixture which would be present in a system without such passages in the off idle and early partthrottle range.
ixed on the left end of the primary throttle shaft 151 are inner and outer primary throttle arms 209 and 211 (FIG. 1). The outer primary throttle arm carries a fast idle adjusting screw 213 engageable with a fast idle cam 215 pivoted at 217 on the left side of the float bowl section 5 of the caburetor. The fast idle cam 215 is overbalanced so as to be gravity-biased to tend to rotate in clockwise direction as viewed in FIG. 1 from an initial fast idle position (cold engine) to a normal warm engine idle position. The cam 215 has a starting step 219 opposed to and engageable by the screw 213 when the cam is in fast idle position for blocking the primary throttle valves 149 open a predetermined amount to determine a fast idle position of the primary throttle valves, intermediate steps 221 successively opposed to and engageable by the screw upon rotation of the cam for blocking the primary throttle valves open lesser amounts, and a normal idle step 223 which is opposed to the screw 213 when the cam is fully backed olf permitting the primary throttle valves to assume their normal warm engine idle position.
The position of the fast idle earn 215 is controlledby means responsive to engine temperature including a thermostatic coil 225 contained in a coil housing 227 shown as mounted on the right side of the carburetor. The coil 225 is a spiral coil having its center secured to a shaft 229 journalled in the housing 227. A sleeve 231 surrounds one end of the shaft 229, being free on the shaft and rotatable relative to the shaft, and projects out through the left side of the housing 227. A crank arm 233 extends radially from the sleeve 231 within the housing 227. At the outer end of the arm 233 is a crank pin 235 which is engageable by a hook formation 237 at the outer end of the thermostatic coil 225. The latter is coiled in such a way that, with shaft 229 stationary, it acts mechanically as a spring tending to rotate crank to reduce the spring force acting on the pin 235 and the arm 233. A shaft 239 extends across the front of the carburetor, having its right end fixed in the sleeve 231, and being journalled in lugs 241 on the front of the carburetor. At its right end, shaft 239 carries a crank arm 243. A link 245 connects this crank arm 243 to the fast idle cam 215. The arrangement is such that when the thermostatic coil 225 is cold (corresponding to the cold engine condition), the spring force of the coil acts to hold the fast idle earn 215 in its fast idle position against the gravity bias tending to make the cam back off (swing clockwise) from its fast idle position. As the thermostatic coil 225 warms up (corresponding to warming up of the engine), the coil relaxes and permits the fast idle cam to back off from its fast idle position, whenever the primary throttle arm 211 is swung clockwise as viewed in FIG. 1 to disengage the screw 213 from the cam. When the engine has fully warmed up, the coil 225 is heated to the point where it relaxes sufficiently to allow the fast idle cam 215 to back off completely to its normal Warm engine idle position.
In accordance with this invention, the fast idle cam 215 is provided with an elongate arcuate slot 247 on an are centered in the axis of the fast idle cam. Received in this slot 247 is a pin 249 formed at the lower end of a rod 251, the upper end of which extends slidably through -a guide 253 swivelled at 255 at the end of a crank arm 257 fixed on the left end of the choke shaft 183. The rod 251 is threaded at its upper end, and has a nut 259 threaded thereon. A coil compression spring 261 surrounds the rod between the nut 259 and the corresponding end of the swivelled guide 253. When the choke valve 181 is closed, and the thermostatic coil is cold, the parts occupy the position shown in FIG. 1 wherein the pin 249 at the lower end of the rod 251 is at the forward end X of the slot 247 in the fast idle cam 215. Spring 261 reacts from the guide 253 against the nut 259 at the upper end of the rod 251 to add some spring force to the gravity bias tending to make the fast idle cam back off, and holds the rod in the position shown. When the thermostatic coil 225 warms up, and the primary throttle arm 211 is swung clockwise, as viewed in FIG. 1, the fast idle cam 215 may swing clockwise even though the choke valve 131 should remain closed, by reason of the lost-motion connection established between the cam 215 and the choke valve 181 by the pin 249 and the slot 247.
The choke valve 181 is adapted to swing between the closed position in which it is illustrated in FIG. 1 and a fully open position in which it is vertical. It is mounted off center on the choke shaft 183 in such manner as to be unbalanced to tend to swing open. t therefore tends to swing open in response to velocity of air flowing down through the carburetor and differential in air pressure above and below it. The position of the choke valve 181 is also controlled by means responsive to intake manifold vacuum (which indicates the load on the engine). This means comprises a choke cylinder 263 (FIG. 6) formed on the air horn 45. A piston 265 is slidable in this cylinder and connected to the choke valve 181 by a link 267. The inner end of the cylinder 263 is open to the interior of the air horn 45 and the outer end of the cylinder is closed. A vacuum passage 269 extends from within the cylinder 263 adjacent its outer end to one of the primary mixture conduits or barrels below to the primary throttle valve therein so that the piston 265 is subject at its outer end to intake manifold vacuum. The vacuum tends to cause the piston 265 to move outward in the cylinder 263 and open the choke valve 181. The cylinder 263 has longitudinal slots such as indicated at 271 extending part way along the cylinder wall for by-passing air around the piston 265 when the piston has been moved outward far enough to uncover the inner ends of the slots. Thus, full manifold vacuum is applied to the piston 265 until the piston has pulled the choke valve open part Way, after which air is by-passed around the piston to decrease the vacuum (increase the pressure) in the outer end of the cylinder.
The thermostatic coil shaft 229 (FIGS. 2 and 3) extends out of the thermostatic coil housing 227 to the right, and has a crank arm 273 fixed on its outer end. A link 275 connects this crank arm 27-3 to a crank arm 277, fixed on the right end of the primary throttle shaft 151. This linkage is such that When the primary throttle shaft 151 is turned clockwise as viewed in FIG. 1 to open the primary throttle valves 149 for acceleration (counterclockwise as viewed in FIG. 2), shaft 229 is rotated to rotate the thermostatic coil 225 bodily in such direction as to rotate crank arm 233 and shaft 239 to drag the link 245 toward the left as viewed in FIG. 1 and swing the fast idle cam 215 counterclockwise. The cam 215 thereupon acts to pull down the rod 251 and swing the choke valve 181 toward closed position, thereby to accomplish enrichment upon acceleration of the mixture of air and fuel being delivered by the primary barrels 35 and 37.
As appears in FIGS. 2 and 3, the primary throttle shaft 151 has an inner arm 279, a dog 281, and an outer arm 283 at its right end. The inner arm 279 and the dog 281 are rotatable relative to the shaft 151 and to one another. The outer arm 283 is fixed to the shaft 151. The dog 281 has a first lateral lug 285 engageable with the outer arm 283 and a second lateral lug 2S7 engageable with the inner arm 279. A coil spring 289 biases the dog 281 to rotate in the direction for engagement of its lug 285 with the outer arm 283. A link 291 connects the inner arm 279 and an arm 293 fixed on the right end of the secondary throttle shaft 201. A coil spring 295 is provided for biasing the secondary throttle valves 199 closed. When the primary throttle valves 149 are opened, the outer arm 2S3 rotates counterclockwise as viewed in FIG. 2 along with the primary throttle shaft 151. Dog 281 having lugs 285 and 287 thereon follows the arm 2'83 around under the bias of spring 289. When the primary throttle valves 149 have been opened a predetermined amount (50, for example), lug 287 comes into engagement with the inner arm 279 and rotates it counterclockwise. This results in opening of the secondary throttle valves 199. The secondary throttle linkage is so propontioned that the secondary throttle valves arrive at their wide open position at the same time as the primary throttle valves. A shoe 297 on am 293 is engageable with a shoe 299 on mm 283 to preclude opening of the secondary throttle valvm until the primary throttle valves have been opened approximately the stated predetermined amount.
A secondary lockout lever 301 is pivoted at 217 along with the fast idle cam 215, being rotatable relative to the cam. This lockout lever is gravity-biased toward latching engagement with a lug 303 on the secondary throttle shaft 201 to lock the secondary throttle valves 199 closed, and is engageable by a lug 305 on the fast idle cam 215 to be released (swung out of latching engagement with lug 303) when the fast idle cam backs off to its normal idle position. A lug 307 on the inner throttle arm 209 is engageable with the cam to swing it to open the choke valve 181 for unloading purposes.
The heads 77 of the primary nozzle bodies 75 extend upward above the level of the top of the float bowl section 5 into idle air bleed supply chambers 309 formed in the float bowl cover or air horn section 43. Each chamber 309 is sealed off from the primary 'air inlet 31a, section 43 including partitions 311 which seal against the nozzle bodies 75 for this purpose. Section 43 is formed with a bottom recess 313 which curves around the front thereof and connects the two chambers 309, this recess being closed at the bottom by a flange 315 formed on the float bowl section 5. This recess in conjunction with the two chambers 309 constitutes a duct for supplying preheated air to the idle air bleeds 19 3", 113 and 143. Air is supplied to the recess or duct 313 from the primary air inlet 31a upstream of the choke valve 181 via passages such as indicated at 317 (FIG. 3) provided in the float bowl cover or air horn section 43. Air flowing through the duct 313 to the idle air bleed supply chambers 3%? is adapted to be heated by a heat exchange tube 319 which extends through the duct 313 and one end 329 of which is supplied with air heated by the engine via a heat tube from a heat pocket on the exhaust manifold of the engine, and the other end of which is connected by a tube indicated at 325 to the thermostatic coil housing 227. A passage 327 connects housing 227 to the intake manifold so that when the engine is in operation air is drawn from pocket 323 through 321, 31 325 and the housing 227.
The arrangement is such that air heated by the engine is adapted to flow from the heat pocket 323 through the duct constituted by tube 321, heat exchange tube 31% and connection 325 to the thermostatic coil housing 227. As this air flows through the heat exchange tube 319 (which is in heat exchange relation to a portion of duct 313), it gives up some heat to the air surrounding the heat exchange tube in the duct 313. Thus, the air suppli d to the idle air bleeds is preheated in the duct 33;"; more quickly to bring it up to its stabilized operating tempera ture for smoother engine operation during the warm-up period and to reduce the tendency toward icing of the idle air bleeds and the idle port. Also the air flowing through the heat exchange tube 3133 downstream to the thermostatic coil housing 227 is cooled. This cooling is a reflection of icing conditions (i.e., the colder the ambient temperature, the more the air flowing to the tnerrnostatic coil housing will be cooled), and this tends to retard the relaxation of the thermostatic coil to tend to hold the englue on fast idle for a longer period when such conditions are present.
Operation is as follows:
When the engine is cold, the thermostatic coil 225, acting as a spring, holds the fast idle earn 215 in its fast idle position. The fast idle earn 215 acts through the rod 251 and the spring 261 to hold the choke valve 131 closed. With the choke valve closed, the choke piston 265 is positioned at the inner end of the choke cylinder 263. When the engine is cranked to start it, the resultant low pressure pulsations caused in the intake manifold of the engine are transferred to the outer end of the choke cylinder via passage 269 and to the underside of the choke valve. This causes the choke valve to open and close with each intake stroke, the opening of the choke valve being permitted by the yielding of the spring 261, even though the fast idle cam remains in the fast idle position and even though rod 251 is thereby held from moving upward. In this respect, it will be observed that when the primary throttle shaft 151 is turned to open the primary throttle valves 149 to supply fuel for starting the engine, link 275 acts to rotate the coil 22-5 in such direction that the coil acts to apply additional spring force tending to hold the fast idle cam 215 in the fast idle position and tending to hold the rod 25-1 in its FIG. 13 position. Despite this holding of the fast idle cam in its fast idle position, spring 261 yields to allow the fluttering of the choke valve on the cranking of the engine. Once the engine has started, the intake manifold vacuum increases, and choke piston 265 moves the choke valve 181 open to the position determined by the arrangement of the slots 271 in the choke cylinder 263.
As the engine warms up, and the thermostatic coil 225 in the housing 227 is warmed up by air heated by the engine flowing from the heat pocket on the exhaust manifold through the heat exchange tube 319 to the housing 227, the coil 22S relaxes. Assuming that the primary throttle valves 149 have been closed'and the engine thereby idling with screw 213 on primary throttle arm 2-11 engaging the starting step 219 on the fast idle cam 215, the next time the primary throttle valves are opened with resultant disengagement of the screw from the cam, the cam backs ofli (rotates clockwise) from its FIG. 13 fast idle position. This permits rod 2-51 to move upward to allow further opening of the choke valve. The linkage between the fast idle cam and the choke valve is so proportioned that the choke valve is permitted fully to open shortly after the starting of the engine before the fast idle cam backs off completely to its normal idle position. When the choke valve has fully opened, the fast idle cam may back off farther to complete its movement to normal idle position by reason of the lost motion between the cam and the rod 251 afforded by the pin and slot connection 24-9, 247 between the rod and the cam. When the cam backs off completely to normal id-le position, it actuates the secondary lockout lever 3111 to release the secondary throttle valves 199.
Assuming that during the warmup period the fast idle earn 215 is in some intermediate position and the choke valve 181 is open, and further assuming that the engine is idling (primary throttle valves 14-9 closed), when the primary throttle shaft 151 is turned to open the primary throttle valves 149 for acceleration, link 275 acts to rotate the thermostatic coil 225 bodily in the direction to swing the fast idle cam toward its fast idle position. The fast idle cam thereupon acts to pull down the rod 251 and swing the choke valve 181 back toward its closed position to supply an enriched accelerating mixture to the intake manifold.
As previously pointed out, the air supplied to idle air bleeds 1139, 113, 143 is preheated in the duct 313 by the heat exchange tube 3-19 to bring this air up to its stabilized operating temperature more quickly for smoother engine operation during the warm-up period and to tend to prevent icing of the idle air bleeds and the idle port. Also, since some of the heat in the air flowing to the thermostatic coil housing 2-27 is given up to preheat the air for the idle air bleeds, the coil relaxes at a slower rate. Thus, the control reflects the presence of icing conditions to extend the Warm-up period, the operation of the fast idle cam 215 being modified so that it does not reach its normal idle position until after warmup is completed.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As Various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
We claim:
1. In a carburetor for an internal combustion engine, said carburetor hav ng a mixture conduit, a throttle valve and a choke valve for said mixture conduit, means responsive to engine temperature for controlling the position of the throttle valve at idle and for controlling the position of the choke valve, said control means being adapted to establish a fast idle position of the throttle valve when the engine is cold and a normal idle position of the throttle valve when the engine is warmed up, said control means being adapted to hold the choke valve closed when the engine is cold and to allow the choke valve fully to open before the engine is warmed up, and means interconnecting the throttle valve and said control means for moving the choke valve in closing direction in response to opening of the throttle valve.
2. In a carburetor for an internal combustion engine having an intake manifold, said carburetor having a mixture conduit, a throttle valve and a choke valve for said mixture conduit, means responsive to engine temperature for controlling the position of the throttle valve at idle and for controlling the position of the choke valve,
said control means being adapted to establish a fast idle position of the throttle valve when the engine is cold and a normal idle position of the throttle valve when the engine is warmed up, said control means being adapted to hold the choke valve closed when the engine is cold and to allow the choke valve fully to open before the engine is warmed up, means responsive to intake manifold vacuum for opening the choke valve independently of said control means, and separate means connected to said throttle valve for mechanically actuating said control means to move the choke valve in closing direction in response to opening of the throttle valve.
3. In a carburetor for an internal combustion engine, said carburetor having a mixture conduit, a throttle valve and a choke valve for the mixture conduit, fast idle means for controlling the idle position of the throttle valve, thermostatic means responsive to temperature of the engine for controlling said fast idle means for movement thereof from a fast idle position to a normal idle position as the engine warms up, lost-motion means interconnecting said fast idle means and said choke valvev adapted to hold the choke valve closed when the fast idle means is in fast idle position and to allow full opening of the choke valve before the fast idle means reaches normal idle position and completion of movement of the fast idle means to normal idle position after the choke valve is fully open, and means connected to and movable with said throttle valve for directly actuating said thermostatic means to move said fast-idle means in the direction for closing the choke valve upon opening of said throttle valve.
4. In a carburetor for an internal combustion engine having an intake manifold, said carburetor having a mixture conduit, a throttle valve and a choke valve in said mixture conduit, means adapted to open said choke valve in response to vacuum in the intake manifold, fast idle means for controlling the idle position of the throttle valve, thermostatic means responsive to temperature of the engine for controlling said fast idle means for movement thereof from a fast idle position to a normal idle position as the engine warms up, lost-motion means interconnecting said fast idle means and said choke valve adapted to hold the choke valve closed when the fast idle means is in fast idle position and to allow full opening of the choke Valve before the fast idle means reaches normal idle position and completion of movement of the fast idle means to normal idle position after the choke valve is fully open, and means connected to and movable with said throttle valve for directly actuating said thermostatic means to move said fast idle means in the direction for closing the choke valve upon opening of said throttle valve.
5. In a carburetor for an internal combustion engine having an intake manifold, said carburetor having a primary and a secondary mixture conduit, a primary throttle valve and a choke valve for the primary conduit, a secondary throttle valve for the secondary conduit, fast idle means for controlling the idle position of the primary throttle valve, thermostatic means responsive to temperature of the engine for controlling said fast idle means for movement thereof from a fast idle position to a normal idle position as the engine warms up, means for locking the secondary throttle valve in closed position, said looking means being releasable by said fast idle means when the latter moves to normal idle position, lost-motion means interconnecting said fast idle means and said choke valve adapted to hold the choke valve closed when the fast idle means is in fast idle position and to allow full opening of the choke valve before the fast idle means reaches normal idle position and before release of said locking means and completion of movement of the fast idle means to normal idle position after the choke valve is fully open, and means connected to and movable with said primary throttle valve for directly actuating said thermostatic means to move said fast idle means in the direction for closing the choke valve upon opening of said primary throttle valve.
6. In a carburetor for an internal combustion engine having an intake manifold, said carburetor having a primary and a secondary mixture conduit, a primary throttle valve and a choke valve for the primary conduit, a secondary throttle valve for the secondary conduit, means adapted to open said choke valve in response to vacuum in the intake manifold, fast idle means for controlling the idle position of the primary throttle valve, thermostatic means responsive to temperature of the engine for controlling said fast idle means for movement thereof from a fast idle position to a normal idle position as the engine warms up, means for locking the secondary throttle valve in closed position, said locking means being releasable by said fast idle means when the latter moves to normal idle position, lost-motion means interconnecting said fast idle means and said choke valve adapted to hold the choke valve closed when the fast idle means is in fast idle position and to allow full opening of the choke valve before the fast idle means reaches normal idle position and before release of said locking means and completion of movement of the fast idle means to normal idle position after the choke valve is fully open, said lost-motion means including a yieldaole connection permitting opening of said choke valve by said vacuum-responsive means when the fast idle means is in fast idle position, and means connected to and movable with said primary throttle valve for directly actuating said thermostatic means to move said fast idle means in the direction for closing the choke valve upon opening of said primary throttle valve.
References Cited in the file of this patent UNITED STATES PATENTS 2,124,778 Hunt July 26, 1932 2,276,311 Jorgensen Mar. 17, 1942 2,499,607 Read Mar. 7, 1950 2,694,558 Jorgensen et al Nov. 16, 1954 2,715,522 Carlson et a1. Aug. 16, 1955
US790957A 1959-02-03 1959-02-03 Automatic choke mechanism Expired - Lifetime US3006618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US790957A US3006618A (en) 1959-02-03 1959-02-03 Automatic choke mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US790957A US3006618A (en) 1959-02-03 1959-02-03 Automatic choke mechanism

Publications (1)

Publication Number Publication Date
US3006618A true US3006618A (en) 1961-10-31

Family

ID=25152238

Family Applications (1)

Application Number Title Priority Date Filing Date
US790957A Expired - Lifetime US3006618A (en) 1959-02-03 1959-02-03 Automatic choke mechanism

Country Status (1)

Country Link
US (1) US3006618A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3151189A (en) * 1961-09-11 1964-09-29 Ford Motor Co Carburetor
US3160150A (en) * 1963-08-29 1964-12-08 Acf Ind Inc Carburetor
US3575385A (en) * 1969-04-10 1971-04-20 Acf Ind Inc Throttle linkage mechanism for a multistage carburetor
US4005161A (en) * 1974-02-22 1977-01-25 Hitachi, Ltd. Variable stage type carburetor
US4008297A (en) * 1974-09-23 1977-02-15 Regie Nationale Des Usines Renault Automatic starting device of carburetor
US4276240A (en) * 1979-12-21 1981-06-30 Ford Motor Company Carburetor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2124778A (en) * 1934-07-09 1938-07-26 Bendix Prod Corp Carburetor
US2276311A (en) * 1936-10-24 1942-03-17 Gen Motors Corp Automatic choke mechanism
US2499607A (en) * 1945-10-11 1950-03-07 Carter Carburetor Corp Automatic choke control
US2694558A (en) * 1949-11-03 1954-11-16 Gen Motors Corp Charge forming device
US2715522A (en) * 1951-12-26 1955-08-16 Carter Carburetor Corp Throttle control for compound carburetors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2124778A (en) * 1934-07-09 1938-07-26 Bendix Prod Corp Carburetor
US2276311A (en) * 1936-10-24 1942-03-17 Gen Motors Corp Automatic choke mechanism
US2499607A (en) * 1945-10-11 1950-03-07 Carter Carburetor Corp Automatic choke control
US2694558A (en) * 1949-11-03 1954-11-16 Gen Motors Corp Charge forming device
US2715522A (en) * 1951-12-26 1955-08-16 Carter Carburetor Corp Throttle control for compound carburetors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3151189A (en) * 1961-09-11 1964-09-29 Ford Motor Co Carburetor
US3160150A (en) * 1963-08-29 1964-12-08 Acf Ind Inc Carburetor
US3575385A (en) * 1969-04-10 1971-04-20 Acf Ind Inc Throttle linkage mechanism for a multistage carburetor
US4005161A (en) * 1974-02-22 1977-01-25 Hitachi, Ltd. Variable stage type carburetor
US4008297A (en) * 1974-09-23 1977-02-15 Regie Nationale Des Usines Renault Automatic starting device of carburetor
US4276240A (en) * 1979-12-21 1981-06-30 Ford Motor Company Carburetor

Similar Documents

Publication Publication Date Title
US2675792A (en) Thermostatic choke system
US2557111A (en) Charge forming device
US2523798A (en) Charge forming device
US3885545A (en) Carburetor cold enrichment device
US3190623A (en) Automatic choke for carburetor
US2420917A (en) Carburetor
US3957026A (en) Cold starting enrichment device
US3023744A (en) Idle mixture control air valve carburetor
US2238333A (en) Carburetor
US3006618A (en) Automatic choke mechanism
US2215682A (en) Carburetor
US2694558A (en) Charge forming device
US3835831A (en) Automatic cold starting devices for internal combustion engines
US2323222A (en) Carburetor starting device
US2995351A (en) Carburetor
US2864596A (en) Carburetor
US3030085A (en) Fuel circuits for air-bled carburetor
US2423059A (en) Carburetor
US3190622A (en) Carburetor cold start and warm-up mechanism
US1915851A (en) Carburetor
US2957465A (en) Fast opening choke mechanism
US2705484A (en) Mechanism for controlling the starting and operation of internal combustion engines
US2160411A (en) Carburetor structure
US2689115A (en) Carburetor
US1891238A (en) Carburetor