US3006028A - Spinning apparatus - Google Patents
Spinning apparatus Download PDFInfo
- Publication number
- US3006028A US3006028A US815705A US81570559A US3006028A US 3006028 A US3006028 A US 3006028A US 815705 A US815705 A US 815705A US 81570559 A US81570559 A US 81570559A US 3006028 A US3006028 A US 3006028A
- Authority
- US
- United States
- Prior art keywords
- spinneret
- cavity
- fibers
- orifice
- orifices
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009987 spinning Methods 0.000 title description 13
- 239000000835 fiber Substances 0.000 description 49
- 239000000463 material Substances 0.000 description 16
- 238000009826 distribution Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 239000012530 fluid Substances 0.000 description 9
- 239000002131 composite material Substances 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000000155 melt Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 229910000619 316 stainless steel Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D4/00—Spinnerette packs; Cleaning thereof
- D01D4/02—Spinnerettes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/345—Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
- D01D5/32—Side-by-side structure; Spinnerette packs therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/26—Composite fibers made of two or more materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S425/00—Plastic article or earthenware shaping or treating: apparatus
- Y10S425/217—Spinnerette forming conjugate, composite or hollow filaments
Definitions
- This invention relates to apparatus for producing artificial fibers of composite character which exhibit a high degree of uniformity in component distribution between individual fibers. More particularly, this invention relates to an improved spinneret for producing such fibers.
- the objects of this invention are accomplished by providing, in apparatus for producing composite fibers having means for forwarding a plurality of fiber-forming materials to a spinning head and means for maintaining a separation of said materials to a point adjacent the inlet side of orifices of a spinneret, an improvement which comprises a spinneret containing a plurality of spaced orifices having an elongated cavity surrounding the inlet side of each orifice, each orifice being centered in the base of said elongated cavity.
- the cross-sectional area of the cavity should be between about five and twenty-five times the area of the orifice at the point where the fluid material issues from the spinneret.
- the long dimension of the cavity should be essentially perpendicular to the fluid interface, or septa, and should be at least about twice the width of the cavity in the plane of the inner surface of the spinneret.
- the exit orifice should be centered within the cavity.
- FIGURE 1 is a vertical sectional view of one form of apparatus embodying the spinneret of this invention
- FIGURE 2 is a cross-sectional view of FIGURE 1 taken along the line 2--2;
- FIGURE 3-a is a vertical cross-sectional view taken along the long dimension of the cavity surrounding the spinneret orifice; Y
- FIGURE 3-b is a vertical cross-sectional view of the spinneret orifice of FIGURE 3-a taken along the short dimension of the cavity;
- FIGURE 3-0 is a plan view of the spinneret orifice of FIGURES 3-a and 3-b;
- FIGURES 4-a, 4b, and 4c are corresponding vertical cross-sectional and plan views of an alternate configuration for the spinneret of this invention.
- FIGURES 5, 6, and 7 are cross-sectional and plan views of other embodiments of spinneret orifices which may be used.
- reference numeral lit designates a spinneret having a plurality of orifices 11 spaced apart in rings concentric with the center 'of spinneret it).
- the spinneret id is attached to supply head 12 by means of retaining ring 13.
- Annular separators or septa 25 divide the space between back plate 15 and spinneret it) into a plurality of separate zones A, B, C, and D.
- Conduits 23 and 24 are in communication with chambers 17 and 18, respectively, and with alternate zones between separators 25;
- the lower edge of separators 25 is positioned in close proximity to the inside face of spinneret 10 in a manner which essentially divides orifices 11.
- a distribution membrane 26 and a fine-mesh screen assembly 27 are positioned between back plate 16 and spinneret l0.
- two separate spinning solutions or melts are fed through metering pumps, not shown, into threaded pipes 21 and 22.
- the fluid from pipe 21 passes through inlet port 19 into chamber 17 and thence through conduits 23 into zones B and D.
- the fluid then flows through openings 28 in distribution membrane 26 and then through screen assembly 27 to spinneret orifices 11.
- the second fluid is metered to pipe 22 through inlet port 2%) to chamber 18 and then through conduits 24 to zones A and C.
- the fluid fiows through openings 28 in distribution membrane 26 and then through screen assembly 27 to orifices 11.
- the fluids from alternate zones meet at orifices 11, thereby providing a liquid interface.
- the depending edges of separators 25 and orifices 11 are positioned in such a man-' her that the liquid interface is centered along line 33 as shown in FIG. 3a.
- the long dimension of the cavity is displaced in a direction essentially perpendicular to the depending edge of the separators or septa 25.
- the long dimension should be at least about twice the width of the cavity in the plane of the upper surface of spinneret 10.
- the cross-sectional shape of the cavity may be rectangular, or, as shown in FIG. 6, the cross-sectional area may be trapezoidal; It
- the '5 may likewise be triangular, semicircular, parabolic, or of a curved configuration, as shown in FIGURE 5, having two essentially straight sides.
- the cavity may communicate with the orifice through a frustro-conical section.
- the cross-sectional area of the cavity taken along the narrow dimension should be between five and twenty-five times the area of the orifice at the point where the solution or melt issues from the spinneret. Preferably, this area is between ten and twenty times the area of the orifice exit.
- the thickness of the spinneret is not critical.
- the diameter and length of the exit and of the orifice will depend on the material being spun and on the spinning conditions, and can be readily selected by those skilled in the art. Generally, diameters between about 0.004 inch and 0.012 inch are most useful, with the length of the exit end of the orifice generally being between one and three times its diameter. In determining the length of the exit end of the orifice, the frustro-conical section, as shown in FIG. 4b, would be disregarded.
- Example A 25% solution of an acrylonitrile homopolymer of intrinsic viscosity 2.0 was prepared in dimethylformamide according to the process of Houtz as described in US. Patent 2,404,713. in a separate vessel, a 25% solution in dimethylformamide of a copolymer of 97% acrylonitrile and 3% sodium styrenesulfonate was prepared. This copolymer had an intrinsic viscosity of 1.5.
- the two solutions were separately filtered and pumped by positive displacement pumps through the separate inlets of apparatus of the type shown in FIG. 1. The pumping rates used for the two solutions were identical.
- the spinneret used contained orifices of the type shown in FIGS. 4-a, 4-17, and 4-c.
- the spinneret contained 84 orifices in each of three annular rings.
- each orifice was provided with a rectangular cavity in which the dimension X was 0.090 inch, the dimension Y was 0.040 inch, and the dimension Z was 0.013 inch.
- the cylindrical orifice of the spinneret had a diameter U of 0.007 inch and a height V of 0.014 inch.
- the spinneret itself had a thickness of 0.060 inch.
- the frustro-conical part of the cavity thus had a height W of 0.033 inch. It had the same diameter U as the spinneret orifice at its lower extremity and the same diameter as the dimension Y at its upper extremity.
- the two solutions were spun through this spinneret into an evaporative atmosphere under conditions normally used for the spinning of acrylonitrile fibers.
- the spun fibers were cross-sectioned and dyed at the boil for fifteen minutes in an aqueous solution containing an ex cess of the dye Brilliant Green Crystals (Color Index 662).
- the fibers were then observed under a microscope. According to visual observation, it was apparent that approximately 50% of the area of each fiber contained dye. Photomicrographs of the dyed fibers were made and were measured to determine the area of dyed and undyed parts of each fiber.
- the spinneret used contained outlet orifices of a diameter the same as that of the spinneret described above.
- the inlet cavity for each orifice was cylindrical with a diameter of 0.040 inch and a height of 0.013 inch, and a frustro-conical section connected the inlet and outlet.
- the same spinning solutions previously described were spun through this spinneret, and the yarns were precessed and dyed as indicated in the previous test. According to photomicrographs of the dyed fibers, 30 to 40% of the fibers contained less than 30% of one or the other of the two polymeric components, and 10% to 20% of the fibers containedonly one of the two components.
- a spinneret was used containing orifices having a cylindrical cavity of 0.125 inch diameter.
- the height of this cavity and the dimensions of the exit orifice were identical with those of the earlier parts of the example.
- the two cylindrical portions were again connected by a frustro-conical section having top and bottom diameters equal to the diameters of the cylinders it connected.
- FIGS. 1-10 Various modifications of the apparatus shown in FIGS.
- the separators. or septa may be in the form of concentric rings as shown in the drawings. They may be in the form of spokes of a wheel as illustrated in FIGS. 7, 8, and 9 of U.S. Patent 2,386,173.
- the long dimension of the spinneret cavity will be in the direction perpendicular to the septum rather than in a direction essentially perpendicular to a tangent to the concentric septum illustrated in FIGS. 1 and 2 of the present drawing.
- the long dimension of the cavity must be in a direction such that the cavity is essentially symmetrically displaced in adjacent zones.
- the number of septa is likewise not critical. Howeve it has been found that the improved spinneret of this invention provides the greatest improvement in uniformity of the distribution of components in apparatus having a plurality of concentric septa.
- the corrugated perforated plate of distribution membrane 26 serves to equalize the pressure of the fluid material around the complete circumference of each ring of holes.
- a distribution membrane is suitably fabricated from stainless steel, and preferably has approximately the same number and size of orifices as the spinneret itself,
- the spinneret may be cup-shaped as shown in the drawings, or may be in the form of a flat plate.
- V spinneret may be supported at its center as Well as around its periphery. Suitable gaskets must, of course, be provided to prevent leakage. If additional filtration of the spinning solutions or melts is desired, chambers 17 and 18 may be provided with filtering material.
- the materials of construction of the spinneret and the spinneret assembly are not critical and may be selected from any materials that are known to be satisfactory for the spinning of both of the solutions or melts used.
- acrylonitrile polymers it is generally desirable to use apparatus constructed of Type 316 stainless steel because this material shows a very low degree of corrosion under operating conditions.
- the apparatus of this invention is useful wherever it is desired to produce composite fibers of two components having a high degree of uniformity with regard to the amount of each component present in each fiber.
- the most useful species of such composite fibers are those having a relatively large difierence in content of highly ionic materials such as sodium styrenesulfon-ate comonomer between the two components.
- the difierence in amount of this material between the two parts of the fiber is responsible for the development of desirable crimp within the fiber.
- the presence of this modifier likewise imparts dyeability to the fiber. When the distribution of the two components is erratic from fiber to fiber, the resulting fibers will be noticeably variable with regard both to crimp and to dyeability.
- fibers which contain essentially no polymer having styrenesulfonate, these fibers will have essentially no crimp and will have essentially no dyeability. If fibers are produced containing only the polymer which is modified with the styrenesulfonate, these fibers will show a high degree of dyeability, but will again be without crimp. Therefore, it is essential for the production of uniform, useful fibers that the distribution of components within the individual fibers be as uniform as possible. Such uniformity is effected with the apparatus of this invention.
- apparatus for producing composite fibers comprising means for forwarding a plurality of fiber-forming materials to a spinning head and means for maintaining a separation of said materials to a point adjacent the inlet side of the orifices of a spinneret, the improvement which comprises a spinneret containing a plurality of spaced cylindrical orifices having an elongated cavity surrounding the inlet side of each orifice, each orifice being centered in the base of said elongated cavity, said elongated cavity having its major dimension in a plane essentially parallel to the surface of the inlet side of said spinneret with said separation means bisecting the major dimension of said elongated cavity to provide separate zones at each side of said orifice.
- cross-sectional area of said cavity is between about five and twenty-five times the area of the orifice exit, and the length of said cavity is at least about two times its width.
- apparatus for producing composite fibers comprising a spinning head having separate chambers therein, a spinneret having a plurality of orifices, said spinneret being spaced apart from said spinning head, septa dividing the space between said spinneret and said chambers into a plurality of separate zones with adjoining zones being in communication with each other at a point contiguous to at least one of said orifices, conduit means for forwarding fiber-forming materials from each of said separate chambers to adjoining zones thereby providing an interface between said materials at said orifices, the improvement which comprises a spinneret containing a plurality of cylindrical orifices, an elongated cavity surrounding the inlet side of each of said orifices, each orifice being centered in the base of said elongated cavity, said cavity being in communication with two adjoining zones and essentially symmetrically displaced about its minor axis in each of said adjoining zones, said cavity having its major dimension in a plane essentially parallel to the surface of the inlet side of said
- cross-sectional area of said cavity is between about five and twenty-five times the area of the orifice exit and the length of the cavity is at least about two times its width.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL251774D NL251774A (enrdf_load_stackoverflow) | 1959-05-25 | ||
US815705A US3006028A (en) | 1959-05-25 | 1959-05-25 | Spinning apparatus |
BE590437A BE590437A (fr) | 1959-05-25 | 1960-05-03 | Appareil de filature. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US815705A US3006028A (en) | 1959-05-25 | 1959-05-25 | Spinning apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US3006028A true US3006028A (en) | 1961-10-31 |
Family
ID=25218581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US815705A Expired - Lifetime US3006028A (en) | 1959-05-25 | 1959-05-25 | Spinning apparatus |
Country Status (3)
Country | Link |
---|---|
US (1) | US3006028A (enrdf_load_stackoverflow) |
BE (1) | BE590437A (enrdf_load_stackoverflow) |
NL (1) | NL251774A (enrdf_load_stackoverflow) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3176342A (en) * | 1962-06-25 | 1965-04-06 | Monsanto Co | Spinnerette |
US3181201A (en) * | 1961-11-02 | 1965-05-04 | Heraeus Gmbh W C | Spinnerette for the production of composite threads |
US3182106A (en) * | 1961-07-14 | 1965-05-04 | American Cyanamid Co | Spinning multi-component fibers |
US3192563A (en) * | 1962-06-25 | 1965-07-06 | Monsanto Co | Laminated spinneret |
US3192562A (en) * | 1962-06-25 | 1965-07-06 | Monsanto Co | Spinnerette |
US3245112A (en) * | 1963-06-27 | 1966-04-12 | Du Pont | Metal to screen seal for spinnerets |
US3245113A (en) * | 1963-06-10 | 1966-04-12 | American Cyanamid Co | Apparatus for forming multi-component fibers |
US3348263A (en) * | 1966-03-28 | 1967-10-24 | Du Pont | Melt spinning filtration bed retaining screen |
US3350741A (en) * | 1965-04-22 | 1967-11-07 | Toho Beslon Co | Spinneret device for spinning side-by-side type of composite fibers |
US3372432A (en) * | 1966-06-21 | 1968-03-12 | Wall Ind Inc | Extrusion die |
US3425091A (en) * | 1966-12-12 | 1969-02-04 | Kanebo Ltd | Spinneret and nozzle assembly for the manufacture of composite filaments |
US3469279A (en) * | 1963-10-19 | 1969-09-30 | British Nylon Spinners Ltd | Spinneret for heterofilaments |
US3500498A (en) * | 1966-05-28 | 1970-03-17 | Asahi Chemical Ind | Apparatus for the manufacture of conjugated sheath-core type composite fibers |
US3526019A (en) * | 1966-07-01 | 1970-09-01 | Kanebo Ltd | Spinneret for conjugate spinning |
US3546328A (en) * | 1962-07-31 | 1970-12-08 | Reginald M Lodge | Methods for the production of heterofilaments |
US3659988A (en) * | 1970-02-18 | 1972-05-02 | Phillips Petroleum Co | Bicomponent distribution plate of a spinneret assembly |
US3707341A (en) * | 1966-09-08 | 1972-12-26 | Akzona Inc | Apparatus for making multifilament yarns |
US3709971A (en) * | 1969-05-14 | 1973-01-09 | Exlan Co Ltd | Method and apparatus for producing multi-laminated fibers |
US3963406A (en) * | 1975-06-20 | 1976-06-15 | E. I. Du Pont De Nemours And Company | Spinneret assembly for multifilament yarns |
US4562022A (en) * | 1983-04-29 | 1985-12-31 | Allied Corporation | Producing foamed fibers |
WO2016085848A1 (en) * | 2014-11-30 | 2016-06-02 | Sabic Global Technologies B.V. | Extruder die plate for reduced strand surging |
US11255025B2 (en) * | 2016-05-02 | 2022-02-22 | Korea Institute Of Industrial Technology | Spinning nozzle apparatus for manufacturing high-strength fiber |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR755342A (fr) * | 1933-05-09 | 1933-11-23 | Comptoir General Des Metaux Pr | Perfectionnement apporté aux filières utilisées dans la fabrication de la soie artificielle |
US1964659A (en) * | 1933-02-09 | 1934-06-26 | Delaware Rayon Company | Spinnerette |
US2386173A (en) * | 1943-05-13 | 1945-10-02 | American Viscose Corp | Apparatus for the production of artificial filaments |
US2517711A (en) * | 1945-07-13 | 1950-08-08 | Celanese Corp | Production of artificial materials |
US2742667A (en) * | 1951-11-08 | 1956-04-24 | Rhodiaceta | Spinnerets |
-
0
- NL NL251774D patent/NL251774A/xx unknown
-
1959
- 1959-05-25 US US815705A patent/US3006028A/en not_active Expired - Lifetime
-
1960
- 1960-05-03 BE BE590437A patent/BE590437A/fr unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1964659A (en) * | 1933-02-09 | 1934-06-26 | Delaware Rayon Company | Spinnerette |
FR755342A (fr) * | 1933-05-09 | 1933-11-23 | Comptoir General Des Metaux Pr | Perfectionnement apporté aux filières utilisées dans la fabrication de la soie artificielle |
US2386173A (en) * | 1943-05-13 | 1945-10-02 | American Viscose Corp | Apparatus for the production of artificial filaments |
US2517711A (en) * | 1945-07-13 | 1950-08-08 | Celanese Corp | Production of artificial materials |
US2742667A (en) * | 1951-11-08 | 1956-04-24 | Rhodiaceta | Spinnerets |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3182106A (en) * | 1961-07-14 | 1965-05-04 | American Cyanamid Co | Spinning multi-component fibers |
US3181201A (en) * | 1961-11-02 | 1965-05-04 | Heraeus Gmbh W C | Spinnerette for the production of composite threads |
US3176342A (en) * | 1962-06-25 | 1965-04-06 | Monsanto Co | Spinnerette |
US3192563A (en) * | 1962-06-25 | 1965-07-06 | Monsanto Co | Laminated spinneret |
US3192562A (en) * | 1962-06-25 | 1965-07-06 | Monsanto Co | Spinnerette |
US3546328A (en) * | 1962-07-31 | 1970-12-08 | Reginald M Lodge | Methods for the production of heterofilaments |
US3245113A (en) * | 1963-06-10 | 1966-04-12 | American Cyanamid Co | Apparatus for forming multi-component fibers |
US3245112A (en) * | 1963-06-27 | 1966-04-12 | Du Pont | Metal to screen seal for spinnerets |
US3469279A (en) * | 1963-10-19 | 1969-09-30 | British Nylon Spinners Ltd | Spinneret for heterofilaments |
US3350741A (en) * | 1965-04-22 | 1967-11-07 | Toho Beslon Co | Spinneret device for spinning side-by-side type of composite fibers |
US3348263A (en) * | 1966-03-28 | 1967-10-24 | Du Pont | Melt spinning filtration bed retaining screen |
US3500498A (en) * | 1966-05-28 | 1970-03-17 | Asahi Chemical Ind | Apparatus for the manufacture of conjugated sheath-core type composite fibers |
US3372432A (en) * | 1966-06-21 | 1968-03-12 | Wall Ind Inc | Extrusion die |
US3526019A (en) * | 1966-07-01 | 1970-09-01 | Kanebo Ltd | Spinneret for conjugate spinning |
US3707341A (en) * | 1966-09-08 | 1972-12-26 | Akzona Inc | Apparatus for making multifilament yarns |
US3425091A (en) * | 1966-12-12 | 1969-02-04 | Kanebo Ltd | Spinneret and nozzle assembly for the manufacture of composite filaments |
US3709971A (en) * | 1969-05-14 | 1973-01-09 | Exlan Co Ltd | Method and apparatus for producing multi-laminated fibers |
US3659988A (en) * | 1970-02-18 | 1972-05-02 | Phillips Petroleum Co | Bicomponent distribution plate of a spinneret assembly |
US3963406A (en) * | 1975-06-20 | 1976-06-15 | E. I. Du Pont De Nemours And Company | Spinneret assembly for multifilament yarns |
US4562022A (en) * | 1983-04-29 | 1985-12-31 | Allied Corporation | Producing foamed fibers |
WO2016085848A1 (en) * | 2014-11-30 | 2016-06-02 | Sabic Global Technologies B.V. | Extruder die plate for reduced strand surging |
US11255025B2 (en) * | 2016-05-02 | 2022-02-22 | Korea Institute Of Industrial Technology | Spinning nozzle apparatus for manufacturing high-strength fiber |
Also Published As
Publication number | Publication date |
---|---|
BE590437A (fr) | 1960-09-01 |
NL251774A (enrdf_load_stackoverflow) | 1900-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3006028A (en) | Spinning apparatus | |
US2936482A (en) | Spinneret assembly | |
US3466703A (en) | Spinneret assembly | |
US3787162A (en) | Conjugate filaments apparatus | |
US2386173A (en) | Apparatus for the production of artificial filaments | |
US3500498A (en) | Apparatus for the manufacture of conjugated sheath-core type composite fibers | |
US4717325A (en) | Spinneret assembly | |
US4293516A (en) | Process for spinning bicomponent filaments | |
US3188689A (en) | Spinneret assembly | |
US3963406A (en) | Spinneret assembly for multifilament yarns | |
US3546328A (en) | Methods for the production of heterofilaments | |
US3095607A (en) | Spinneret assembly | |
JPS6115163B2 (enrdf_load_stackoverflow) | ||
US3209402A (en) | Apparatus for producing multicom-ponent filaments and yarns | |
US3192563A (en) | Laminated spinneret | |
CN108707986B (zh) | 双组份半嵌式复合纤维用的纺丝组件 | |
US3245112A (en) | Metal to screen seal for spinnerets | |
US3161914A (en) | Spinnerets for producing heterofilaments | |
US4072457A (en) | Spin pot with improved top cap | |
US3480706A (en) | Spinning fiber-forming linear condensation polymer | |
US3480996A (en) | Spinneret for conjugate spinning | |
US3634576A (en) | Spinneret unit and method for the spinning of chemical filaments | |
US3538544A (en) | Spinneret assembly for composite filaments | |
CN112575399A (zh) | 一种制备多组份超细并列型复合喷丝组件 | |
US2789699A (en) | Candle filter |