US2996891A - Natural gas liquefaction cycle - Google Patents
Natural gas liquefaction cycle Download PDFInfo
- Publication number
- US2996891A US2996891A US685580A US68558057A US2996891A US 2996891 A US2996891 A US 2996891A US 685580 A US685580 A US 685580A US 68558057 A US68558057 A US 68558057A US 2996891 A US2996891 A US 2996891A
- Authority
- US
- United States
- Prior art keywords
- stream
- gas
- liquid
- methane
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title description 249
- 239000003345 natural gas Substances 0.000 title description 57
- 239000007789 gas Substances 0.000 description 149
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 60
- 239000007788 liquid Substances 0.000 description 58
- 239000002253 acid Substances 0.000 description 53
- 239000007787 solid Substances 0.000 description 46
- 229930195733 hydrocarbon Natural products 0.000 description 44
- 150000002430 hydrocarbons Chemical class 0.000 description 44
- 238000000034 method Methods 0.000 description 37
- 229910002092 carbon dioxide Inorganic materials 0.000 description 30
- 239000001569 carbon dioxide Substances 0.000 description 29
- 230000009467 reduction Effects 0.000 description 28
- 230000008569 process Effects 0.000 description 22
- 230000000694 effects Effects 0.000 description 14
- 238000007711 solidification Methods 0.000 description 13
- 230000008023 solidification Effects 0.000 description 13
- 238000005201 scrubbing Methods 0.000 description 12
- 239000004215 Carbon black (E152) Substances 0.000 description 11
- 239000000470 constituent Substances 0.000 description 10
- 238000004064 recycling Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 5
- 240000002834 Paulownia tomentosa Species 0.000 description 5
- 235000010678 Paulownia tomentosa Nutrition 0.000 description 5
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000009834 vaporization Methods 0.000 description 4
- 230000008016 vaporization Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000011973 solid acid Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241001435619 Lile Species 0.000 description 1
- 241001647090 Ponca Species 0.000 description 1
- FNYLWPVRPXGIIP-UHFFFAOYSA-N Triamterene Chemical compound NC1=NC2=NC(N)=NC(N)=C2N=C1C1=CC=CC=C1 FNYLWPVRPXGIIP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0266—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0027—Oxides of carbon, e.g. CO2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0085—Ethane; Ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0087—Propane; Propylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0208—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
- F25J1/0209—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop as at least a three level refrigeration cascade
- F25J1/021—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop as at least a three level refrigeration cascade using a deep flash recycle loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0254—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
- F25J1/0255—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature controlling the composition of the feed or liquefied gas, e.g. to achieve a particular heating value of natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0242—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/20—Processes or apparatus using other separation and/or other processing means using solidification of components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/24—Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/50—Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/66—Separating acid gases, e.g. CO2, SO2, H2S or RSH
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/60—Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Definitions
- One object of the invention is to provide a liquefaction process for producing substantially pure liquid methane from a stream of natural gas which contains one or more constituents such as heavier hydrocarbons, carbon dioxide, hydrogen sulfide, or nitrogen.
- Another object of the invention is to liquefy natural gas streams containing impurities at a maximum ethciency and a minimum cost.
- FIGS. l and 2 together comprise a flow diagram illustrating my new liquefaction process
- FIG. 3 is a graph showing the pressure-temperature relations of a liquid-vapor-solid carbon dioxide equilibrium in a CO2-CH4 system
- FIG. 4 is a graph showing the temperature-composition sections of a CO2-CH., system at 7.15 p.s.i.a.;
- FIG. 5 shows the apparatus to be inserted into the liquefaction cycle when the CO2 content exceeds the tolerance limit
- FIG. 6 is a graph which shows the temperature-composition section of a CO2-CH., system at 673 p.s.i.a.;
- the gaseous stream can be cooled down to minus 50 F. with no formation of solid particles by heat exchange with external refrigeration and cold expanded gas to be later recycled.
- the stream may be reduced to a liquid by throttling the stream and withdrawing the gas subsequently evaporated.
- the temperature of the liquid stream will be substantially reduced and the acid gases will freeze.
- the acid gases may be separated from the methane stream during this throttling process as solid particles.
- a pressure below that of the cricondenbar point of the combined stream (combined feed stream and the recycle stream) but above the univariant vapor-liquid-solid equilibrium curve of that same stream may be chosen so that heavy hydrocarbons will condense during the heat exchanging process and can be separated from the methane, but at the same time no solid heavy hydrocarbons will deposit in the exchanger wall.
- heavy hydrocarbon separators may be included at appropriate points in the refrigeration stage to separate the condensed liquid from Ithe gaseous stream. While the gas rich in methane continues its path in the major liquefaction cycle, the separated liquid may be throttled down as a separate stream and the resultant liquid rich in heavy hydrocarbon recovered as a byproduct by draining it from a separator following the final throttling.
- the invention comprises the method of liquefying and purifying a stream of natural gas which contains a suibstantial proportion of methane with portions of gases having a higher solidilication temperature than methane which comprises the following steps: reducing the temperature of the stream of gas while maintaining the pressure on such stream above the maximum value of the univariant vapor-liquid-solid equilibrium curve of the combined gas stream; then throttling the cold stream to effect liquefaction and thereby also further reduce the temperature of the stream Ito cause solidiiication of constituents of such stream other than methane, and separating such solidified constituents from the remaining liquid stream to leave a liquid now more largely methane.
- well gas is iirst cooled by a water cooler 1, and then, if necessary, reduced in pressure by a turbo-expander 2 to a pressure slightly above the maximum value of the univariant vapor-liquid-solid equilibrium curve of the combined gas stream.
- a turbo-expander 2 reduces in pressure by a turbo-expander 2 to a pressure slightly above the maximum value of the univariant vapor-liquid-solid equilibrium curve of the combined gas stream.
- the maximumr value of the univariant vapor-liquid-solid equilibrium curve of a combined carbon dioxide and methane stream is 7'10 p.s.i.a. as shown in FIG. 3.
- the separate streams of methane and heavier hydrocarbons are then independently progressively reduced to substantially atmospheric pressure either in a single or in multiple stages to lower pressure levels.
- a multiple stage reduction may be accomplished by means of a series of throttle valves, 10, 11 and 12 in the methane stream and 13, 14, and 15 in the heavier hydrocarbon stream.
- the solid carbon dioxide formed during throttling will probably not plug up a throttle valve of special streamline design because of the turbulent condition from the reduction of pressure.
- a heating jacket is provided for each throttle valve so that a slight amount of heat may be added to loosen up any solid deposit if it does occur.
- the liquid that evaporates into gas in these throttling processes is separated from the resultant liquid in separators 16, 17 ⁇ and 18 in the methane stream and 19, 20 and 21 in the heavier hydrocarbon stream and enters the heat exchanging process with the high pressure stream in heat exchangers 4, 5 and 6 either independently or with other equi-pressure recycle streams combined at equitemperature points. Then before being recycled the separate streams of expanded gas are recompressed to the pressure of the well gas stream. This is done by irst compressing in compressor 22 and cooling in water cooler 23 the gas passed oi from the liquid after the last throttling process to the pressure of the stream before the last throttling process.
- This compressed gas is then combined with the gas passed off after the second last throttling process and this combined stream compressed to the pressure of the well ⁇ gas stream and cooled in compressor 24 and cooler 25.
- the gas passed off after the first throttling process in the heavier hydrocarbon stream is recompressed to the well gas pressure in compressor 26, cooled in cooler 27, and then combined with the rest of the gas recompressed for recycling.
- This combined compressed stream that is to be recycled may initially be cooled by heat exchange with the expanded gas in heat exchanger 28.
- the carbon dioxide in the system will form solid particles when the methane stream is throttled and may conveniently be separated from the liquefaction system during the throttling process.
- Two alternate liquid settlers may be provided to each CII separator to settle out the solid from the liquid before it passes on to the next throttling stage.
- specific gravity of carbon dioxide solid 1.5 gm./ml. at minus 69.9 F.
- methane liquid .42 gm./ ml. at minus 259 F.
- settling is easy to achieve and is an appropriate process for phase separation.
- the liquid may be drained oli. and the solid may be removed as liquid by supplying heat to a steam coil provided for each settler.
- a slight rise is provided to each of the entrance pipes of the throttle valves to prevent it from being plugged by the solid deposition.
- Filtration devices may be used instead of a settler if desired.
- the gas withdrawn from each of the separators 16, 17 and 18 in the throttling process of the methane stream will be practically free from solid contamination because of the liquid-scrubbing action occurring during the throttle process.
- two gas scrubbers which may also serve as liquid lters, may be provided for each separator.
- the gas withdrawn from each separator before being passed in heat exchange with the high pressure stream is passed respectively through scrubbing towers 29, 30 and '31 in counter-current iiow with the liquid withdrawn from the same separator.
- the liquid after passing through the scrubbing towers is returned to the main stream to continue the throttling process.
- the two scrubbing towers provided for each separator may be used alternatively and the deposited solid may be removed in liquid form by applying heat to the scrubbing tower by steam coils. Then the carbon dioxide may be collected in the receivers 32, 33 and 34.
- the liquid withdrawn from the final methane separator 18 is the desired methane product, substantially pure and approximately at atmospheric pressure.
- methane occupies about one six hundredth of the space it does in gaseous form. This liquid methane is sent to storage tanks or transportation vessels to be shipped to points of use.
- the liquid heavy hydrocarbon by-product may be drawn off as liquid or it may be used to provide additional refrigeration by passing it through the heat exchangers 4, 5, 6 and 28 before withdrawing it from the system.
- the carbon dioxide content exceed the tolerance limit (13%) my liquefaction cycle can still be operated if some additional equipment is provided.
- This additional equipment needed is shown in FIG. 5.
- gas may be cooled down to a temperature whereby, after throttling down to 673 p.s.i.a., it will attain a temperature of minus 93 F., as indicated in FIG. 5.
- the scrubbing liquid used in scrubber 37 may be recycling liquid methane from the lirst separator 16, may be heavy hydrocarbon condensed out in the liquefaction process, or may be some externally provided hydrocarbon liquid in an extra recycling cycle.
- the solid carbon dioxide in the scrubbing tower 37 or in the solid settler 36 may be removed by heat supplied to steam coils provided for such purpose.
- the method of liquefying and purifying a stream of natural gas which contains a substantial portion of methane with portions of acid gases which comprises the following stages:
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Separation By Low-Temperature Treatments (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US685580A US2996891A (en) | 1957-09-23 | 1957-09-23 | Natural gas liquefaction cycle |
NL225681A NL112795C (ja) | 1957-09-23 | 1958-03-10 | |
FR1203583D FR1203583A (fr) | 1957-09-23 | 1958-03-17 | Procédé et appareil pour la liquéfaction du gaz naturel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US685580A US2996891A (en) | 1957-09-23 | 1957-09-23 | Natural gas liquefaction cycle |
Publications (1)
Publication Number | Publication Date |
---|---|
US2996891A true US2996891A (en) | 1961-08-22 |
Family
ID=24752813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US685580A Expired - Lifetime US2996891A (en) | 1957-09-23 | 1957-09-23 | Natural gas liquefaction cycle |
Country Status (3)
Country | Link |
---|---|
US (1) | US2996891A (ja) |
FR (1) | FR1203583A (ja) |
NL (1) | NL112795C (ja) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3236057A (en) * | 1962-05-28 | 1966-02-22 | Conch Int Methane Ltd | Removal of carbon dioxide and/or hydrogen sulphide from methane |
US3242681A (en) * | 1963-01-31 | 1966-03-29 | Philips Corp | Natural gas liquefaction and storage |
US3257813A (en) * | 1960-08-03 | 1966-06-28 | Conch Int Methane Ltd | Liquefaction of gases |
US3260058A (en) * | 1962-05-09 | 1966-07-12 | Air Prod & Chem | Method and apparatus for separating gaseous mixtures, particularly helium-containing gases |
US3323315A (en) * | 1964-07-15 | 1967-06-06 | Conch Int Methane Ltd | Gas liquefaction employing an evaporating and gas expansion refrigerant cycles |
US3376709A (en) * | 1965-07-14 | 1968-04-09 | Frank H. Dickey | Separation of acid gases from natural gas by solidification |
DE1268161B (de) * | 1963-02-23 | 1968-05-16 | Linde Ag | Verfahren zur Verfluessigung von Erdgas |
US3398544A (en) * | 1966-07-27 | 1968-08-27 | Continental Oil Co | Solidification of acidic components in natural gas |
US3581510A (en) * | 1968-07-08 | 1971-06-01 | Phillips Petroleum Co | Gas liquefaction by refrigeration with parallel expansion of the refrigerant |
US4001116A (en) * | 1975-03-05 | 1977-01-04 | Chicago Bridge & Iron Company | Gravitational separation of solids from liquefied natural gas |
US4169133A (en) * | 1977-02-08 | 1979-09-25 | Krupp-Koppers Gmbh | Process for recovering acidic gases collected during gas desulfurization |
US5473900A (en) * | 1994-04-29 | 1995-12-12 | Phillips Petroleum Company | Method and apparatus for liquefaction of natural gas |
US6301927B1 (en) * | 1998-01-08 | 2001-10-16 | Satish Reddy | Autorefrigeration separation of carbon dioxide |
US20040055329A1 (en) * | 2002-08-15 | 2004-03-25 | Mathias James A. | Process for cooling a product in a heat exchanger employing microchannels |
US20040148961A1 (en) * | 2001-01-30 | 2004-08-05 | Denis Clodic | Method and system for extracting carbon dioxide by anti-sublimation for storage thereof |
US20060277942A1 (en) * | 2003-03-04 | 2006-12-14 | Denis Clodic | Method of extracting carbon dioxide and sulphur dioxide by means of anti-sublimation for the storage thereof |
NL2000292C2 (nl) * | 2006-10-27 | 2008-04-29 | Romico Hold A V V | Werkwijze voor het in fracties separeren van een mediummengsel. |
WO2010023238A1 (en) * | 2008-08-29 | 2010-03-04 | Shell Internationale Research Maatschappij B.V. | Process and apparatus for removing gaseous contaminants from gas stream comprising gaseous contaminants |
US20100147022A1 (en) * | 2005-09-15 | 2010-06-17 | Cool Energy Limited | Process and apparatus for removal of sour species from a natural gas stream |
EP2442056A3 (en) * | 2010-10-15 | 2018-03-07 | Daewoo Shipbuilding&Marine Engineering Co., Ltd. | Method for producing pressurized liquefied natural gas and production system therefor |
CN109579433A (zh) * | 2019-01-18 | 2019-04-05 | 成都深冷液化设备股份有限公司 | 一种二氧化碳提纯液化的装置及方法 |
US10316260B2 (en) | 2007-01-10 | 2019-06-11 | Pilot Energy Solutions, Llc | Carbon dioxide fractionalization process |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US668197A (en) * | 1900-07-18 | 1901-02-19 | Ernest A Le Sueur | Process of extracting liquid methane from natural gas. |
US2022165A (en) * | 1934-05-09 | 1935-11-26 | Lee S Twomey | Method of separating and purifying hydrogen |
US2500129A (en) * | 1944-08-29 | 1950-03-07 | Clark Bros Co Inc | Liquefaction system |
US2777299A (en) * | 1953-04-13 | 1957-01-15 | Kellogg M W Co | Separating gas mixtures |
US2826266A (en) * | 1956-07-30 | 1958-03-11 | Phillips Petroleum Co | Removal of co2 from natural gas |
US2863296A (en) * | 1955-07-19 | 1958-12-09 | Herrick L Johnston Inc | High pressure cycle for the continuous separation of a gas mixture into its components |
-
1957
- 1957-09-23 US US685580A patent/US2996891A/en not_active Expired - Lifetime
-
1958
- 1958-03-10 NL NL225681A patent/NL112795C/xx active
- 1958-03-17 FR FR1203583D patent/FR1203583A/fr not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US668197A (en) * | 1900-07-18 | 1901-02-19 | Ernest A Le Sueur | Process of extracting liquid methane from natural gas. |
US2022165A (en) * | 1934-05-09 | 1935-11-26 | Lee S Twomey | Method of separating and purifying hydrogen |
US2500129A (en) * | 1944-08-29 | 1950-03-07 | Clark Bros Co Inc | Liquefaction system |
US2777299A (en) * | 1953-04-13 | 1957-01-15 | Kellogg M W Co | Separating gas mixtures |
US2863296A (en) * | 1955-07-19 | 1958-12-09 | Herrick L Johnston Inc | High pressure cycle for the continuous separation of a gas mixture into its components |
US2826266A (en) * | 1956-07-30 | 1958-03-11 | Phillips Petroleum Co | Removal of co2 from natural gas |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3257813A (en) * | 1960-08-03 | 1966-06-28 | Conch Int Methane Ltd | Liquefaction of gases |
US3260058A (en) * | 1962-05-09 | 1966-07-12 | Air Prod & Chem | Method and apparatus for separating gaseous mixtures, particularly helium-containing gases |
US3236057A (en) * | 1962-05-28 | 1966-02-22 | Conch Int Methane Ltd | Removal of carbon dioxide and/or hydrogen sulphide from methane |
US3242681A (en) * | 1963-01-31 | 1966-03-29 | Philips Corp | Natural gas liquefaction and storage |
DE1268161B (de) * | 1963-02-23 | 1968-05-16 | Linde Ag | Verfahren zur Verfluessigung von Erdgas |
US3323315A (en) * | 1964-07-15 | 1967-06-06 | Conch Int Methane Ltd | Gas liquefaction employing an evaporating and gas expansion refrigerant cycles |
US3376709A (en) * | 1965-07-14 | 1968-04-09 | Frank H. Dickey | Separation of acid gases from natural gas by solidification |
US3398544A (en) * | 1966-07-27 | 1968-08-27 | Continental Oil Co | Solidification of acidic components in natural gas |
US3581510A (en) * | 1968-07-08 | 1971-06-01 | Phillips Petroleum Co | Gas liquefaction by refrigeration with parallel expansion of the refrigerant |
US4001116A (en) * | 1975-03-05 | 1977-01-04 | Chicago Bridge & Iron Company | Gravitational separation of solids from liquefied natural gas |
US4169133A (en) * | 1977-02-08 | 1979-09-25 | Krupp-Koppers Gmbh | Process for recovering acidic gases collected during gas desulfurization |
US5473900A (en) * | 1994-04-29 | 1995-12-12 | Phillips Petroleum Company | Method and apparatus for liquefaction of natural gas |
US6301927B1 (en) * | 1998-01-08 | 2001-10-16 | Satish Reddy | Autorefrigeration separation of carbon dioxide |
US20040148961A1 (en) * | 2001-01-30 | 2004-08-05 | Denis Clodic | Method and system for extracting carbon dioxide by anti-sublimation for storage thereof |
AU2007203461B2 (en) * | 2001-01-30 | 2010-06-17 | Armines | Method and system for extracting carbon dioxide by anti-sublimation for storage thereof |
US7073348B2 (en) * | 2001-01-30 | 2006-07-11 | Armines | Method and system for extracting carbon dioxide by anti-sublimation for storage thereof |
US7000427B2 (en) * | 2002-08-15 | 2006-02-21 | Velocys, Inc. | Process for cooling a product in a heat exchanger employing microchannels |
US20040055329A1 (en) * | 2002-08-15 | 2004-03-25 | Mathias James A. | Process for cooling a product in a heat exchanger employing microchannels |
US20060277942A1 (en) * | 2003-03-04 | 2006-12-14 | Denis Clodic | Method of extracting carbon dioxide and sulphur dioxide by means of anti-sublimation for the storage thereof |
US20100147022A1 (en) * | 2005-09-15 | 2010-06-17 | Cool Energy Limited | Process and apparatus for removal of sour species from a natural gas stream |
NL2000292C2 (nl) * | 2006-10-27 | 2008-04-29 | Romico Hold A V V | Werkwijze voor het in fracties separeren van een mediummengsel. |
WO2008051079A1 (en) * | 2006-10-27 | 2008-05-02 | Romico Hold A.V.V. | Method for separating a medium mixture into fractions |
US10316260B2 (en) | 2007-01-10 | 2019-06-11 | Pilot Energy Solutions, Llc | Carbon dioxide fractionalization process |
WO2010023238A1 (en) * | 2008-08-29 | 2010-03-04 | Shell Internationale Research Maatschappij B.V. | Process and apparatus for removing gaseous contaminants from gas stream comprising gaseous contaminants |
US20110167869A1 (en) * | 2008-08-29 | 2011-07-14 | Geers Henricus Abraham | Process and apparatus for removing gaseous contaminants from gas stream comprising gaseous contaminants |
AU2009286701B2 (en) * | 2008-08-29 | 2012-09-13 | Shell Internationale Research Maatschappij B.V. | Process and apparatus for removing gaseous contaminants from gas stream comprising gaseous contaminants |
RU2520269C2 (ru) * | 2008-08-29 | 2014-06-20 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ удаления газообразных загрязнителей из потока газа, содержащего газообразные загрязнители и устройство для его осуществления |
US9396854B2 (en) | 2008-08-29 | 2016-07-19 | Shell Oil Company | Process and apparatus for removing gaseous contaminants from gas stream comprising gaseous contaminants |
EP2442056A3 (en) * | 2010-10-15 | 2018-03-07 | Daewoo Shipbuilding&Marine Engineering Co., Ltd. | Method for producing pressurized liquefied natural gas and production system therefor |
CN109579433A (zh) * | 2019-01-18 | 2019-04-05 | 成都深冷液化设备股份有限公司 | 一种二氧化碳提纯液化的装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
FR1203583A (fr) | 1960-01-20 |
NL112795C (ja) | 1966-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2996891A (en) | Natural gas liquefaction cycle | |
RU2194930C2 (ru) | Способ сжижения потока природного газа, содержащего по меньшей мере один замораживаемый компонент | |
US4371381A (en) | Gas purification process | |
US3735600A (en) | Apparatus and process for liquefaction of natural gases | |
US2900797A (en) | Separation of normally gaseous acidic components and methane | |
US3020723A (en) | Method and apparatus for liquefaction of natural gas | |
US3205669A (en) | Recovery of natural gas liquids, helium concentrate, and pure nitrogen | |
US3721099A (en) | Fractional condensation of natural gas | |
US4311496A (en) | Preliminary condensation of methane in the fractionation of a gaseous mixture | |
RU2549905C2 (ru) | Способ обработки природного газа, содержащего диоксид углерода | |
US3213631A (en) | Separated from a gas mixture on a refrigeration medium | |
CA3054907C (en) | Helium extraction from natural gas | |
US2475957A (en) | Treatment of natural gas | |
CN104548639B (zh) | 二氧化碳的纯化 | |
RU2537486C2 (ru) | Способ сжижения обогащенной углеводородами, содержащей азот сырьевой фракции, предпочтительно природного газа | |
US20150033793A1 (en) | Process for liquefaction of natural gas | |
CA2587182C (en) | Light component separation | |
US3318103A (en) | Process for liquefaction of c2 and heavier hydrocarbons from natural gas with removal of co2 and h2o impurities | |
US3407614A (en) | Helium purification | |
US3740962A (en) | Process of and apparatus for the recovery of helium from a natural gas stream | |
US4158556A (en) | Nitrogen-methane separation process and system | |
US3224208A (en) | Purification of natural gases | |
CN104556033B (zh) | 二氧化碳的纯化 | |
US2433604A (en) | Separation of the constituents of gaseous mixtures | |
Campestrini | Thermodynamic study of solid-liquid-vapor equilibrium: application to cryogenics and air separation unit |