US2993247A - Method and apparatus for handling foundry flasks - Google Patents

Method and apparatus for handling foundry flasks Download PDF

Info

Publication number
US2993247A
US2993247A US754095A US75409558A US2993247A US 2993247 A US2993247 A US 2993247A US 754095 A US754095 A US 754095A US 75409558 A US75409558 A US 75409558A US 2993247 A US2993247 A US 2993247A
Authority
US
United States
Prior art keywords
flask
head
mold
sand
flasks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US754095A
Inventor
Leon F Miller
Edmond K Hatch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osborn Manufacturing Corp
Original Assignee
Osborn Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osborn Manufacturing Corp filed Critical Osborn Manufacturing Corp
Priority to US754095A priority Critical patent/US2993247A/en
Application granted granted Critical
Publication of US2993247A publication Critical patent/US2993247A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C11/00Moulding machines characterised by the relative arrangement of the parts of same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/28Compacting by different means acting simultaneously or successively, e.g. preliminary blowing and finally pressing

Definitions

  • the present invention relates generally, as indicated, to a method and apparatus for handling foundry flasks and more particularly to a method and apparatus adapted to be used with a blow and squeeze molding machine as disclosed in our copending parent application Serial No. 672,640, filed Julyl8, 1957, now US. Patent No. 2,908,950, wherein particulate mold material, suchas foundry sand, for example, is blown into a mold box to form a mold therein, and wherein the molded sand body is squeezed to final form against a pattern while encompassed by a flask 'or the like.
  • the blow and squeeze molding machine basically comprises a mold box and flask carrier which is horizontally reciprocated from a position whereat the mold box and an elevatable pattern plate define a mold chamber into which sand is blown' by the blowing machine to a position whereat the body of sand drawn from the mold box is squeezed into an empty flask upon elevation of the pattern plate and sand body with respect to a squeeze plate fixed to the carrier above the flask carried thereby.
  • i-FIG..l is a front elevation view of a preferred form of blow and squeeze molding machine embodying the principles of this invention
  • FIG. 2 is a side elevation view of said blow and squeeze molding machine as viewed from the right-hand side of FIG. 1;
  • FIG. 3 is a fragmentary elevation view, partly in crosssection, of the blow and squeeze molding machine proper as viewed substantially along the line 33, FIG. 1, and showing the machine parts in the positions they assume after the blown mold has been formed and drawn from the mold box;
  • FIG. 4 is an elevation view, partly in cross-section, as viewed from the left-hand side of FIG. 3;
  • FIG; 5 is an elevation view generally similar to FIG. 3, except showing an empty mold flask in register with the blown mold and pattern just prior to insertion of said blown mold into said flask for squeezing against the pattern;
  • FIG. 6 is a top plan view of the present machine, the blow head and sand hopper having been omitted for sake of clarity; and, V
  • FIG, 7 is a schematic wiring diagram by which automatic operation of the machine is accomplished.
  • the frame of the machine herein generally resembles that disclosed in the aforesaid Ellms patent and comprises a rugged base 1 to which are'secured the lower ends of a plurality of. upstanding tie rods 2; 2 and 3,3.
  • the upper ends of said tie rods have secured thereto a blow head 4 provided with a blow valve 5 and a sand hopper 6.
  • Said blow head 4 is of generally channel-shaped form, of which the opposite down-turned sides are equipped with rollers 7 serving to guide the slide 8 of the sand reservoir 9 for reciprocatory movementbetween positions wherein its upper open end registers with the opening 10 communicating with the sand hopper6 and with the opening 11 communicating with the air pressure outlet of the blow valve 5. 7 As best shown in FIG.
  • the sand reservoir 9 comprises a series of tubular sections 14, 1S and 16 that may be secured together by screws, by welding or other ex- 'pedient, the bottom section 16 preferably being of funnel-shape' internally and having secured thereunder a preform or mold box 17' having a plurality of relatively small size openings 18 through which sand in said reservoir '9 maybe blown into said mold box 17 when the blow valve Sis opened.
  • Said sand reservoir 9 may be provided with air exhaust valves 19, such as are disclosed in said Ellms patent, for the purpose of releasing the air pressure from said reservoir 9 after the blowing operation has been completed.
  • the slide 8 is provided with parallel tracks 20 that are "engaged with the rollers 7 whereby said slide 8 and sand reservoir 9 suspended therefrom, when shifted to the position shown in FIG. 5, register with the sand hopper 6 whereby sand is loaded into said reservoir 9 and when in blow valve so that sand will be discharged from said reservoir 9 into said mold box 17 under the influence of high pressure air entering through the blow head opening 11.
  • the blow head 4 is provided with a rearwardly extending bracket 21 to which a double acting cylinder 23 is mounted, the piston rod 24 thereof being linked, as shown, to the slide 8 at the top of said sand reservoir for moving said slide 8 back and forth as aforesaid.
  • the base 1 of the machine mounts a vertically disposed fluid cylinder 25 in coaxial relation with the blow valve 5' and opening 11 in blow head 4, the piston 26 thereof engaging under the table 27 to raise andlower the latter.
  • Said table 27 may be provided with guide rods 28 which are slidable in bushed openings formed in the cylinder head 29.
  • a pattern plate 30 which carries a pattern (not shown) thereon.
  • the blow head valve 5 may be opened to allow high pressure air to flow into the sand reservoir 9, the exhaust valves 19 being closed at that time, whereupon the high pressure air percolates through the sand to fluidize the same and to force the same through the apertures 18 into the sand-receiving chamber that is defined between the pattern plate 30 and the inside walls of said mold box 17.
  • blowing in of the sand under the influence of the high pressure air causes the sand to flow into intimate contact with the pattern irrespective of the intricacy thereof and especially into undercuts, grooves, lugs, and the like.
  • Such blowing results in the formation of a mold 31 whose pattern contacting surfaces are hard, uniform, and smooth. 7
  • the slide 8 of the sand reservoir 9 has linked thereto (see FIG. 6) a flask carrier slide 33 which is supported on rollers 7 in the extension 34 of the blow head 4.
  • Said flask carrier slide 34 has a plurality of downwardly extending rods 35 to the lower ends of which a flask support head 36 is secured, said head having adownwardly projecting boss 37 which, as hereinafter explained, c'onvstitutes a ram 01' squeezing head against which the mold 31 is squeezed while encompassed by an empty flask 38.
  • the empty flask 38 may be of familiar form having'ribs or flanges 39 along its opposite sides under which the rollers 40 on arms 41 of head 36 are engaged.
  • the empty flask 38 will be positioned coaxially above the mold 31, whereupon the piston 26 again may be actuated upwardly to raise the table 27, the pattern plate 30 and the mold '31 thereon.
  • Pattern plate 30 has locating pins 42 which fit in holes formed in flask 38.
  • the support rods 35 constitute compression rods with the upper slide 33 bearing against the fixed blow head 4 of the machine.
  • the mold 31 is squeezed to a thickness corresponding to the height of the surrounding flask 38.
  • flask unloading (stacking) and loading mechanisms In order to minimize manual labor and to facilitate the. transport'of flasks 38 to and from the flask carrier 36, there is disposed on either side and forwardly of the base 1 a loading mechanism 50 and an unloading mechanism 51 aligned with the flask carrier 36 and slide 33 whenthe latter is in its forward inoperative position.
  • the loading mechanism 50 comprises a'p latform 52 supported at the upper ends of posts 53 and disposed between said .ports is a suitable conveyor 54 on which a stack of empty flasks 38 may be positioned underneath said platform 52.
  • the flask pickup head 56 is carried by the lower end of a piston 57 which is 'vertically reciprocable in thefiuid cylinder 58 mounted on said platform, said head 56 :being provided with swingable roller-equipped arms 59 on opposite sides which are swung out and in as by means of the double-acting fluid cylinder 60.
  • said pickup head 56 when the said pickup head 56 is moved downwardly with said arms 59 "swung outwardly as shown by dotted lines in FIG. 2, said head engages the top one of the stack of empty flasks 38 where by actuation of cylinder 60 to swing the arms 59 inwardly the "rollers 61 are engaged under the ribs or flanges 39 ofsaid top flask '38.
  • the pickup'head "56 when raised, lifts the top flask 38 to the same level as the rollers 40 or the flask carrier 36.
  • the unloading or flask stacking "structure 51 is generally similar to the loading structure in that it also cornprises a platform 64 having a vertical fluid cylinder 65 to thepiston-66 of which is secured a flask lowering or stacking head 67 provided with similar swinging arms "59 and rollers 61 thereon and an actuating cylinder 60.
  • the lowering head 67 when at the same elevation as the flask carrier 36 can receive the flask 38 and squeezed mold 31 therein on said rollers 61, whereupon by moving said head 67 downwardly the mold is set down onto the conveyor 68 or onto the top one of a stack of flasks 38.
  • the cylinder 60 may be actuated to swing the arms 59 out of engagement with the ribs or flanges 39 of said flask 38 whereupon the lowering head 67 is brought back up by cylinder 65 to a position to receive the next completed flask 38 from the flask carrier 36, the arms 59 being swung inwardly by cylinder 60.
  • the shifting of an empty flask 38 from the pickup head 56 to the flask carrier '36 and the shifting of a flask 38 and squeezed mold 31 therein from said flask carrier 36 to the lowering or stacking head 67 is efiected as by means of the fluid cylinder 70 mounted on posts 53.
  • the piston rod 71 of said cylinder 70 is provided with lateral arms 72 and 73 which engage the right hand sides "of the respective flasks 38 as viewed in FIG. 1.
  • the cylinder 70 may be restored to original condition with the flask pusher arms '72 and 73 disposed to engage the next empty flask 38 end-the next completed flask 38 with a'squeezed mold -31 therein.
  • FIG. 7 is a schematic-wiring diagram showing'how the automatic control circuit components are interconnected to effect desired sequential control of the blow, squeeze, load, andunload operations.
  • the vertical lines on opposite sides are the power lines L1 and L2, and for convenience in locating the various solenoids, relays,
  • a stack of empty flasks 38 is positioned on conveyor 54 under pickup head 56, with said head down and 'the pickup arms 59 thereof spread apart;
  • the flask lowering head 67 is likewise down with its arms 59 spread apart;
  • the sand reservoir 9 is empty and disposed between the blow head 4 and the lowered table 27;
  • Limit switch LS-l (14) is closed by the movement of the reservoir 9 to the fill position under the sand hopper,6 thereby establishing a circuit through solenoid SV-2 (14) associated with the control valve for cylinder 25,
  • a pressure switch PS-l )"whi'ch when a predetermined squeeze has been applied on the mold 31, closes a circuit through relay CR-2 (17 )j which closes its normally open switch CR-2 (15) in circuit with relay CR-'-3L ('15) and energization of the latter opens its latch switches CR-3 (12, 14) to deenergize solenoids SV-lF (l2) and SV-2 (14) and thusallow table 27 to descend during the next 3 seconds (from 8th through 10th second after start of cycle).
  • Such solenoid SV-3R (16) is associated with the controlyalve for cylinder 70 and when energized as aforesaid. causes actuation of cylinder 70 to return the pusher arms 72 and 73 to the right as viewed in FIG. 1. This takes 3 seconds, from the 4th through the 6th second after starting.
  • the return of the pusher arms 72 and 73 to the right closes the limit switch LS-S (19) which initiates two movements of the machine components, .viz., (a) energization of solenoid SV-4R (19) which actuates cylinder to swing in the pickup arms 59 under the flanges ,39 of the top one of the stack of empty flasks 39 and actuates cylinder 58 to raise the flask pickup head 56; and (b) energization of solenoid SV-SR (20) which actuates the cylinder to raise the flask lowering head 67 while the arms 59 are spread (leaving a flask 38 on the left hand stack of FIG.
  • the next movement that occurs at the end of the 10th second when the table 27 has descended as aforesaid is the indexing of the filled sand reservoir 9 to the blow position during the next 3 second period.
  • This is accomplished by energization of solenoid SV-1R (21) associated with the control valve for cylinder 23 through closed switch CR-l (21) of relay CR-l (13) and closed limit switch LS-5 (19) which was closed by return of the pusher arms 72 and 73 to the right, FIG. 1.
  • the pressure switch PS-l (17) is closed to energize relay CR-2 (17) whereby its switch CR-2 (23) is closed to initiate operation of the blow timer TD1 (23).
  • the timer TD1 (23) immediately closes its normally open switch TD-l (24) to energize the blow valve solenoid SV-G (24) and after a predetermined time of blow, e.g. 1 /2 sec., the time delay switch TD-1 (24) opens and the exhaust valves 19 are opened.
  • the timer I'D-1 (23) also closes 'TD1 (25 which energizes the unlatch relay CR-1U (25) which releases the latch so that switch CR3 (22) may assume its normally open condition to de-energize the solenoid I SV-2 (14) whereupon the table 27 may descene to draw the blown mold 310m of the mold box 17.
  • the table 27 reaches the lowered position at about 22sec. after starting of the cycle.
  • Solenoid SV-4F actuates cylinder 58 to lower head 56 and actuates cylinder 60 to spread apart the pickup arms 59.
  • Solenoid SVSF (30) is similarly energized through switch CR-'7 (30) and LS-4 (28), switch CR-7 (30) being closed by energization of relay CR-7 (33) by lower contact (33) of limit switch LS-7 (18, 33) actuated by the up position of the flask lower head 67.
  • the flask 38 with the squeezed mold 31 therein is thus set down on the taper the stack at the left in FIG. 1. Then follows the operations previously described whereby pick up head'56 lifts up the top empty flask 38 and the lowering end moves up leaving the filled flask 38 on the top of the stack.
  • the various cylinders are preferably pneumatically actuated and the solenoid valves SV-1 (for control of the indexing cylinder 23), SV3 (for control of the flask forward feed cylinder 70), SV-4 (for control of parallel connected flask pickup cylinder 58 and associated pickup arm cylinder 60), SVS (for control of the flask set down cylinder 65), and SV7 (for control of the flask release cylinder 60 of lowering head 67) are each of the fourway, double solenoid type, respectively, provided with the solenoids SV-ll?
  • the solenoid valve SV2 (for control of the table raising cylinder 25 by actuation of a pilot valve which operates a clamp speed valve (not shown) for flow of air from the pressure source to the cylinder 25) is of the three-way, single solenoid, air restored type .pro- 'vided with the solenoid SV2 14); and the solenoid valve SV-6 (for control of the blow valve and exhaust valves 19) is of the four-way, single solenoid, air restored type provided with the solenoid SV-6 (24).
  • the automatic control circuit takes care of the indexing of the sand reservoir 9 for replenishing with sand and for blowing of sand into the mold box 17 and of the indexing of the flask carrier 36 from unload-load position to squeeze position where- 'in a filled flask 38is shoved off and stacked and an empty flask 38 from a stack replaces the filled, unloaded flask 38 and wherein the empty flask 38 is moved to squeeze position in which a blown mold 31 is squeezed while encompassed by the empty flask 38.
  • the precis'ion made mold box 17 is used in making all of blown molds 31 whereby no sand leakage problem is encountered and that the squeezing operation is performed in flasks 38 that are subjected "to rough handling and dis- 8 tortion and thus would be unsuited for use in mold blowing operations.
  • the machine is of economical construction in that the same head 4 and table 27 are used for clamping in the blowing operation and for squeezing the blown mold 31 in the squeezingoperat-ion.
  • the present invention relates to a blow and squeeze molding machine which provides a blow station to which a mold box and a flask are alternately transported for forming a blown mold in the mold box and for squeezing the blown mold in the flask,.the machine herein being characterized by the provision of a unitary carrier not onlyfor the mold box andfor the flask but also for a head against which the blown mold is squeezed while encompassed by the flask.
  • the blow" station is defined by a fixed blow head having a blow valve associated therewithin and a vertically reciprocable pattern plate support table therebeneath between which the mold box and theflask and squeeze head carrier is horizontally reciprocated to position alternately the mold box and the flask and squeeze head under the blow head and above the table.
  • the raising of the table efiects clamping of the mold box between the blow head and the pattern plate on the table whereupon the blow valve may be actuated to force molding sand into the mold box, and the lowering of the table and the pattern plate draws the blown. mold out of the mold box.
  • the flask and squeeze head when the flask and squeeze head is so positioned between the blow head and the table, the raising of the table, the pattern plate, and the blown mold efiects squeezing of the blown mold against the squeeze head while encompassed by the flask, and the lowering of the table and the pattern plate draws the pattern on the pattern plate out of the squeezed mold.
  • the present invention also contemplates a unique mechanism and method for handling empty flasks and flasks with squeezed molds therein.
  • this mechanism and method involves (a) lifting of the top one of a stack of empty flasks,.(b) shifting the lifted flask horizontally onto the flask carrier while the latter is at the load-unload station to one side of the blow and squeeze station of the machine, (0) shifting the flask carrier and the flask carried thereby horizontally to said operating station (as just outlined in the preceding paragraph) for squeezing a blown mold into the flask, (d) shifting the flask carrier and the flask and squeezed mold therein horizontally back to the loadunload station, (2) shifting the flask with the squeezed mold therein horizontally from the flask carrier, and (f) 'finally lowering the flask with the squeezed mold therein onto the top of a stack of flasks with squeezed molds therein.
  • this mechanism and method involves (a
  • a flask handlingmechanism for a molding machine comprising a flask pick-up head adapted to engage and to lift a flask, a flask carrier mounted for transverse horizontal movement to and from such machine, a flask setdown head adapted to lower and to release suchfl'a'sk, means for moving said pick-up head down to engage'a flask and up to lift such flask, means for shifting such lifted flask onto said carrier for transverse horizontal movement with the latter to and from such machine, means for shifting 'suchflask from said carrier onto said set-down head when said carrier is in the last-mentioned position, and maestro: moving said "set-down head down to lower and to release such flask and up to receive the next flask from said carrier, said heads and carrier being provided with horizontally extending flask guides which are aligned when said heads are in their upper positions and said carrier is in the last-mentioned position and along which such flasks are shifted as afor
  • a flask handling mechanism for a molding machine comprising first and second spaced apart platforms respectively beneath which a stack of empty foundry flasks is adapted to be positioned and beneath which sand-filled foundry flasks with compacted bodies of sand therein are adapted to be stacked; a flask pickup head; means on said first platform operative to lower said pickup head to engage the top one of a stack of empty flasks and to lift said pickup head, together with a flask engaged thereby; a flask stacking head including releasable flask supporting means; means on said second platform operative to lower said stacking head and a sand-filled flask supported thereby; means operative to release sand flask supporting means from a flask supported thereby to thus set such flask on the top of a stack of flasks beneath said second platform and to raise said stacking head; means providing a flask load-unload station between said platforms which includes a flask carrier operative
  • a flask handling mechanism for a molding machine comprising first and second spaced apart platforms each supported in elevated position on posts to accommodate a stack of empty flasks beneath said first platform and a stack of filled flasks beneath said second platform; a flask pickup head vertically movably supported under said first platform; means on said first platform operative to lower said pickup head to engage the top one of a stack of empty flasks and to lift said pickup head, together with a flask engaged thereby; a flask stacking head vertically movably supported under said second platform; means on said second platform operative to lower said stacking head to release a filled flask carried thereby and to lift said stacking head; means providing a flask load-unload station between said platforms which includes a flask carrier operative to transport horizontally an empty flask from said station to a molding machine for filling with sand and to transport horizontally a filled flask from such machine back to said station; and a reciprocable flask actuator effective to shift an empty fla
  • conveyors are associated with the respective platforms for delivery of a stack of empty flasks underneath said first platform and said pickup head and for removal of a stack of filled flasks from underneath said second platform and said stacking head.
  • a flask handling mechanism for a molding machine comprising first and second spaced apart platforms respectively beneath which a stack of empty foundry flasks is adapted to be positioned and beneath which sand-filled foundry flasks with compacted bodies of sand therein are adapted to be stacked; a flask pickup head; means on said first platform operative to lower said pickup head to engage the top one of a stack of empty flasks and to lift said pickup head, together with a flask engaged thereby; a flask stacking head including releasable flask supporting means; means on said second platform operative to lower said stacking head and a sand-filled flask supported thereby; means operative to release sand flask supporting means from a flask supported thereby to thus set such flask on the top of a stack of flasks beneath said second platform and to raise said stacking head; means providing a flask load-unload station between said platforms which includes a flask carrier operative
  • said releasable flask-supporting means comprises depending arms that are mounted for outward movement to disengage from underneath the flanges of a flask, said arms of said releasable flask-supporting means also constituting a portion of said horizontally extending guide.

Description

July 25, 1961 1.. F. MILLER ET AL 2,993,247
METHOD AND APPARATUS FOR HANDLING FQUNDRY FLASKS Filed Aug. 8, 1958 7 Sheets-Sheet 1 INVENTORS LEO/V F. MIL/.512 AND A TTORNEYS July 25, 1961 L. F. MILLER ETAL 2,993,247
METHOD AND APPARATUS FOR HANDLING FOUNDRY FLASKS Filed Aug. 8, 1958 '7 Sheets-Sheet 2 INVENTOR5 LEON I. M/LLEQ AND BY EDMOND KJ-IATCH.
A TTORNEXS- July 25, 1961 L. F. MILLER ET AL 2,993,247
METHOD AND APPARATUS FOR HANDLING FOUNDRY FLASKS Filed Aug. 8, 1958 7 Sheets-Sheet 3 IN VENWES LEON F. MILLEE AND EDMO/V D K.
ATTOIQNEV5.
July 25, 1961 L. F. MILLER ETAL 2,993,247
METHOD AND APPARATUS FOR HANDLING FOUNDRY FLASKS Filed Aug. 8, 1958 'r Sheets-Sheet 4 IN VEN T0125 L0N E M/L LEI? a/vn EDMOND K HATCH By M K ATTOQA/Efii- July 25, 1961 F. MILLER ETAL METHOD AND APPARATUS FOR HANDLING FOUNDRY FLASKS Filed Aug. 8, 1958 7 Sheets-Sheet 5 IN VEN TOR Lia/v fTM/LLER BN0 A 77012 NEY July 25, 1961 L. F. MILLER ET AL METHOD AND APPARATUS FOR HANDLING FOUNDRY FLASKS 7 Sheets-Sheet 6 Filed Aug. 8, 1958 METHOD AND APPARATUS FOR HANDLING FOUNDRY FLASKS Filed Aug. 8, 1958 July 25, 1961 F. MILLER ETAL 7 Sheets-Sheet 7 P o m w m m .NR M L A L EERE. u w B A L L M 2 M2 w 05 N L 0w u w w um Y N u v M 0 H T z AEBN! WVE P. U s. wn c lc c nn R W w mxmzfi $325 5mm? e 0 c zao L T a a A VE NW. Ea EH55 ARM A H a A: r r57 r w m mu mlmgaam M 1 3 25% Hw NM X x u K ux w v owxn owon 05 M M u wnw aflaun Wm ww ufimml amfi NW m m m Kiwi? m a if? P ,MMZLNZ WM I: L R R R m 6 M F R F F .M 6 4 0 D f M HMHHMHHW LH mwww I F 5 5 C c 5 5 J W 5 r. 5 5 5 .c L W M v v K v J H w 5 m 4 7 a L C 2 m m a w an" 6 \filllllllllll l Illlia mu |P|l|.l-|l|||l||ll llllllll'nlilll a llaii 9 5 3 I Shani. mffi .i m m 1 L f" mu" IL WI: m N m i f in T T c L 0 G S o H 3 W 4 m M H ..I 5 s L W L, L A w% .i 1 lLl, i u L L i i i m E HNs41e wmn mwwn wmmunuuwnmaumnu Arrows v.
United States Patent 2,993,247 METHOD AND APPARATUS FOR HANDLING I FOUNDRY FLASKS Leon F. M ller, Rocky River, and Edmond K. Hatch, Warrensvrlle Heights, Ohio, assign'ors to The Osborn Manufacturing Company, Cleveland, Ohio, 21 corporation of Ohio Filed Aug. 8, 1958, Ser. No. 754,095
11 Claims. (Cl. 22-34) The present invention relates generally, as indicated, to a method and apparatus for handling foundry flasks and more particularly to a method and apparatus adapted to be used with a blow and squeeze molding machine as disclosed in our copending parent application Serial No. 672,640, filed Julyl8, 1957, now US. Patent No. 2,908,950, wherein particulate mold material, suchas foundry sand, for example, is blown into a mold box to form a mold therein, and wherein the molded sand body is squeezed to final form against a pattern while encompassed by a flask 'or the like.
: It'has been, and is, conventional foundry practice to make molds by loading sand into a flask resting on a pattern plate and tamping or squeezing the sand in said flask against the pattern on said plate, such method leaving much to be desired with reference to surface finish of the mold cavity and also with reference to imperfections, soft spots, and the like encountered with intricate patterns that have undercuts, flanges, radially extending bosses, etc. To some degree, at least, such defects may be traced to the inability of the sand to flow into and to fill the undercuts, etc. when merely subjected to the tamping, jolting, or squeezing operations.
On the other hand, it is known in the art that smooth, hard-surfaced cavities may be formed in conformance even with intricate pattern shapes by employ-ing a socalled core blowing machine wherein foundry sand is blown into a core box under the influence of high pressure air from a blow head, which air has the effect of fluidizing the sand so that it will readily flow into intimate contact with the surfaces of the pattern disposed in said core box. For a complete description of such core blowing equipment, reference may be had to the Ellms Pat. No. 2,545,944, granted March 2 0, .1951. However, for foundry molds it is preferred, or necessary, to provide a denser compacted body of sand as disclosed in Ser. No. 672,640 for backing up the mold surfaces.
According to Ser. No. 672,640 the blow and squeeze molding machine basically comprises a mold box and flask carrier which is horizontally reciprocated from a position whereat the mold box and an elevatable pattern plate define a mold chamber into which sand is blown' by the blowing machine to a position whereat the body of sand drawn from the mold box is squeezed into an empty flask upon elevation of the pattern plate and sand body with respect to a squeeze plate fixed to the carrier above the flask carried thereby. When the carrier is shifted back to the first-mentioned position the flask with the squeezed body of sand therein is ready to be replaced by the next empty flask and the mold box is in position to form a mold chamber for receiving the next charge of sand from the blowing machine. From the foregoing it is evident that it is heavy and time-com and stacking the flasks with squeezed molds therein and for supplying empty flasks from a stack.
"ice
Other objects and advantages of the presentinvention will become apparent as the following description proceeds.
To accomplishment of the foregoing and related ends, the invention, then, comprises the features hereinafter fully described and particularly pointed out in the claims, the following description and the annexed drawings setting forth in detail a certain illustrative embodiment of the invention, this being indicative, however, of but one of the various ways in which the principle of the invention may be employed.
i-FIG..l is a front elevation view of a preferred form of blow and squeeze molding machine embodying the principles of this invention;
FIG. 2 is a side elevation view of said blow and squeeze molding machine as viewed from the right-hand side of FIG. 1;
. FIG. 3 is a fragmentary elevation view, partly in crosssection, of the blow and squeeze molding machine proper as viewed substantially along the line 33, FIG. 1, and showing the machine parts in the positions they assume after the blown mold has been formed and drawn from the mold box; 7 FIG. 4 is an elevation view, partly in cross-section, as viewed from the left-hand side of FIG. 3; FIG; 5 is an elevation view generally similar to FIG. 3, except showing an empty mold flask in register with the blown mold and pattern just prior to insertion of said blown mold into said flask for squeezing against the pattern;
. FIG. 6 is a top plan view of the present machine, the blow head and sand hopper having been omitted for sake of clarity; and, V
. FIG, 7 is a schematic wiring diagram by which automatic operation of the machine is accomplished.
Thejblow and squeeze molding machine Referring now more particularly to the drawings and first to FIGS. 1 and 2, the frame of the machine herein generally resembles that disclosed in the aforesaid Ellms patent and comprises a rugged base 1 to which are'secured the lower ends of a plurality of. upstanding tie rods 2; 2 and 3,3. The upper ends of said tie rods have secured thereto a blow head 4 provided with a blow valve 5 and a sand hopper 6. Said blow head 4, as herein shown, is of generally channel-shaped form, of which the opposite down-turned sides are equipped with rollers 7 serving to guide the slide 8 of the sand reservoir 9 for reciprocatory movementbetween positions wherein its upper open end registers with the opening 10 communicating with the sand hopper6 and with the opening 11 communicating with the air pressure outlet of the blow valve 5. 7 As best shown in FIG. 3, the sand reservoir 9 comprises a series of tubular sections 14, 1S and 16 that may be secured together by screws, by welding or other ex- 'pedient, the bottom section 16 preferably being of funnel-shape' internally and having secured thereunder a preform or mold box 17' having a plurality of relatively small size openings 18 through which sand in said reservoir '9 maybe blown into said mold box 17 when the blow valve Sis opened. Said sand reservoir 9 may be provided with air exhaust valves 19, such as are disclosed in said Ellms patent, for the purpose of releasing the air pressure from said reservoir 9 after the blowing operation has been completed.
The slide 8 is provided with parallel tracks 20 that are "engaged with the rollers 7 whereby said slide 8 and sand reservoir 9 suspended therefrom, when shifted to the position shown in FIG. 5, register with the sand hopper 6 whereby sand is loaded into said reservoir 9 and when in blow valve so that sand will be discharged from said reservoir 9 into said mold box 17 under the influence of high pressure air entering through the blow head opening 11. V
The blow head 4 is provided with a rearwardly extending bracket 21 to which a double acting cylinder 23 is mounted, the piston rod 24 thereof being linked, as shown, to the slide 8 at the top of said sand reservoir for moving said slide 8 back and forth as aforesaid.
The base 1 of the machine mounts a vertically disposed fluid cylinder 25 in coaxial relation with the blow valve 5' and opening 11 in blow head 4, the piston 26 thereof engaging under the table 27 to raise andlower the latter. Said table 27 may be provided with guide rods 28 which are slidable in bushed openings formed in the cylinder head 29.
On said table 27 is a pattern plate 30 which carries a pattern (not shown) thereon.
When fluid under pressure is admitted into cylinder 25 beneath the piston 26, the latter is moved upwardly, as is the table 27 and the pattern plate 30 thereon. As said table 27 and pattern plate 30 thus move upwardly, the upper surface of said plate 30 engages the bottom rim of said mold box 17, the resulting lifting action on slide 8 elfecting an air-tight seal around the opening 11. The engagement of said pattern plate 30 withm'old box 17, as just described, establishes an air-tight seal at that point. With the parts thus positioned, the blow head valve 5 may be opened to allow high pressure air to flow into the sand reservoir 9, the exhaust valves 19 being closed at that time, whereupon the high pressure air percolates through the sand to fluidize the same and to force the same through the apertures 18 into the sand-receiving chamber that is defined between the pattern plate 30 and the inside walls of said mold box 17.
Such blowing in of the sand under the influence of the high pressure air causes the sand to flow into intimate contact with the pattern irrespective of the intricacy thereof and especially into undercuts, grooves, lugs, and the like. Such blowing results in the formation of a mold 31 whose pattern contacting surfaces are hard, uniform, and smooth. 7
After the sand has thus been blown against the pattern on pattern plate 30 to form a mold 31, the fluid under piston 26 is vented or released whereupon said piston 26, table 27, pattern plate 30, and mold 31 descend as a unit with respect to the mold box 17. These parts are shown in such lowered position in FIGS. 1, 2, and 3, wherein said mold 31 has been drawn down out of said mold box 17. d
The slide 8 of the sand reservoir 9 has linked thereto (see FIG. 6) a flask carrier slide 33 which is supported on rollers 7 in the extension 34 of the blow head 4. Said flask carrier slide 34 has a plurality of downwardly extending rods 35 to the lower ends of which a flask support head 36 is secured, said head having adownwardly projecting boss 37 which, as hereinafter explained, c'onvstitutes a ram 01' squeezing head against which the mold 31 is squeezed while encompassed by an empty flask 38. The empty flask 38 may be of familiar form having'ribs or flanges 39 along its opposite sides under which the rollers 40 on arms 41 of head 36 are engaged.
When the sand reservoir -9 is retracted to the FIG. 5 position, the empty flask 38 will be positioned coaxially above the mold 31, whereupon the piston 26 again may be actuated upwardly to raise the table 27, the pattern plate 30 and the mold '31 thereon. Pattern plate 30 has locating pins 42 which fit in holes formed in flask 38. At about the time the top of the mold 31 contacts the bottom-of the boss 37 or shortly therebefore, the peripheral portion of the pattern plate 30 engages the bottom edge of the flask 38and as the upward movement continues the flask 38is raised with respect to the supporting rolls 40 and the mold 31 is squeezed as'table 27 pattern plate 30, and flask 38 continue to ascend with respect to said boss 37. It can be seen that the support rods 35 constitute compression rods with the upper slide 33 bearing against the fixed blow head 4 of the machine. Preferably, the mold 31 is squeezed to a thickness corresponding to the height of the surrounding flask 38.
Now, when the piston 26 and table 27' are allowed to descend, the pattern on pattern plate 30 will be drawn out of the flask 38 leaving therein'the squeezed mold 31.
When the completed blown and squeezed mold 31 inside flask 38 has been shifted to the FIG. 3 position it may be removed from the transfer mechanism and the next empty flask 38 placed on rollers 40.
II.-The flask unloading (stacking) and loading mechanisms In order to minimize manual labor and to facilitate the. transport'of flasks 38 to and from the flask carrier 36, there is disposed on either side and forwardly of the base 1 a loading mechanism 50 and an unloading mechanism 51 aligned with the flask carrier 36 and slide 33 whenthe latter is in its forward inoperative position.
The loading mechanism 50 comprises a'p latform 52 supported at the upper ends of posts 53 and disposed between said .ports is a suitable conveyor 54 on which a stack of empty flasks 38 may be positioned underneath said platform 52.
The flask pickup head 56 is carried by the lower end of a piston 57 which is 'vertically reciprocable in thefiuid cylinder 58 mounted on said platform, said head 56 :being provided with swingable roller-equipped arms 59 on opposite sides which are swung out and in as by means of the double-acting fluid cylinder 60. Thus, when the said pickup head 56 is moved downwardly with said arms 59 "swung outwardly as shown by dotted lines in FIG. 2, said head engages the top one of the stack of empty flasks 38 where by actuation of cylinder 60 to swing the arms 59 inwardly the "rollers 61 are engaged under the ribs or flanges 39 ofsaid top flask '38. The pickup'head "56, when raised, lifts the top flask 38 to the same level as the rollers 40 or the flask carrier 36.
The unloading or flask stacking "structure 51 is generally similar to the loading structure in that it also cornprises a platform 64 having a vertical fluid cylinder 65 to thepiston-66 of which is secured a flask lowering or stacking head 67 provided with similar swinging arms "59 and rollers 61 thereon and an actuating cylinder 60. Thus, the lowering head 67 when at the same elevation as the flask carrier 36 can receive the flask 38 and squeezed mold 31 therein on said rollers 61, whereupon by moving said head 67 downwardly the mold is set down onto the conveyor 68 or onto the top one of a stack of flasks 38. With the flask 38 (and squeezed mold 31 therein) thus lowered the cylinder 60 may be actuated to swing the arms 59 out of engagement with the ribs or flanges 39 of said flask 38 whereupon the lowering head 67 is brought back up by cylinder 65 to a position to receive the next completed flask 38 from the flask carrier 36, the arms 59 being swung inwardly by cylinder 60. The shifting of an empty flask 38 from the pickup head 56 to the flask carrier '36 and the shifting of a flask 38 and squeezed mold 31 therein from said flask carrier 36 to the lowering or stacking head 67 is efiected as by means of the fluid cylinder 70 mounted on posts 53. The piston rod 71 of said cylinder 70 is provided with lateral arms 72 and 73 which engage the right hand sides "of the respective flasks 38 as viewed in FIG. 1. When the flasks 38 have been shifted toward the left (FIG. 1) by actuation of cylinder 70, and after the flask 38 carried by flask carrier 36 has moved to operating position above the blown mold 31, the cylinder 70 may be restored to original condition with the flask pusher arms '72 and 73 disposed to engage the next empty flask 38 end-the next completed flask 38 with a'squeezed mold -31 therein.
j HI. Control circuit for automatic operation "Iti$ to be understood that this machine may be rendered fully automatic by judicious placement of limit switches and the like, which switches serveto energize and tie-energize solenoid-operated control valves associated with the several fluid cylinders. No attempt has been made herein to show such solenoid operated valves, the piping connect-ions thereof with the respective cylinders, nor the specific locations of'the limit and other switches. on the machine proper since it is within the realm of persons skilled in the art to install such parts where convenient, and where necessary.
7 Accordingly, FIG. 7 is a schematic-wiring diagram showing'how the automatic control circuit components are interconnected to effect desired sequential control of the blow, squeeze, load, andunload operations. Referring now in detail to FIG. 7, the vertical lines on opposite sides are the power lines L1 and L2, and for convenience in locating the various solenoids, relays,
switches, etc. the horizontal linesor levels of said components are numbered 1 through 33, said numbers appearing in parentheses followingthe respective component identifications.
'Across the line at (2) is a disconnect switch DS; at (3) is a power on R; at (4) are groundlights GL; at (5 6) is a machine on (5)machine stop (6) switch SW, a machine start switch MS (6), an emergency stop switch ES (6), and a main contactor M1 (6) which when energized by current flow therethrough closes its normally open switches M-1 (5), M-1 (7), and M-1 L1 and L2 (11); and at (7) is a cycle started light CSR.
Assuming that the following conditions exist at the start of the cycle; namely,
(a) A stack of empty flasks 38 is positioned on conveyor 54 under pickup head 56, with said head down and 'the pickup arms 59 thereof spread apart; (b) The flask lowering head 67 is likewise down with its arms 59 spread apart;
j [(c) The sand reservoir 9 is empty and disposed between the blow head 4 and the lowered table 27; and
(d) The flask pusher arms 72 and 73 are at their forward position (at the left position, FIG. 1) but no flask .72 and 73 are in forward left position the bottom contact (28) of LS-4 (8, 28) is closed thereby energizing the relays CR- 1 ,(13) and CR-S (28) to close their normally openfswitches CR1 and CR5 (12), CR-=1 (21). This establishes a circuit through solenoid SV'-1F ,(12) associated with the control valve for cylinder 23 and the normally closed latch switch CR-3 (12) of relay CR-3L ;.(l5 so as to index the sand reservoir 9 to a position under the sand hopper ,6 and the flask carrier 36 under the blow head 4. In one embodiment of the invention such movement takes 3 seconds of a 22 seconds cycle."
Limit switch LS-l (14) is closed by the movement of the reservoir 9 to the fill position under the sand hopper,6 thereby establishing a circuit through solenoid SV-2 (14) associated with the control valve for cylinder 25,
normally closed latch switch CR-3 (14) of relay CR-3L (15), and closed squeeze switch SQ (14). The table 27 isv thus raised to perform the squeezing operation on a mold 31 thereon (no mold 31 on table 27 when cycle started).. The upward movement of the table 27 starts 3 seconds after initiation of the operation of the machine gang! continues for 4 seconds thereafter. Installed in the ressure line to said cylinder is a pressure switch PS-l )"whi'ch, when a predetermined squeeze has been applied on the mold 31, closes a circuit through relay CR-2 (17 )j which closes its normally open switch CR-2 (15) in circuit with relay CR-'-3L ('15) and energization of the latter opens its latch switches CR-3 (12, 14) to deenergize solenoids SV-lF (l2) and SV-2 (14) and thusallow table 27 to descend during the next 3 seconds (from 8th through 10th second after start of cycle).
his to be noted that when the sand reservoir 9 reaches the lill? position under hopper 6, the resulting closing of limit switch L8 1 (14) energizes solenoid SV-3R (16) through the then closed switch CR-4 (16) of relay CR-4 (18) and the then closed top contact (16) of limit switch LS-6 (16, 32), CR- 4 (16) being closed by energization of relay CR-4 (18) by the down position of the flask set down head 67 closing the top contact (18) of limit switch LS-7 (18, 33), and the top contact (16) of LS-6 (16, 32) being closed by the down position of the flask pickup head 56. Such solenoid SV-3R (16) is associated with the controlyalve for cylinder 70 and when energized as aforesaid. causes actuation of cylinder 70 to return the pusher arms 72 and 73 to the right as viewed in FIG. 1. This takes 3 seconds, from the 4th through the 6th second after starting.
The return of the pusher arms 72 and 73 to the right (FIG. 1) closes the limit switch LS-S (19) which initiates two movements of the machine components, .viz., (a) energization of solenoid SV-4R (19) which actuates cylinder to swing in the pickup arms 59 under the flanges ,39 of the top one of the stack of empty flasks 39 and actuates cylinder 58 to raise the flask pickup head 56; and (b) energization of solenoid SV-SR (20) which actuates the cylinder to raise the flask lowering head 67 while the arms 59 are spread (leaving a flask 38 on the left hand stack of FIG. 1), said arms having been previously spread apart by the energization of relay CR-4 (18) and closing of its switch CR-4 (31) in circuit with solenoid SV-7F (31) which actuated cylinder 60 to spread apart said arms 59. This takes 3 seconds, from the 7th through the 9th second after starting. p
The next movement that occurs at the end of the 10th second when the table 27 has descended as aforesaid is the indexing of the filled sand reservoir 9 to the blow position during the next 3 second period. This is accomplished by energization of solenoid SV-1R (21) associated with the control valve for cylinder 23 through closed switch CR-l (21) of relay CR-l (13) and closed limit switch LS-5 (19) which was closed by return of the pusher arms 72 and 73 to the right, FIG. 1.
At the time that the sand reservoir 9 reaches the blow" position two things occur simultaneously, one being the upward movement of the table 27 to clamp the sand reservoir 9 and mold box 17 between the table 27 and the blow head 4 preparatory to blowing the sand from reservoir 9 into mold box 17 and the other being the unloading of the flask 38 and squeezed mold 31 from flask carrier 36 and loading of an empty flask 38 onto the latter. V When the reservoir 9 reaches the blow position the lower contact (23) of limit switch LS2 12, 23.) is closed whereby solenoid SV-2 ('14) for cylinder 25 is energized through now closed switch CR-3 (22), now closed blow switch BL (22) and bottom contact 23 of LS2 (12, 23 Asthe pressure builds up. in cylinder 25, the pressure switch PS-l (17) is closed to energize relay CR-2 (17) whereby its switch CR-2 (23) is closed to initiate operation of the blow timer TD1 (23). Such clamping occurs from the 14th through the 19th second. The timer TD1 (23) immediately closes its normally open switch TD-l (24) to energize the blow valve solenoid SV-G (24) and after a predetermined time of blow, e.g. 1 /2 sec., the time delay switch TD-1 (24) opens and the exhaust valves 19 are opened. The timer I'D-1 (23) also closes 'TD1 (25 which energizes the unlatch relay CR-1U (25) which releases the latch so that switch CR3 (22) may assume its normally open condition to de-energize the solenoid I SV-2 (14) whereupon the table 27 may descene to draw the blown mold 310m of the mold box 17. The table 27 reaches the lowered position at about 22sec. after starting of the cycle.
i The closing of the bottom contact (23) of LS-2 (12, 23) by the reservoir 9 teaching the blow position starts another action, as aforesaid, that is, the establishment of a circuit through solenoid SV-3F (26), now closed lower contact (26) of limit switch LS+9 (20, 2 6), and the limit switches L8 8 (26) and LS-10 (26) which were closed by movement of the respective pickup and 'setdown heads 56 and 67 to their upper positions level with the flask carrier 36. Solenoid SV- 3F (26) when energized, aet uates cylinder 70 to move the pusher arms 72 and 73 toward the left "so as to shove the flask 38 and squeezed mold 31 therein from carrier 36 to head '67 and 'to shove an empty flask from head 56 to carrier 36. This occurs during the 14th through 17th seconds after starting. Thereafter, the lower contact (28) of limit switch L's-"4 (8, 28) is closed as a consequence of such flask shifting, thus energizing solenoid SV4F (29) through switch (ER-'6 (29) of relay CR'6 (32) which is energized by lower contact (32) of limit switch LS+6 (16, 32) closedby pickup head 56 being in up position. Solenoid SV-4F actuates cylinder 58 to lower head 56 and actuates cylinder 60 to spread apart the pickup arms 59. Solenoid SVSF (30) is similarly energized through switch CR-'7 (30) and LS-4 (28), switch CR-7 (30) being closed by energization of relay CR-7 (33) by lower contact (33) of limit switch LS-7 (18, 33) actuated by the up position of the flask lower head 67. The flask 38 with the squeezed mold 31 therein is thus set down on the taper the stack at the left in FIG. 1. Then follows the operations previously described whereby pick up head'56 lifts up the top empty flask 38 and the lowering end moves up leaving the filled flask 38 on the top of the stack.
In the above-described illustrative circuit, the various cylinders are preferably pneumatically actuated and the solenoid valves SV-1 (for control of the indexing cylinder 23), SV3 (for control of the flask forward feed cylinder 70), SV-4 (for control of parallel connected flask pickup cylinder 58 and associated pickup arm cylinder 60), SVS (for control of the flask set down cylinder 65), and SV7 (for control of the flask release cylinder 60 of lowering head 67) are each of the fourway, double solenoid type, respectively, provided with the solenoids SV-ll? (12) and SVlR (2i), SV3F (26) and SV-3R (16), SV- 4F (29) and SV4R (l9), SV-SF (3-9) and SVSR 20 and SV7F 31 and SV-7R (27 the solenoid valve SV2 (for control of the table raising cylinder 25 by actuation of a pilot valve which operates a clamp speed valve (not shown) for flow of air from the pressure source to the cylinder 25) is of the three-way, single solenoid, air restored type .pro- 'vided with the solenoid SV2 14); and the solenoid valve SV-6 (for control of the blow valve and exhaust valves 19) is of the four-way, single solenoid, air restored type provided with the solenoid SV-6 (24).
From the foregoing it can be seen that the operation of the machine is substantially completely automatic and does not require any manual manipulations of the flasks '38 or of the mold box 17. The automatic control circuit takes care of the indexing of the sand reservoir 9 for replenishing with sand and for blowing of sand into the mold box 17 and of the indexing of the flask carrier 36 from unload-load position to squeeze position where- 'in a filled flask 38is shoved off and stacked and an empty flask 38 from a stack replaces the filled, unloaded flask 38 and wherein the empty flask 38 is moved to squeeze position in which a blown mold 31 is squeezed while encompassed by the empty flask 38.
Not-able features of this invention are that the precis'ion made mold box 17 is used in making all of blown molds 31 whereby no sand leakage problem is encountered and that the squeezing operation is performed in flasks 38 that are subjected "to rough handling and dis- 8 tortion and thus would be unsuited for use in mold blowing operations. Moreover, the machine is of economical construction in that the same head 4 and table 27 are used for clamping in the blowing operation and for squeezing the blown mold 31 in the squeezingoperat-ion.
Broadly stated, the present invention relates to a blow and squeeze molding machine which provides a blow station to which a mold box and a flask are alternately transported for forming a blown mold in the mold box and for squeezing the blown mold in the flask,.the machine herein being characterized by the provision of a unitary carrier not onlyfor the mold box andfor the flask but also for a head against which the blown mold is squeezed while encompassed by the flask. In the specific embodiment herein, the blow" station is defined by a fixed blow head having a blow valve associated therewithin and a vertically reciprocable pattern plate support table therebeneath between which the mold box and theflask and squeeze head carrier is horizontally reciprocated to position alternately the mold box and the flask and squeeze head under the blow head and above the table. When the 'mold box is so positioned, the raising of the table efiects clamping of the mold box between the blow head and the pattern plate on the table whereupon the blow valve may be actuated to force molding sand into the mold box, and the lowering of the table and the pattern plate draws the blown. mold out of the mold box. On the other hand, when the flask and squeeze head is so positioned between the blow head and the table, the raising of the table, the pattern plate, and the blown mold efiects squeezing of the blown mold against the squeeze head while encompassed by the flask, and the lowering of the table and the pattern plate draws the pattern on the pattern plate out of the squeezed mold.
The present invention, as previously described,'also contemplates a unique mechanism and method for handling empty flasks and flasks with squeezed molds therein. Basically, this mechanism and method involves (a) lifting of the top one of a stack of empty flasks,.(b) shifting the lifted flask horizontally onto the flask carrier while the latter is at the load-unload station to one side of the blow and squeeze station of the machine, (0) shifting the flask carrier and the flask carried thereby horizontally to said operating station (as just outlined in the preceding paragraph) for squeezing a blown mold into the flask, (d) shifting the flask carrier and the flask and squeezed mold therein horizontally back to the loadunload station, (2) shifting the flask with the squeezed mold therein horizontally from the flask carrier, and (f) 'finally lowering the flask with the squeezed mold therein onto the top of a stack of flasks with squeezed molds therein. Preferably the load and unload steps (b) and (e) are performed simultaneously, that is, as theflask with the squeezed mold therein is being shoved off the flask carrier, an empty flask is being shoved onto the flask carrier.
Other modes of applying the principle of the invention may be employed, change being made as regards the details described, provided the features stated in any of the following claims, or the equivalent of such, be employed.
We therefore particularly point out and distinctly claim 7 as our invention:
'1. A flask handlingmechanism for a molding machine comprising a flask pick-up head adapted to engage and to lift a flask, a flask carrier mounted for transverse horizontal movement to and from such machine, a flask setdown head adapted to lower and to release suchfl'a'sk, means for moving said pick-up head down to engage'a flask and up to lift such flask, means for shifting such lifted flask onto said carrier for transverse horizontal movement with the latter to and from such machine, means for shifting 'suchflask from said carrier onto said set-down head when said carrier is in the last-mentioned position, and maestro: moving said "set-down head down to lower and to release such flask and up to receive the next flask from said carrier, said heads and carrier being provided with horizontally extending flask guides which are aligned when said heads are in their upper positions and said carrier is in the last-mentioned position and along which such flasks are shifted as aforesaid.
2. The flask handling mechanism of claim 1 wherein automatic control means are provided to effect substantially simultaneous shifting of flasks along said guides from said carrier onto said set-down head and from said pickup head onto said carrier.
3. The flask handling mechanism of claim 1 wherein means are provided for moving said carrier to and from such machine in timed relation, and wherein automatic control means are provided for effecting sequential operation of said means for shifting a lifted flask from said pick-up head to said carrier and for shifting a flask from said carrier onto said set-down head and of said means for moving said carrier to and from such machine.
4. The flask handling mechanism of claim 3 wherein interlock means are provided for permitting shifting of such flasks onto and from said carrier only when the latter is in the last-mentioned position.
5. A flask handling mechanism for a molding machine comprising first and second spaced apart platforms respectively beneath which a stack of empty foundry flasks is adapted to be positioned and beneath which sand-filled foundry flasks with compacted bodies of sand therein are adapted to be stacked; a flask pickup head; means on said first platform operative to lower said pickup head to engage the top one of a stack of empty flasks and to lift said pickup head, together with a flask engaged thereby; a flask stacking head including releasable flask supporting means; means on said second platform operative to lower said stacking head and a sand-filled flask supported thereby; means operative to release sand flask supporting means from a flask supported thereby to thus set such flask on the top of a stack of flasks beneath said second platform and to raise said stacking head; means providing a flask load-unload station between said platforms which includes a flask carrier operative to transport horizontally an empty flask from said station to a molding machine for filling with sand and to transport horizontally a filled flask from such machine back to said station; and a reciprocable flask actuator effective to shift an empty flask from said pickup head to said station and to shift a filled flask from said station onto said stacking head, said pickup head and said stacking head in their raised positions, and said flask carrier when at the load-unload station forming a horizontally extending guide along which said actuator shifts the flasks as aforesaid transverse to the move ments of said flask carrier to and from such molding machine.
6. The mechanism of claim 5 wherein the horizontally extending guide aforesaid comprises rollers engaged underneath the flanges of a flask, and wherein the rollers of said pickup head and said stacking head respectively are mounted for inward movement to pick up a flask and for outward movement to set down a flask.
7. The mechanism of claim 6 wherein means are provided to move the rollers of said pickup head inward when the latter is lowered, and wherein said means operative to release said flask supporting means includes means to move the rollers of said stacking head outward when the latter is lowered.
8. A flask handling mechanism for a molding machine comprising first and second spaced apart platforms each supported in elevated position on posts to accommodate a stack of empty flasks beneath said first platform and a stack of filled flasks beneath said second platform; a flask pickup head vertically movably supported under said first platform; means on said first platform operative to lower said pickup head to engage the top one of a stack of empty flasks and to lift said pickup head, together with a flask engaged thereby; a flask stacking head vertically movably supported under said second platform; means on said second platform operative to lower said stacking head to release a filled flask carried thereby and to lift said stacking head; means providing a flask load-unload station between said platforms which includes a flask carrier operative to transport horizontally an empty flask from said station to a molding machine for filling with sand and to transport horizontally a filled flask from such machine back to said station; and a reciprocable flask actuator effective to shift an empty flask from said pickup head to said station and to shift a filled flask from said station onto said stacking head, said pickup head and said stacking head in their raised positions, and said flask carrier when at the load-unload station forming a horizontally extending guide along which said actuator shifts the flasks as aforesaid transverse to the movements of said flask carrier to and from such molding machine.
9. The flask handling mechanism of claim 8 wherein conveyors are associated with the respective platforms for delivery of a stack of empty flasks underneath said first platform and said pickup head and for removal of a stack of filled flasks from underneath said second platform and said stacking head.
10. A flask handling mechanism for a molding machine comprising first and second spaced apart platforms respectively beneath which a stack of empty foundry flasks is adapted to be positioned and beneath which sand-filled foundry flasks with compacted bodies of sand therein are adapted to be stacked; a flask pickup head; means on said first platform operative to lower said pickup head to engage the top one of a stack of empty flasks and to lift said pickup head, together with a flask engaged thereby; a flask stacking head including releasable flask supporting means; means on said second platform operative to lower said stacking head and a sand-filled flask supported thereby; means operative to release sand flask supporting means from a flask supported thereby to thus set such flask on the top of a stack of flasks beneath said second platform and to raise said stacking head; means providing a flask load-unload station between said platforms which includes a flask carrier operative to transport an empty flask from said station to a molding machine for filling with sand and to transport a filled flask from such machine back to said station; and a reciprocable flask actuator effective to shift an empty flask from said pickup head to said station and to shift a filled flask from said station onto said stacking head, said pickup head and said stacking head in their raised positions, and said flask carrier when at the load-unload station forming a horizontally extending guide along which said actuator shifts the flasks as aforesaid, said pickup head being provided with depending arms that are mounted for inward movement to engage underneath the flanges of a flask, and means operative to move said arms inwardly to thus engage a flask when said pickup head is lowered, said arms constituting a portion of said horizontally extending guide.
11. The mechanism of claim 10 wherein said releasable flask-supporting means comprises depending arms that are mounted for outward movement to disengage from underneath the flanges of a flask, said arms of said releasable flask-supporting means also constituting a portion of said horizontally extending guide.
References Cited in the file of this patent UNITED STATES PATENTS 648,353 Carlson Apr. 24, 1900 2,112,910 Jeffery Apr. 5, 1938 2,599,262 Kvederis June 3, 1952 2,754,555 Young July 17, 1956 2,791,013 Deniniler May 7, 1957 2,859,498 Reichert Nov. 11, 1958 FOREIGN PATENTS 15,286 Great Brita-in July 1, 1912
US754095A 1958-08-08 1958-08-08 Method and apparatus for handling foundry flasks Expired - Lifetime US2993247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US754095A US2993247A (en) 1958-08-08 1958-08-08 Method and apparatus for handling foundry flasks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US754095A US2993247A (en) 1958-08-08 1958-08-08 Method and apparatus for handling foundry flasks

Publications (1)

Publication Number Publication Date
US2993247A true US2993247A (en) 1961-07-25

Family

ID=25033469

Family Applications (1)

Application Number Title Priority Date Filing Date
US754095A Expired - Lifetime US2993247A (en) 1958-08-08 1958-08-08 Method and apparatus for handling foundry flasks

Country Status (1)

Country Link
US (1) US2993247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575232A (en) * 1969-04-29 1971-04-20 Spo Inc Foundry mold-making apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US648353A (en) * 1899-09-30 1900-04-24 Confectioners Machinery And Mfg Company Confectionery-machine.
GB191215286A (en) * 1912-07-01 1913-05-22 Thomas Holcroft And Sons Ltd Improvements in and Means for use in the Production of Metal Castings.
US2112910A (en) * 1935-10-23 1938-04-05 Dayton Malleable Iron Co Method and apparatus for making molds
US2599262A (en) * 1952-06-03 Foundry molding machine
US2754555A (en) * 1952-01-04 1956-07-17 Spo Inc Mold assembling apparatus
US2791013A (en) * 1954-02-23 1957-05-07 John N Demmler Sand blowing machine
US2859498A (en) * 1954-08-13 1958-11-11 William G Reichert Automatic method and apparatus for making castings

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2599262A (en) * 1952-06-03 Foundry molding machine
US648353A (en) * 1899-09-30 1900-04-24 Confectioners Machinery And Mfg Company Confectionery-machine.
GB191215286A (en) * 1912-07-01 1913-05-22 Thomas Holcroft And Sons Ltd Improvements in and Means for use in the Production of Metal Castings.
US2112910A (en) * 1935-10-23 1938-04-05 Dayton Malleable Iron Co Method and apparatus for making molds
US2754555A (en) * 1952-01-04 1956-07-17 Spo Inc Mold assembling apparatus
US2791013A (en) * 1954-02-23 1957-05-07 John N Demmler Sand blowing machine
US2859498A (en) * 1954-08-13 1958-11-11 William G Reichert Automatic method and apparatus for making castings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575232A (en) * 1969-04-29 1971-04-20 Spo Inc Foundry mold-making apparatus

Similar Documents

Publication Publication Date Title
MXPA01012791A (en) Die molding machine and pattern carrier.
KR100949621B1 (en) Apparatus for molding molding flask-free upper casting mold and lower casting mold
US4230172A (en) Molding apparatus with a compressed air squeeze plate
US4840218A (en) Automatic matchplate molding system
US4890664A (en) Automatic matchplate molding system
US5022512A (en) Automatic matchplate molding system
CA1284710C (en) Plastic molding apparatus
US3878881A (en) Method for producing and assembling cope and drag mold parts
GB847083A (en) Improvements in or relating to foundry core making machines
US2993247A (en) Method and apparatus for handling foundry flasks
EP0411960B1 (en) Pressure slip casting apparatus for producing sanitary ware
US3630268A (en) Foundry molding machine with means to alternately index cope and drag flasks between molding and closing units
US2908950A (en) Blow and squeeze molding machine
US3068537A (en) Foundry system and apparatus
US2767447A (en) Means for gripping and withdrawing moulding flasks from moulding machines
US2986785A (en) Blow and squeeze molding method
US2791012A (en) Core box top handling mechanism
US3605869A (en) Support means for ceramic shell moulds
US2138047A (en) Press for molding articles
US3303536A (en) Process and apparatus for automatically producing and assembling foundry molds
JP3701941B2 (en) Mold making method and apparatus, and casting frame engaging and disengaging apparatus
US4588014A (en) Foundry molding apparatus and method
JPS5853349A (en) Method and device for molding of mold
US3328852A (en) Foundry sand forming machines
US2918711A (en) Foundry plant