US2992941A - Exit machine for coating apparatus and method of controlling coating thickness - Google Patents

Exit machine for coating apparatus and method of controlling coating thickness Download PDF

Info

Publication number
US2992941A
US2992941A US733708A US73370858A US2992941A US 2992941 A US2992941 A US 2992941A US 733708 A US733708 A US 733708A US 73370858 A US73370858 A US 73370858A US 2992941 A US2992941 A US 2992941A
Authority
US
United States
Prior art keywords
coating
blast
strand
meniscus
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US733708A
Inventor
Paul J Whitley
John E Kemplin
Henry L Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Armco Inc
Original Assignee
Armco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Armco Inc filed Critical Armco Inc
Priority to US733708A priority Critical patent/US2992941A/en
Application granted granted Critical
Publication of US2992941A publication Critical patent/US2992941A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/22Removing excess of molten coatings; Controlling or regulating the coating thickness by rubbing, e.g. using knives, e.g. rubbing solids

Definitions

  • EXIT MACHINE FOR COATING APPARATUS AND METHOD OF CONTROLLING COATING THICKNESS Filed May 7, 1958 United States Patent 2 992 941
  • This invention relates to an exit machine for metal coating apparatus and to a method of controlling the thickness or weight of metallic coatings.
  • strand issue from the pot between a pair of exit rolls which may, in part at least, be submerged in the hot coating bath.
  • strand as herein used is inclusive of strip or sheet material and wire.
  • the metal seal is broken and then the coating will become heavy and non-uniform.
  • the exit rolls are rotatably mounted so that they rotate partially submerged in the molten coating metal.
  • the size of the meniscus is controlled, in part at least, by directing a blast at the meniscus formed between the strand and the nip of the rolls, and controlling the force of such blast to provide a back pressure to the pumping and dragging actions of the rolls and strand, so that by increasing the force of the blast these actions are impeded and the meniscus is reduced.
  • Other known practices may be used in addition to the blast.
  • a molten metal coating bath is indicated generally at 10 and a strand 11 is shown as passing upwardly out of the bath 10, between the exit rolls 12 and 13.
  • the pumping and dragging actions of the rolls and strand produce a meniscus on each side of the strand between the strand and the nip of the rolls as indicated at 14 and 15.
  • the coating on the strand is indicated at 16 and 17.
  • the pipes 18 and 19 indicate pipes extending parallel to the axis of the exit rolls and provided with nozzles 20 and 21 through which the blasts 22 and 23 issue.
  • the pipes 18 and 19 are supplied by air under pressure through the lines 24 and 25 respectively and these lines are provided with pressure control valves 26 and 27. Air under pressure is supplied to the valves 26 and 27 through a line 28 provided with a shut-off valve 29 and supplied from a source of air under pressure 30.
  • the force of the blast issuing from the nozzles 20 and 21 need not be the same.
  • the blast 22 may be made stronger than the blast 23 or vice versa, so that different weights of coating may be applied to the two sides of the strip.
  • the pipes 18 and 19' extend over the full width of the strip and are provided with sufiicient nozzles 20 and 21 to provide a substantially continuous blast along the entire meniscus. It will be understood that additional blasts may be directed at the edges of the strip to prevent or reduce edge build-up.
  • the strand is being coated with aluminum and other metals having similar characteristics in the molten state, it will be sufiicient to provide the air blast as above described.
  • the coating metal is zinc or other metal having characteristics similar to zinc when molten, it has been found that if air alone is used for the blast,
  • the additional pipes 31 and 32 having the nozzles 33 and 34 respectively and these pipes are supplied respectively through lines 35 and 36 with a combustible gas. They are supplied further through the lines 37 and 38 with air for combustion of the gas and the gas and air flowing through the lines 35, 36, 37 and 38 may be controlled by suitable valves 39, 40, 41 and 42.
  • the level of the meniscus on either or both sides of the strand may be raised and lowered without the necessity of changing the position of the exit rolls.
  • weights of coating on the order of one-half of perviously obtainable weights have been produced. Also, desired weights of coating have been maintained at speeds which previously produced impracticably heavy and non-uniform coatings.
  • the method of controlling coating thickness in the hot dip coating of a strand of metal with a molten coating metal wherein the strand issues from the molten coating metal between a pair of exit rolls, and a meniscus of the coating metal is formed between the strand and the nip of the exit rolls by the pumping action of the exit rolls and strand; which includes the steps of directing a blast primarily at said meniscus, said blast not playing to any appreciable extent on the coating nor on the exit rolls, to create a back pressure to said pumping action, and controlling the force of said blast to maintain said meniscus at a level to produce the desired weight of coatmg.
  • An exit machine for use in the hot dip coating of a metallic strand with a molten metal comprising a pair of exit rolls rotatable on fixed axes, and between which said strand passes in issuing from the molten coating metal, said rolls being partly immersed in said molten coating metal, means for directing a blast primarily at the meniscus of molten coating metal formed by the pumping action of the strand and exit rolls between the strand and the nip of the rolls, and not playing to any appreciab-le extent on the coating nor on the exit rolls, and means for controlling the force of said blast.
  • blast is a blast of gas which is combustible at approximately the temperature of the molten coating metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

July 18, 1961 P. J. WHITLEY ET AL 2,992,941
EXIT MACHINE FOR COATING APPARATUS AND METHOD OF CONTROLLING COATING THICKNESS Filed May 7, 1958 United States Patent 2 992 941 EXIT MACHINE FOR coAT1No APPARATUS AND METHOD OF CONTROLLING COATING THICK- NESS Paul J. Whitley, John E. Kemplin, and Henry L. Jones,
Middletown, Ohio, assignors to Armco Steel Corporation, Middletown, Ohio, a corporation of Ohio Filed May 7, 1958, Ser. No. 733,708 13 Claims. (Cl. 117-102) This invention relates to an exit machine for metal coating apparatus and to a method of controlling the thickness or weight of metallic coatings.
In the coating of a metallic strand by the hot dip method, it is conventional to have the strand issue from the pot between a pair of exit rolls which may, in part at least, be submerged in the hot coating bath. It will be understood that the term strand as herein used is inclusive of strip or sheet material and wire.
When a strand issues from the coating pot between the exit rolls, the pumping action of the rolls and dragging action of the strip produce the result that a quantity of coating metal is pulled up out of the pot between the strand and the exit rolls and forms a pool or meniscus between the strand and the nip of the rolls. The faster the strip is passed through the apparatus, the greater the pumping and dragging action and the deeper the meniscus thus formed.
It has been found that the meniscus has a great effect on the thickness of coating which is produced. The larger the meniscus, the heavier the coating will be and the smaller the meniscus, the lighter the coating.
Where it is desired to produce lighter weight coatings at a speed, or to maintain a given weight of coating at higher speeds, it is clear that something has to be done to lower or reduce the meniscus as required.
It is common practice in the art to control the size or depth of the meniscus by an adjustment upward and downward of the exit rolls, or conversely, by adjusting the level of metal in the pot. If, at a given speed, the exit rolls are adjusted upwardly out of the bath, the
meniscus tends to be reduced, and if the exit rolls are lowered into the bath the depth of the meniscus is in- .creased. However, if the exit rolls are raised too high,
the metal seal is broken and then the coating will become heavy and non-uniform.
It has also been attempted, with some success, to control the weight of coating by braking the exit rolls to slow them down or even stop them entirely, thereby lowering the meniscus and thereby the weight of coating. Moreover, this is not fully effective-pumping action of the rolls is decreased or stopped, but the dragging of the strip is not afiected. Also, this practice tends to cause stripes or lines in the finished strip, which of course detract from the appearance of the finished product.
It is therefore the principal object of the invention to provide a new method for controlling coating thickness which may be practiced instead of, or in addition to, adjustment of the exit rolls as above outlined, and to provide an apparatus for carrying out such a method, whereby desired weights of coating may be applied at speeds higher than was heretofore believed possible.
Reference is made to the drawing forming a part hereof and in which the single figure is a diagrammatic represent-ation in cross-section of the exit rolls and associated apparatus according to the present invention.
Briefly, in the practice of the invention, the exit rolls are rotatably mounted so that they rotate partially submerged in the molten coating metal. The size of the meniscus is controlled, in part at least, by directing a blast at the meniscus formed between the strand and the nip of the rolls, and controlling the force of such blast to provide a back pressure to the pumping and dragging actions of the rolls and strand, so that by increasing the force of the blast these actions are impeded and the meniscus is reduced. Other known practices may be used in addition to the blast.
Referring more particularly to the drawing, a molten metal coating bath is indicated generally at 10 and a strand 11 is shown as passing upwardly out of the bath 10, between the exit rolls 12 and 13. The pumping and dragging actions of the rolls and strand produce a meniscus on each side of the strand between the strand and the nip of the rolls as indicated at 14 and 15. The coating on the strand is indicated at 16 and 17.
18 and 19 indicate pipes extending parallel to the axis of the exit rolls and provided with nozzles 20 and 21 through which the blasts 22 and 23 issue. The pipes 18 and 19 are supplied by air under pressure through the lines 24 and 25 respectively and these lines are provided with pressure control valves 26 and 27. Air under pressure is supplied to the valves 26 and 27 through a line 28 provided with a shut-off valve 29 and supplied from a source of air under pressure 30.
By the provision of the separate control valves 26 and 27, it will be clear that the force of the blast issuing from the nozzles 20 and 21 need not be the same. Thus, the blast 22 may be made stronger than the blast 23 or vice versa, so that different weights of coating may be applied to the two sides of the strip. It will be understood that in the case of strip, the pipes 18 and 19' extend over the full width of the strip and are provided with sufiicient nozzles 20 and 21 to provide a substantially continuous blast along the entire meniscus. It will be understood that additional blasts may be directed at the edges of the strip to prevent or reduce edge build-up.
If the strand is being coated with aluminum and other metals having similar characteristics in the molten state, it will be sufiicient to provide the air blast as above described. However, if the coating metal is zinc or other metal having characteristics similar to zinc when molten, it has been found that if air alone is used for the blast,
. the exit rolls become roughened and the coating quality will be poor. The exact reason for this is not at present cured by the provision of heat exchange means to preheat the air because as the air issues from the nozzles 29 and 21 it expands, as is well known, and is cooled in its expansion so that by the time it strikes the metal surface it is too cool to produce the desired result.
For this reason, there are provided the additional pipes 31 and 32 having the nozzles 33 and 34 respectively and these pipes are supplied respectively through lines 35 and 36 with a combustible gas. They are supplied further through the lines 37 and 38 with air for combustion of the gas and the gas and air flowing through the lines 35, 36, 37 and 38 may be controlled by suitable valves 39, 40, 41 and 42.
Thus there will issue from the nozzles 33 and 34 flames which are directed at the blast so as to heat the blast so that it will be hot when it strikes the meniscus.
By adjusting the pressure by means of the valves 26 and 27, the level of the meniscus on either or both sides of the strand may be raised and lowered without the necessity of changing the position of the exit rolls.
It will be understood that by experimentation a gas may be found which will burn at a suitable temperature, having regard to the type of coating metal, that air will not be required for its combustion; and in such cases the lines 37 and 38 may be omitted. With a gas requiring air for combustion, it may be possible to achieve the required blast at the proper temperature without a separate air blast; and in the latter case the air lines 24, 25 and 28 may be omitted. With some coating metals such as aluminum the blast may be a steam blast, and it higher temperature blasts are required, the steam may be superheated.
In the production of zinc coatings on steel particularly it is undesirable for many applications to have a large amount of alloying between the coating metal and the metal of the strand. The heat supplied to the blast by the present method and apparatus is only sufficient to prevent the blast from causing the coating metal to freeze and roughen the surface of the exit rolls, but is not sufficient to provide additional heat on the coated metal surface which would promote an alloying action. It is therefore important that the blast be directed primarily at the meniscus and that it not play to any appreciable extent on the coating 16 and 17, nor on the exit rolls 12 and 13.
By following the process disclosed herein and by using the apparatus described, weights of coating on the order of one-half of perviously obtainable weights have been produced. Also, desired weights of coating have been maintained at speeds which previously produced impracticably heavy and non-uniform coatings.
It will be clear that various modifications may be made without departing from the spirit of the invention and no limitation is therefore intended other than such limitations as are set forth in the claims which follow.
What is claimed is:
1. The method of controlling coating thickness in the hot dip coating of a strand of metal with a molten coating metal, wherein the strand issues from the molten coating metal between a pair of exit rolls, and a meniscus of the coating metal is formed between the strand and the nip of the exit rolls by the pumping action of the exit rolls and strand; which includes the steps of directing a blast primarily at said meniscus, said blast not playing to any appreciable extent on the coating nor on the exit rolls, to create a back pressure to said pumping action, and controlling the force of said blast to maintain said meniscus at a level to produce the desired weight of coatmg.
2. The method of claim 1, wherein the blast is a blast of air.
3. The method of claim 2, wherein said blast of air is heated to prevent too rapid a chilling of the coating metal.
4. The method of claim 3, which includes the step of playing a flame on the blast of air to heat the same.
5. The method of claim 1, wherein the blast is a blast of steam.
6. The method of claim 1, wherein the blast is a blast of a gas which is combustible at approximately the temperature of the molten coating metal.
7. An exit machine for use in the hot dip coating of a metallic strand with a molten metal, comprising a pair of exit rolls rotatable on fixed axes, and between which said strand passes in issuing from the molten coating metal, said rolls being partly immersed in said molten coating metal, means for directing a blast primarily at the meniscus of molten coating metal formed by the pumping action of the strand and exit rolls between the strand and the nip of the rolls, and not playing to any appreciab-le extent on the coating nor on the exit rolls, and means for controlling the force of said blast.
8. Apparatus according to claim 7, wherein said strand is a strip and wherein a blast is directed at the meniscus on each side of said strip and wherein separate means are provided for controlling the force of the blast on each side of the strip.
9. Apparatus according to claim 7, wherein the blast 1s air.
10. Apparatus according to claim 7, wherein the blast is air and means are provided to heat said blast.
11. Apparatus according to claim 7, wherein said blast is air and means are provided for directing a flame at the blast.
12. Apparatus according to claim 7, wherein the blast is a blast of steam.
13. Apparatus according to claim 7, wherein the blast is a blast of gas which is combustible at approximately the temperature of the molten coating metal.
References Cited in the file of this patent UNITED STATES PATENTS 811,854 Lee Feb. 6, 1906 1,672,526 Hawkins June 5, 1928 2,034,348 Lytle Mar. 17, 1936 2,135,652 Whitfield et al. Nov. 8, 1938 2,708,171 Inglefield May 10, 1955 FOREIGN PATENTS 352,911 Great Britain Jan. 9, 1930

Claims (1)

1. THE METHOD OF CONTROLLING COATING THICKNESS IN THE HOT DIP COATING OF A STRAND OF METAL WITH A MOLTEN COATING METAL, WHEREIN THE STRAND ISSUES FROM THE MOLTEN COATING METAL BETWEEN A PAIR OF EXIT ROLLS, AND A MENISCUS OF THE COATING METAL IS FORMED BETWEEN THE STRANT THE NIP OF THE EXIT ROLLS BY THE PUMPING ACTION OF THE EXIT ROLLS AND STRAND, WHICH INCLUDES THE STEPS OF DIRECTING A BLAST PRIMARILY AT SAID MENISCUS, SAID BLAST NOT PLAYING TO ANY APPRECIABLE EXTENT ON THE COATING NOR ON THE EXIT ROLLS, TO CREATE A BACK PRESSURE TO SAID PUMPING ACTION, AND CONTROLLING THE FORCE OF SAID BLAST TO MAINTAIN SAID MENISCUS AT A LEVEL TO PRODUCE THE DESIRED WEIGHT OF COATING.
US733708A 1958-05-07 1958-05-07 Exit machine for coating apparatus and method of controlling coating thickness Expired - Lifetime US2992941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US733708A US2992941A (en) 1958-05-07 1958-05-07 Exit machine for coating apparatus and method of controlling coating thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US733708A US2992941A (en) 1958-05-07 1958-05-07 Exit machine for coating apparatus and method of controlling coating thickness

Publications (1)

Publication Number Publication Date
US2992941A true US2992941A (en) 1961-07-18

Family

ID=24948797

Family Applications (1)

Application Number Title Priority Date Filing Date
US733708A Expired - Lifetime US2992941A (en) 1958-05-07 1958-05-07 Exit machine for coating apparatus and method of controlling coating thickness

Country Status (1)

Country Link
US (1) US2992941A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074447A (en) * 1961-04-17 1963-01-22 Bombardler Joseph Armand Motor vehicle for cutting, loading and transporting trees
US3104981A (en) * 1960-11-22 1963-09-24 Nat Steel Corp Hot dip metal coating method
US3260577A (en) * 1961-12-20 1966-07-12 Nat Steel Corp Coated product and its manufacture
US3330690A (en) * 1962-12-13 1967-07-11 Armco Steel Corp Production of heavy metallic coatings on metallic strands
US3369923A (en) * 1964-12-14 1968-02-20 Bethlehem Steel Corp Method of producing heavy coatings by continuous galvanizing
US3607366A (en) * 1968-11-14 1971-09-21 Yawata Iron & Steel Co Removal of excess molten metal coatings by gas blast without ripple formations on coated surfaces
US4476806A (en) * 1982-08-31 1984-10-16 The United States Of America As Represented By The Secretary Of The Air Force Wet film applicator
US5254166A (en) * 1991-03-06 1993-10-19 John Lysaght (Australia) Limited Strip coating device having jet strippers to control coating thickness

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US811854A (en) * 1903-08-18 1906-02-06 John Lee Process of tinning or coating metal sheets with tin or other metallic coatings.
US1672526A (en) * 1926-03-23 1928-06-05 American Mach & Foundry Metal-coating machine
GB352911A (en) * 1929-01-10 1931-07-16 Georges Boutefeu A process for plating with tin and other materials
US2034348A (en) * 1930-09-03 1936-03-17 Lytle Clark Kenneth Nonspangled galvanized sheet
US2135652A (en) * 1937-05-26 1938-11-08 Reynolds Metals Co Process for metal coating
US2708171A (en) * 1952-07-08 1955-05-10 United States Steel Corp Method of controlling coating thickness in continuous galvanizing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US811854A (en) * 1903-08-18 1906-02-06 John Lee Process of tinning or coating metal sheets with tin or other metallic coatings.
US1672526A (en) * 1926-03-23 1928-06-05 American Mach & Foundry Metal-coating machine
GB352911A (en) * 1929-01-10 1931-07-16 Georges Boutefeu A process for plating with tin and other materials
US2034348A (en) * 1930-09-03 1936-03-17 Lytle Clark Kenneth Nonspangled galvanized sheet
US2135652A (en) * 1937-05-26 1938-11-08 Reynolds Metals Co Process for metal coating
US2708171A (en) * 1952-07-08 1955-05-10 United States Steel Corp Method of controlling coating thickness in continuous galvanizing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3104981A (en) * 1960-11-22 1963-09-24 Nat Steel Corp Hot dip metal coating method
US3074447A (en) * 1961-04-17 1963-01-22 Bombardler Joseph Armand Motor vehicle for cutting, loading and transporting trees
US3260577A (en) * 1961-12-20 1966-07-12 Nat Steel Corp Coated product and its manufacture
US3330690A (en) * 1962-12-13 1967-07-11 Armco Steel Corp Production of heavy metallic coatings on metallic strands
US3369923A (en) * 1964-12-14 1968-02-20 Bethlehem Steel Corp Method of producing heavy coatings by continuous galvanizing
US3607366A (en) * 1968-11-14 1971-09-21 Yawata Iron & Steel Co Removal of excess molten metal coatings by gas blast without ripple formations on coated surfaces
US4476806A (en) * 1982-08-31 1984-10-16 The United States Of America As Represented By The Secretary Of The Air Force Wet film applicator
US5254166A (en) * 1991-03-06 1993-10-19 John Lysaght (Australia) Limited Strip coating device having jet strippers to control coating thickness

Similar Documents

Publication Publication Date Title
US3056694A (en) Galvanizing process
US3607366A (en) Removal of excess molten metal coatings by gas blast without ripple formations on coated surfaces
US4330574A (en) Finishing method for conventional hot dip coating of a ferrous base metal strip with a molten coating metal
US3951633A (en) Method for producing patterned glass on a float ribbon
US4444814A (en) Finishing method and means for conventional hot-dip coating of a ferrous base metal strip with a molten coating metal using conventional finishing rolls
US2992941A (en) Exit machine for coating apparatus and method of controlling coating thickness
CA1124142A (en) Finishing method and apparatus for conventional hot dip coating of a ferrous base metal strip with a molten coating metal
US3808033A (en) Continuous metallic strip hot-dip metal coating apparatus
CN109097534B (en) Very thin precise stainless steel strip busbar bright annealing technology
US1930601A (en) Metal coating apparatus
US2034348A (en) Nonspangled galvanized sheet
US4513033A (en) Differentially coated galvanized steel strip and method and apparatus for producing same
US2708171A (en) Method of controlling coating thickness in continuous galvanizing
US3322558A (en) Galvanizing
US3323940A (en) Method for producing smooth galvanized sheet
US2894856A (en) Apparatus for and method of controlling the coating thickness in continuous galvanizing
US3619247A (en) Method of producing thin, bright unspangled galvanized coatings on ferrous metal strips
US3756844A (en) Zed spangle produkt controlling cooling of galvanized strip in process of forming minimiz
US2160864A (en) Producing galvanized metal sheets or articles
US2950991A (en) Method and apparatus for coating ferrous metal with aluminum
US3322560A (en) Control of spangle in hot dip galvanizing
US3608520A (en) Coating apparatus
US3523815A (en) Method for producing a uniform metallic coating on wire
US3369923A (en) Method of producing heavy coatings by continuous galvanizing
US4528935A (en) Differentially coated galvanized steel strip and method and apparatus for producing same