US2957748A - Production of fibers and threads having high dyestuff affinity from polyacrylonitrile - Google Patents
Production of fibers and threads having high dyestuff affinity from polyacrylonitrile Download PDFInfo
- Publication number
- US2957748A US2957748A US756545A US75654558A US2957748A US 2957748 A US2957748 A US 2957748A US 756545 A US756545 A US 756545A US 75654558 A US75654558 A US 75654558A US 2957748 A US2957748 A US 2957748A
- Authority
- US
- United States
- Prior art keywords
- dimethylformamide
- fibers
- polyacrylonitrile
- threads
- stretching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/18—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
Definitions
- the iuvention' relates especially to the production of fibers Vand threads with high dyestuff affinity from polyacrylonitrile by spinning solutions of polyacrylonitrile in dimethylformamide with the interposition of an air stretch into a precipitating bath of dimethylformamide and water andstretching the spun tow after passing through the precipitating bath under defined conditions in three baths of water yand dimethylformamide.
- the Wet-spun threads almost always have a curved kidney-shapedV cross-section. In so far as they consist of pure polyacrylonitrile, they can only be dyed with difficulty. At least it is necessary to apply special dyeing methods, such as the cuprous ion method. In order to achieve deep full dyeings by the ordinary dyeing methods, it has hitherto been necessary to prepare copolymers with monomershaving affinity for dyestuffs.
- the object of the present invention is the production of fibers and threads having high dyestuff affinity from pure polyacrylonitrile.
- Ihe object of the invention is achieved by a wet spinning process according to which a solution of polyacrylonitrile in dimethylformamide is spun, with the interposition of an :air stretch, into a precipitating bath of dimethylformamide and water with a dimethylformamide content of 60 to 85%. After passing through the precipitating bath, the spun tow is then stretched in three successive baths of water and dimethylformamide of which the first lhas a dimethylformamide content of 2 to 20%, preferably 5 to 10%, the dimethylformamide concentration of the three stretching baths decreasing in the direction of the withdrawal of the thread in the ratio of approximately 1:0.5:0.01.
- the ldrawing represents a diagrammatic illustration showing the formation of the fibers and their passage through the coagulating bath ⁇ and the stretching baths.
- the method of operation may be as follows: A 20% solution of pure polyacrylonitrile in dimethylformamide is supplied from a container which is under oxygen-free nitrogen, by means of a metering pump, to a jet having several hundred holes. The jet is Y2,957,748 Patented Oct. 25, 1960 ice built into a spinning aggregate which has become known under the name of Thiele spinning funnel. The spinning funnel is arranged with its outlet dipping into a bath of dimethylformamide and Water. Behind this precipitating bath there are arranged three stretching baths of aqueous dimethylformamide. The spun tow is led continuously through the 4-bath arrangement. When preparing fibers, the staple fibers fall into a hot water aftertreatment bath to which brightening agents may be added.
- the spinning solution When the spinning solution leaves the jet, it rst passes through an air space between the jet and the surface of the precipitating liquid of 3 to 20 millimeters, the individual threads of the spinning solution being subjected to a certain pull in a manner analogous to that applied in dry-spinning.
- the precipitating liquid which is led in circulation, embraces the threads and draws them through the spinning funnel into the precipitating bath arranged beneath the same.
- the dimethylformamide content of the precipitating liquid in this bath should preferably amount to 60 to 85%.
- the tow is prestretched in the spinning funnel.
- the tow is stretched in the following three baths.
- the first stretching bath should have a dimethylformamide content of 2 to 20%, preferably 5 to 10%, and the dimethylformamide content of the three stretching baths should decrease in a ratio of approximately l:1/2:l/ 100.
- the stretching baths may have any temperature between room temperature and 100 C.
- the first stretching bath is preferably at room temperature and the other two at about 100 C.
- the aqueous dimethylformamide solutions of the baths moves inY countercurrent to the movement of the tow.
- the pH of the stretching baths should increase within a range of from 5 to 7.
- Brightening agents and also water-softening agents may be added to the stretching baths. It is usual to stretch to a ratio of 1:5. Higher stretching ratios, for example, 1:7 may also be provided.
- the residence times of the spun tow in the stretching baths should be in a definite gradation to each other in a similar way to the dimethylformamide concentration of the baths.
- the fibers are with advantage subjected to a hot water treatment with or without the addition of a brightening agent. A Avery fine crimping is thereby obtained.
- the fibers thus prepared have a circular or almost circular cross-section as an obvious feature of difference from all hitherto known commercial types of fiber from pure polyacrylonitrile or acrylonitrile copolymers.
- the high dyestuff afiinity of the threads of fibers prepared according to this invention is probably caused by a large number of submicroscopic cavities. This is indicated by the relatively great inner surface and the small mean pore diameter of the filaments. If the inner surface of the hitherto known types of polyacrylonitrile fibers is assumed to be about 8 square meters per gram, the inner surface of the fibers of the process according to this invention is about ten times as large, i.e. about square meters per gram. In a corresponding way, with a mean pore diameter of the known types of fiber of about 40 millimicrons, the mean pore diameter of the fibers prepared according to this invention amounts to only one quarter, namely about millimicrons.
- the threads or bers can be dyed in full shades with basic dyestufs, for example Rhodamin B extra (Color Index, 2nd edition 1956, No. 45,170), both in a sulfuric acid bath with the addition of sodium sulfate or in an acetic acid bath with the addition of sodium acetate. It is even possible to achieve almost equally deep shades in cold dyestui liquors, a possibility which is not available with pure polyacrylonitrile bers wihch have been dry-spun and 4after-stretched wet or with acrylonitrile copolymers. Dyeing may be carried out in a similarly favorable way with dispersion dyestuffs. Cold dyeing gives somewhat paler shades of color. As compared with the commercial types of fibers from pure acrylonitrile and copolymers, however, even here a clearly better dyestut affinity can be recognized.
- basic dyestufs for example Rhodamin B extra (Color Index, 2nd edition 1956, No
- Example A solution of polyacrylonitrile in dimethylformamide is supplied by means of a metering pump to a jet with 300 holes each hole having a diameter of 0.25 millimeter.
- the jet is built into a Thiele spinning funnel aggregate. Beneath the spinning funnel there is a precipitating bath in a channel. When the spinning funnel is in operation, the column of precipitating liquid is about 75 centimeters in height. The length of the bath is so dimensioned that the spun tow can travel in the bath a distance of 1 meter.
- a conveying output of the spinning pump of 41 grams per minute and taking into consideration the total jet cross-section of the 300- hole jet, an exit speed of 2.8 meters per minute is achieved.
- the draw-off speed of the spun tow amounts to 18 meters per minute, making a stretch of 645% of the original length.
- the precipitating bath has a dimethylformamide concentration of 74.2%, a pH of 5.2 and a temperature of 16 C.
- the spun tow is led by means of drawing means through three successive stretching baths (bath length 450 centimeters).
- the bath temperature, dimethylformamide content, pH value and residence time of the tow in the baths m-ay be seen from the following table:
- the fibers may be dyed well in deep, full shades with the basic dyestuff Rhodamin B extra (ibid.) (1% concentration with reference to air-dried fibers) in a sulfuric acid bath with the addition of sodium sulfate at a fiber at bath ratio of 1:50 in 2 hours at 20 C. The shade of color deepens at a higher bath temperature.
Landscapes
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Artificial Filaments (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2957748X | 1957-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2957748A true US2957748A (en) | 1960-10-25 |
Family
ID=8017556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US756545A Expired - Lifetime US2957748A (en) | 1957-08-28 | 1958-08-22 | Production of fibers and threads having high dyestuff affinity from polyacrylonitrile |
Country Status (5)
Country | Link |
---|---|
US (1) | US2957748A (da) |
BE (1) | BE570682A (da) |
DE (1) | DE1049530B (da) |
FR (1) | FR1202492A (da) |
NL (1) | NL230811A (da) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3080210A (en) * | 1961-12-01 | 1963-03-05 | Monsanto Chemicals | Spinning of acrylonitrile polymers |
US3088793A (en) * | 1958-12-29 | 1963-05-07 | Monsanto Chemicals | Spinning of acrylonitrile polymers |
US3104938A (en) * | 1961-12-18 | 1963-09-24 | American Cyanamid Co | Process of producing shaped structures from an acrylonitrile polymerization product |
US3193603A (en) * | 1962-08-13 | 1965-07-06 | Monsanto Co | Production of acrylic fibers by spinning into a high solvent, low temperature spin bath |
US3193602A (en) * | 1962-08-13 | 1965-07-06 | Monsanto Co | Process for the production of flame retarded acrylic fibers |
US3422492A (en) * | 1965-02-23 | 1969-01-21 | Heplon Inc | Apparatus for stretching and crimping fibers |
US3496263A (en) * | 1965-07-21 | 1970-02-17 | Asahi Chemical Ind | Process for the recovery of n,n-dimethylformamides of n,n - dimethylacetamides from waste gases in the dry spinning of polyacrylonitrile by water contact and condensing |
FR2166120A1 (da) * | 1971-12-28 | 1973-08-10 | Hoechst Ag | |
FR2166121A1 (da) * | 1971-12-28 | 1973-08-10 | Hoechst Ag | |
US3760054A (en) * | 1969-09-08 | 1973-09-18 | Du Pont | Process for preparing porous aromatic polyamide fibers |
EP0045556A2 (en) * | 1980-08-06 | 1982-02-10 | van den Haak, Rob | An anchor rack |
US4659529A (en) * | 1983-04-20 | 1987-04-21 | Japan Exlan Company, Ltd. | Method for the production of high strength polyacrylonitrile fiber |
US4818458A (en) * | 1985-11-26 | 1989-04-04 | Japan Exlan Company Limited | Method of producing acrylic fibers |
US4873142A (en) * | 1986-04-03 | 1989-10-10 | Monsanto Company | Acrylic fibers having superior abrasion/fatigue resistance |
US4917836A (en) * | 1985-11-18 | 1990-04-17 | Toray Industries, Inc. | Process for producing high-strength, high-modulus carbon fibers |
US20040155377A1 (en) * | 1999-06-25 | 2004-08-12 | Mitsubishi Rayon Co., Ltd. | Acrylic fiber and a manufacturing process therefor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2721785A (en) * | 1950-11-09 | 1955-10-25 | Allied Chem & Dye Corp | Acrylonitrile-styrene copolymer filaments and process of producing same |
US2723900A (en) * | 1952-12-03 | 1955-11-15 | Ind Rayon Corp | Spinning of acrylonitrile polymers |
-
0
- NL NL230811D patent/NL230811A/xx unknown
- DE DENDAT1049530D patent/DE1049530B/de active Pending
- BE BE570682D patent/BE570682A/xx unknown
-
1958
- 1958-08-22 US US756545A patent/US2957748A/en not_active Expired - Lifetime
- 1958-08-25 FR FR1202492D patent/FR1202492A/fr not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2721785A (en) * | 1950-11-09 | 1955-10-25 | Allied Chem & Dye Corp | Acrylonitrile-styrene copolymer filaments and process of producing same |
US2723900A (en) * | 1952-12-03 | 1955-11-15 | Ind Rayon Corp | Spinning of acrylonitrile polymers |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3088793A (en) * | 1958-12-29 | 1963-05-07 | Monsanto Chemicals | Spinning of acrylonitrile polymers |
US3080210A (en) * | 1961-12-01 | 1963-03-05 | Monsanto Chemicals | Spinning of acrylonitrile polymers |
US3104938A (en) * | 1961-12-18 | 1963-09-24 | American Cyanamid Co | Process of producing shaped structures from an acrylonitrile polymerization product |
US3193603A (en) * | 1962-08-13 | 1965-07-06 | Monsanto Co | Production of acrylic fibers by spinning into a high solvent, low temperature spin bath |
US3193602A (en) * | 1962-08-13 | 1965-07-06 | Monsanto Co | Process for the production of flame retarded acrylic fibers |
US3422492A (en) * | 1965-02-23 | 1969-01-21 | Heplon Inc | Apparatus for stretching and crimping fibers |
US3496263A (en) * | 1965-07-21 | 1970-02-17 | Asahi Chemical Ind | Process for the recovery of n,n-dimethylformamides of n,n - dimethylacetamides from waste gases in the dry spinning of polyacrylonitrile by water contact and condensing |
US3760054A (en) * | 1969-09-08 | 1973-09-18 | Du Pont | Process for preparing porous aromatic polyamide fibers |
FR2166121A1 (da) * | 1971-12-28 | 1973-08-10 | Hoechst Ag | |
FR2166120A1 (da) * | 1971-12-28 | 1973-08-10 | Hoechst Ag | |
EP0045556A2 (en) * | 1980-08-06 | 1982-02-10 | van den Haak, Rob | An anchor rack |
EP0045556A3 (en) * | 1980-08-06 | 1982-02-17 | Rob Van Den Haak | An anchor rack |
US4659529A (en) * | 1983-04-20 | 1987-04-21 | Japan Exlan Company, Ltd. | Method for the production of high strength polyacrylonitrile fiber |
US4917836A (en) * | 1985-11-18 | 1990-04-17 | Toray Industries, Inc. | Process for producing high-strength, high-modulus carbon fibers |
US4818458A (en) * | 1985-11-26 | 1989-04-04 | Japan Exlan Company Limited | Method of producing acrylic fibers |
US4873142A (en) * | 1986-04-03 | 1989-10-10 | Monsanto Company | Acrylic fibers having superior abrasion/fatigue resistance |
US20040155377A1 (en) * | 1999-06-25 | 2004-08-12 | Mitsubishi Rayon Co., Ltd. | Acrylic fiber and a manufacturing process therefor |
Also Published As
Publication number | Publication date |
---|---|
NL230811A (da) | |
DE1049530B (de) | 1959-01-29 |
FR1202492A (fr) | 1960-01-11 |
BE570682A (da) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2957748A (en) | Production of fibers and threads having high dyestuff affinity from polyacrylonitrile | |
US4659529A (en) | Method for the production of high strength polyacrylonitrile fiber | |
Imura et al. | Dry spinning of synthetic polymer fibers | |
US3215486A (en) | Fixation of polypropylene fibers impregnated with dyestuffs and other treating agents | |
CA1170011A (en) | High-modulus polyacrylonitrile filaments and fibers and a process for their production | |
US3650884A (en) | Polyamide monofilament having a microporous surface layer | |
CN112941657B (zh) | 一种聚对苯撑苯并二噁唑纤维纺丝成形方法 | |
US3341645A (en) | Method of producing viscose rayon staple and a spinning apparatus for use in the method | |
CN107829160A (zh) | 一种无染锦纶66工业色丝及其制备方法 | |
US4338277A (en) | Process for producing high knot strength polyamide monofilaments | |
US3944708A (en) | Synthetic fibers and process for making same | |
CN109234821A (zh) | 一种金咖啡纤维的生产工艺 | |
US2768870A (en) | Production of artificial filaments and other materials | |
CN103741241B (zh) | 有色fdy强力纤维的切片纺丝加工工艺 | |
US3944386A (en) | Process for dyeing filaments of acrylic polymer | |
US3111357A (en) | Method of dyeing aquagel acrylonitrile polymer fibers by stretching in a heated aqueous dye bath | |
US3846532A (en) | Continuous spinning and stretching process of the production of polyamide-6 filaments | |
KR900003445A (ko) | 채색된 아라미드 섬유 | |
DE3105360C2 (de) | Verfahren zur Herstellung hochfester Fäden aus Polyacrylnitril | |
DE19944029A1 (de) | Garne aus Polymermischungsfasern oder -filamenten auf der Basis von Polyethylen-, Polybutylen- und Polytrimethylenterephthalat sowie deren Verwendung | |
US3410940A (en) | Mist spinning process | |
US2988419A (en) | Process for spinning and drying fibers of a polymer containing a significant amount of acrylonitrile polymerized therein | |
CN108149341A (zh) | 一种易染海岛ptt长丝及其制备方法 | |
US2267055A (en) | Production of regenerated cellulose yarn | |
US3932571A (en) | Process for dyeing undrawn acrylonitrile polymer filaments |