US2954843A - Pocket shot separator - Google Patents

Pocket shot separator Download PDF

Info

Publication number
US2954843A
US2954843A US671178A US67117857A US2954843A US 2954843 A US2954843 A US 2954843A US 671178 A US671178 A US 671178A US 67117857 A US67117857 A US 67117857A US 2954843 A US2954843 A US 2954843A
Authority
US
United States
Prior art keywords
particles
chamber
pocket
conveying medium
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US671178A
Inventor
Brzeski Jerzy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Babcock and Wilcox Co
Original Assignee
Babcock and Wilcox Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock and Wilcox Co filed Critical Babcock and Wilcox Co
Application granted granted Critical
Publication of US2954843A publication Critical patent/US2954843A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0065Separating solid material from the gas/liquid stream by impingement against stationary members

Definitions

  • This invention relates to separators for separating solid particles from gaseous particle conveying medium and while of wider application, is of utility in connection with apparatus such as that described in the complete specification of British Patent No. 745,556 for cleaning the surfaces of heat exchange means.
  • solid cleaning particles are showered upon heat exchange surfaces disposed in an upright heating gas-pass, are collected at the bottom of the pass and are elevated by a gaseous particle conveying medium for re-use, the particles being separated from the conveying medium by directing the medium and entrained particles within a separator towards an impact plate.
  • the particles are in the form of steel pellets or shot and cleaning systems of the nature indicated are frequently termed shot cleaning systems.
  • the separator target plate is particularly prone to wear and, in addition, impact of the particles with the target plate tends to result indeterioration of the particles from the point of view of their cleaning action, due to breakage of particles.
  • Separators in accordance with the invention enable breakage of the cleaning particles and wear in the separators due to the particles to be reduced.
  • a tubulous inlet to the separator is arranged to direct the conveying medium and particles upwardly from a location outside a pocket towards a closed end of the pocket which is adapted to eifect a reversal of particle flow and discharge of the particles downwardly from the pocket into a space within a particle receiving chamber.
  • the extremity of the tubulous inlet is spaced from the inlet to the pocket.
  • Figure 1 is a sectional side elevation of a separator for separating solid particles from gaseous particle conveying medium
  • Figure 2 is a front elevation of a separator similar to that of Figure l but having two inlets for entrained particles and conveying medium associated with respective pockets and particle outlets, and showing alternative arrangements of piping for conveying entrained particles to the separator; and
  • Figure 3 is a sectional side elevation of a modified form of separator.
  • a particle receiving chamber 1 is provided solid particles such as shot as indicated by the arrow 13.
  • the bottom 10 of the chamber 1 is formed as a sloping floor and the tubular inlet 2 extends into the chamber 1 through the bottom 10 and terminates upwardly thereof.
  • the tubular inlet 2 is disposed below a pocket 4 formed in the top of the chamber 1 and comprising a tube 3 open at its lower or inlet end and of large diameter relative to the tubular inlet 2.
  • the plate 6 is suitably formed of mild steel and is retained on the flange 7 by bolts (not shown) in order to facilitate replacement thereof.
  • the inner or impact surface of the plate 6 is disposed normally or substantially normally to the longitudinal axis of the tubular inlet 2 and suitably is faced with resilient material 6 to reduce wear and deformation of the plate, for example, if the temperature to which the plate is subjected does not exceed 250 F., high latex rubber may be used as the resilient material.
  • the pocket 4 is disposed partly outside the chamber 1 with the tube 3 extending partly downwardly below and partly upwardly above the top of the chamber.
  • the tube 3 is formed intermediate its ends with a flange 8 whereby the tube 3 is secured to the top of the chamber by bolts (not shown).
  • the sloping floor 10 of the chamber 1 is downwardly inclined towards a downwardly inclined particle outlet 9 formed at one side of the chamber as a continuation of the slope of the floor 10.
  • the tubular inlet 2 terminates above the floor 10 so that particles may move down the slope of the floor 10 and through the outlet 9 as is shown by the arrow '14 without obstructing the inlet 2.
  • the chamber 1 is provided with an upper outlet 11 for the outflow as shown by the arrow 5 of gaseous conveying medium such as air through an up wardly directed outlet passage 12 spaced sidewardly from and extending parallel to the tube 3 of the pocket 4.
  • gaseous conveying medium such as air
  • conveying medium and entrained particles are discharged upwardly from the tubular inlet 2 at a location outside the pocket 4 into the pocket 4 where some of the particles impinge on the impact plate 6 so that the direction of flow of the particles is re.
  • the pocket 4 contains a mass of particles the kinetic energy of which is largely dissipated by collision between particles in the enclosed mass.
  • the velocity of particles reaching the target plate is low and erosion of the target plate is relatively slight.
  • the breakage of particles is minimized.
  • the conveying medium flows from the inlet 2 in a generally radially outward direction and the particles falling from the pocket 4 are thrown outwardly and fall to the bottom of the chamber onto the sloping floor 10.
  • the particles falling to the floor 10 accumulate and pass down the inclined surface, without obstructing flow from the tubular inlet 2, to the particle outlet 9.
  • the conveying medium leaves the chamber through the upright outlet passage .12 and owing to a double flow reversal which takes place within the chamber due to upward flow into the pocket 4, downward flow therefrom and upward flow through the passage 12 the tendency for particles to be carried with the outflow of conveying medium is minimized.
  • the chamber 1 may be adapted to serve as a storage hopper, in which case the particle outlet is suitably provided with a shut-off valve, of the nature disclosed, for
  • pellets may accumulate above the lower part of the inclined floor without obstructing the tubular inlet 2.
  • the chamber In an arrangement in. which the chamber is adapted to serve as a storage hopper it may have a plurality of tubular inlets arranged to'direct conveying medium and particles towards the closed ends of respective pockets.
  • upright tubular inlets 20 and 21 are arranged to discharge upwardly into a chamber within the casing 22 and into re spective pockets 23 and 24.
  • the chamber is formed with an upright upwardly extending outlet 25 for the outflow of conveying fluid as shown by the arrow 37, and respective downwardly inclined particle outlets 26 and 27 for the outflow of streams of particles as shown by the arrows 39, 38;
  • the chamber may be provided with a single particle outlet connected, for example, to particle distributing means.
  • each tubular inlet is connected with mixing means for effecting entrainment of particles by conveying medium by a pipe extending upwardly and without bends from the mixingmeans to the tubular inlet.
  • a pipe 28 extends upwardly without bends from mixing means 29 adapted for the admission of particles downwardly as shown by the arrow 36 and of conveying medium upwardly as shown by the arrow 35. Since there are no bends, wear on the pipe is minimized.
  • each tubular inlet may be connected with mixing means for effecting entrainment of particles by gaseous carrier medium by a pipe extending upwardly and with a single bend from the mixing means to the tubular inlet, which bend is readily replaceable.
  • mixing means 30 are adapted for the downward admission of particles as shown by the arrow 33 and for the admission of conveying medium as shown by the arrow 34 and have an outlet 29 for conveying medium and entrained particles.
  • the outlet 29 is con nected to one end of a bent pipe 31 which is connected at its other end with a straight upright pipe 32 extending upwardly to the tubular inlet 21.
  • the arrangement using a. pipe without bends extending between mixing means and the tubular inlet to a particle separating chamber is advantageously employed when the mixing means may be disposed vertically below the separating means, whereas the arrangement utilizing a single bend is advantageously employedwhen the mixing means are spaced sidewardly from the separating means and the provision of a bend enables a straight upright duct to extend from the bend to the particle separator.
  • the common axis of a tubular inlet 4%? and a particle receiving pocket 41 is inclined and the chamber 42 is formed with a lower downwardiy directed particle outlet 43 and an upper upwardly directed outlet 44 for conveying medium.
  • the chamber 42 is formed as upper and lower parts 45 and 46 of frustoconical form united at their wider ends by a cylindrical part 47, the outlets 43 and 44 andthe parts 45, 46 and 47 of the chamber 45 being coaxially arranged.
  • particles falling from the pocket 41 accumulate on a downwardly convergent floor to the chamber provided by the frusto-conical part 46 above the particle outlet 43.
  • the inclination of the tubular inlet 40 andtthe pocket 41 serves to obviate the need for bends in a. pipe extendrng from mixing means to the tubular inlet 40 where by :rnclining the inlet 45 and the associated mixing means a :straight pipe may extend therebetween.
  • the discharge from .-the shut-off valve may be to ,a distributor for directing 4 particles through respective pipes to a plurality of particle scattering means disposed above the heat exchange surfaces to be cleaned.
  • the chamber when the chamber is arranged to discharge the particles directly they are sepa-. rated, the chamber may be provided with a plurality of outlets leading through respective pipes to a plurality of scattering means disposed above the surfaces to be cleaned.
  • Apparatus for separating solid particles from gaseous particle conveying medium comprising walls defining a chamber having a gaseous conveying medium outlet in the upper portion and at least one solid particle outlet in the lower portion thereof, a tubular inlet pipe of substantially uniform cross-section flow area for the discharge therefrom of a mixture of solid particles and a gaseous conveying medium into said chamber, and a cylindrical member coaxial with said tubular inlet pipe and having a closed end and an open end, said open end being axially spaced from the discharge end of said inlet pipe within said chamber, said cylindrical member beingof increased cross-section as compared with the cross-section of said tubular inlet and having its closed end portion projecting beyond a wall of said chamber, said member being detachably secured to a wall of said chamber and defining a pocket to reverse the direction of movement of said solid particles and conveying'medium while in contact with a continually changing suspension mixture of said particles and medium to separate the particlesfromthe conveying medium.
  • Apparatus for separating solid particles from gaseous particle conveying medium comprising walls defining a chamber having a gaseous conveying medium outlet in the upper portion and at least one solid particle outlet in thelower portion thereof, a tubular inlet pipe of substantially uniformcross-section flow areafor the discharge therefrom of a mixture of solid particles and a gaseous conveying medium into said chamber, and a cylindrical member coaxial with said tubular inlet pipe and having a closed end and an open end,.said open end being axially spaced from the discharge end of said inlet pipe within said chamber, said closed end being replaceably secured to said cylindrical member, said cylindrical member being of increased cross-section as comparedwith the crosssection of said tubular inlet and having its closed end portion projecting beyond said chamber, said member being detachably secured to a wall of-said chamber and defining a pocket to reverse the .direction of movement .of.said solid particles and conveying medium while in contact with a continually changing suspension mixture of said particles and medium to separate the particles from the convey
  • Apparatus for separating solid particles from gaseous particle conveying medium comprising" walls'defining a chamber having a gaseous conveying medium .outlet in the upper portion and at least one solid particle outlet in the lower portion thereof, a-tubular inlet pipe of substantially uniform cross-section flow area for thedischarge therefrom of a mixture of solid particles. and a gaseous conveying medium into said chamber, and a.
  • cylindrical member coaxial with said tubular inlet pipeand having a closed end and an open end, said open end being axially spaced from the discharge end of said inlet pipe-within said chamber, said closed end being replaceably secured ing ofgincreased cross-section as compared with the crosssection of said tubular inlet and having its closed upper end portion projecting beyond said chamber, said member being detachably secured to a wall of said chamber and defining a pocket to reverse the direction of movement of said solid particles and conveying medium while in contact with a continually changing suspension mixture of said particles and medium to separate the particles from the conveying medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

Oct. 4, 1960 I J. BRZESKI 2,954,843
POCKET SHOT SEPARATOR Filed July 11, 1957 2 Sheets-Sheet '1 SHOT AND AIR INVENTOR. Jerzy Brzeski ATTORNEY Filed July 11, 1957 2 Sheets-Sheet 2 INVENTOR.
Jerzy Brzeski AT TORNEY United States Patent 9 POCKET snor SEPARATOR Ierzy Brzeski, Glasgow, Scotland, assignor to The Babcock & Wilcox Company, New York, N.Y., a corporation of New York Filed July 11, 1957, Ser. No. 671,178
Claims priority, application Great Britain July '18, 1956 3 Claims. (Cl. 183-94) This invention relates to separators for separating solid particles from gaseous particle conveying medium and while of wider application, is of utility in connection with apparatus such as that described in the complete specification of British Patent No. 745,556 for cleaning the surfaces of heat exchange means. In the cleaning system described in the said specification, solid cleaning particles are showered upon heat exchange surfaces disposed in an upright heating gas-pass, are collected at the bottom of the pass and are elevated by a gaseous particle conveying medium for re-use, the particles being separated from the conveying medium by directing the medium and entrained particles within a separator towards an impact plate. Suitably, the particles are in the form of steel pellets or shot and cleaning systems of the nature indicated are frequently termed shot cleaning systems.
"In the operation of a shot cleaning system, considerable expense and inconvenience are liable to arise due to wear of parts of the pneumatic conveying system particularity at locations where change of direction of the particles occurs, and reduction of wear and facilities for replacement of parts liable to wear are matters of considerable importance.
The separator target plate is particularly prone to wear and, in addition, impact of the particles with the target plate tends to result indeterioration of the particles from the point of view of their cleaning action, due to breakage of particles. Separators in accordance with the invention enable breakage of the cleaning particles and wear in the separators due to the particles to be reduced. In a separator for separating solid particles from gas- "eous particle conveying medium according to the present invention a tubulous inlet to the separator is arranged to direct the conveying medium and particles upwardly from a location outside a pocket towards a closed end of the pocket which is adapted to eifect a reversal of particle flow and discharge of the particles downwardly from the pocket into a space within a particle receiving chamber. Preferably the extremity of the tubulous inlet is spaced from the inlet to the pocket.
The invention will now be described, by way of example, with reference to the accompanying diagrammatic drawings, in which:
7 Figure 1 is a sectional side elevation of a separator for separating solid particles from gaseous particle conveying medium;
Figure 2 is a front elevation of a separator similar to that of Figure l but having two inlets for entrained particles and conveying medium associated with respective pockets and particle outlets, and showing alternative arrangements of piping for conveying entrained particles to the separator; and
Figure 3 is a sectional side elevation of a modified form of separator.
' In Figure 1 a particle receiving chamber 1 is provided solid particles such as shot as indicated by the arrow 13. The bottom 10 of the chamber 1 is formed as a sloping floor and the tubular inlet 2 extends into the chamber 1 through the bottom 10 and terminates upwardly thereof. The tubular inlet 2 is disposed below a pocket 4 formed in the top of the chamber 1 and comprising a tube 3 open at its lower or inlet end and of large diameter relative to the tubular inlet 2. The tube 3 and attached to a flange 7 formed on the tube 3. The plate 6 is suitably formed of mild steel and is retained on the flange 7 by bolts (not shown) in order to facilitate replacement thereof. The inner or impact surface of the plate 6 is disposed normally or substantially normally to the longitudinal axis of the tubular inlet 2 and suitably is faced with resilient material 6 to reduce wear and deformation of the plate, for example, if the temperature to which the plate is subjected does not exceed 250 F., high latex rubber may be used as the resilient material.
The pocket 4 is disposed partly outside the chamber 1 with the tube 3 extending partly downwardly below and partly upwardly above the top of the chamber. The tube 3 is formed intermediate its ends with a flange 8 whereby the tube 3 is secured to the top of the chamber by bolts (not shown). I
The sloping floor 10 of the chamber 1 is downwardly inclined towards a downwardly inclined particle outlet 9 formed at one side of the chamber as a continuation of the slope of the floor 10. The tubular inlet 2 terminates above the floor 10 so that particles may move down the slope of the floor 10 and through the outlet 9 as is shown by the arrow '14 without obstructing the inlet 2.
The chamber 1 is provided with an upper outlet 11 for the outflow as shown by the arrow 5 of gaseous conveying medium such as air through an up wardly directed outlet passage 12 spaced sidewardly from and extending parallel to the tube 3 of the pocket 4.
In operation, conveying medium and entrained particles are discharged upwardly from the tubular inlet 2 at a location outside the pocket 4 into the pocket 4 where some of the particles impinge on the impact plate 6 so that the direction of flow of the particles is re.-
versed. As a result, the pocket 4 contains a mass of particles the kinetic energy of which is largely dissipated by collision between particles in the enclosed mass. Thus the velocity of particles reaching the target plate is low and erosion of the target plate is relatively slight. Moreover, the breakage of particles is minimized.
The conveying medium flows from the inlet 2 in a generally radially outward direction and the particles falling from the pocket 4 are thrown outwardly and fall to the bottom of the chamber onto the sloping floor 10. The particles falling to the floor 10 accumulate and pass down the inclined surface, without obstructing flow from the tubular inlet 2, to the particle outlet 9.
The conveying medium leaves the chamber through the upright outlet passage .12 and owing to a double flow reversal which takes place within the chamber due to upward flow into the pocket 4, downward flow therefrom and upward flow through the passage 12 the tendency for particles to be carried with the outflow of conveying medium is minimized.
It is found that excellent separation of particles from the conveying medium is obtained and the impact plate may readily be removed for inspection or replacement.
The chamber 1 may be adapted to serve as a storage hopper, in which case the particle outlet is suitably provided with a shut-off valve, of the nature disclosed, for
example, in British Patent No. 745,620. In operation, pellets may accumulate above the lower part of the inclined floor without obstructing the tubular inlet 2.
In an arrangement in. which the chamber is adapted to serve as a storage hopper it may have a plurality of tubular inlets arranged to'direct conveying medium and particles towards the closed ends of respective pockets.
Thus, in the arrangement shown inv Figure 2, upright tubular inlets 20 and 21 are arranged to discharge upwardly into a chamber within the casing 22 and into re spective pockets 23 and 24. The chamber is formed with an upright upwardly extending outlet 25 for the outflow of conveying fluid as shown by the arrow 37, and respective downwardly inclined particle outlets 26 and 27 for the outflow of streams of particles as shown by the arrows 39, 38; Alternatively, the chamber may be provided with a single particle outlet connected, for example, to particle distributing means.
Suitably, each tubular inlet is connected with mixing means for effecting entrainment of particles by conveying medium by a pipe extending upwardly and without bends from the mixingmeans to the tubular inlet. Thus in Figure '2 a pipe 28 extends upwardly without bends from mixing means 29 adapted for the admission of particles downwardly as shown by the arrow 36 and of conveying medium upwardly as shown by the arrow 35. Since there are no bends, wear on the pipe is minimized.
Alternatively, each tubular inlet may be connected with mixing means for effecting entrainment of particles by gaseous carrier medium by a pipe extending upwardly and with a single bend from the mixing means to the tubular inlet, which bend is readily replaceable.
Thus in Figure 2 mixing means 30 are adapted for the downward admission of particles as shown by the arrow 33 and for the admission of conveying medium as shown by the arrow 34 and have an outlet 29 for conveying medium and entrained particles. The outlet 29 is con nected to one end of a bent pipe 31 which is connected at its other end with a straight upright pipe 32 extending upwardly to the tubular inlet 21. With this arrangement, although wear will occur it will be mainly limited to the bend and the worn part may easily be replaced without disturbing the mixing means 30 or the pipe 32.
The arrangement using a. pipe without bends extending between mixing means and the tubular inlet to a particle separating chamber is advantageously employed when the mixing means may be disposed vertically below the separating means, whereas the arrangement utilizing a single bend is advantageously employedwhen the mixing means are spaced sidewardly from the separating means and the provision of a bend enables a straight upright duct to extend from the bend to the particle separator.
in the embodiment shown in Figure 3, the common axis of a tubular inlet 4%? and a particle receiving pocket 41 is inclined and the chamber 42 is formed with a lower downwardiy directed particle outlet 43 and an upper upwardly directed outlet 44 for conveying medium.- The chamber 42 is formed as upper and lower parts 45 and 46 of frustoconical form united at their wider ends by a cylindrical part 47, the outlets 43 and 44 andthe parts 45, 46 and 47 of the chamber 45 being coaxially arranged. In operation particles falling from the pocket 41 accumulate on a downwardly convergent floor to the chamber provided by the frusto-conical part 46 above the particle outlet 43.
The inclination of the tubular inlet 40 andtthe pocket 41 serves to obviate the need for bends in a. pipe extendrng from mixing means to the tubular inlet 40 where by :rnclining the inlet 45 and the associated mixing means a :straight pipe may extend therebetween.
Separators of the nature described are advantageously used in connection with particle scattering means disposed above heat exchange surfaces to be cleaned. In the case of a chamber adapted to serve as a storage hopper and fitted at its outlet with a shut-off valve, the discharge from .-the shut-off valve may be to ,a distributor for directing 4 particles through respective pipes to a plurality of particle scattering means disposed above the heat exchange surfaces to be cleaned. Alternatively, when the chamber is arranged to discharge the particles directly they are sepa-. rated, the chamber may be provided with a plurality of outlets leading through respective pipes to a plurality of scattering means disposed above the surfaces to be cleaned.
While in accordance with the provisions of the statutes 1 have illustrated and described herein the best form and mode of operation of the invention now known tome, those skilled in the art will understand that changes may be made in the form of the apparatus disclosed without departing from the spirit of the invention covered by my claims, and that certain features of my invention may sometimes be used to advantage without a corresponding use of other features.
What is claimed is:
1. Apparatus for separating solid particles from gaseous particle conveying medium comprising walls defining a chamber having a gaseous conveying medium outlet in the upper portion and at least one solid particle outlet in the lower portion thereof, a tubular inlet pipe of substantially uniform cross-section flow area for the discharge therefrom of a mixture of solid particles and a gaseous conveying medium into said chamber, and a cylindrical member coaxial with said tubular inlet pipe and having a closed end and an open end, said open end being axially spaced from the discharge end of said inlet pipe within said chamber, said cylindrical member beingof increased cross-section as compared with the cross-section of said tubular inlet and having its closed end portion projecting beyond a wall of said chamber, said member being detachably secured to a wall of said chamber and defining a pocket to reverse the direction of movement of said solid particles and conveying'medium while in contact with a continually changing suspension mixture of said particles and medium to separate the particlesfromthe conveying medium.
2. Apparatus for separating solid particles from gaseous particle conveying medium comprising walls defining a chamber having a gaseous conveying medium outlet in the upper portion and at least one solid particle outlet in thelower portion thereof, a tubular inlet pipe of substantially uniformcross-section flow areafor the discharge therefrom of a mixture of solid particles and a gaseous conveying medium into said chamber, and a cylindrical member coaxial with said tubular inlet pipe and having a closed end and an open end,.said open end being axially spaced from the discharge end of said inlet pipe within said chamber, said closed end being replaceably secured to said cylindrical member, said cylindrical member being of increased cross-section as comparedwith the crosssection of said tubular inlet and having its closed end portion projecting beyond said chamber, said member being detachably secured to a wall of-said chamber and defining a pocket to reverse the .direction of movement .of.said solid particles and conveying medium while in contact with a continually changing suspension mixture of said particles and medium to separate the particles from the conveying medium. 7 a
3. Apparatus for separating solid particles from gaseous particle conveying medium comprising" walls'defining a chamber having a gaseous conveying medium .outlet in the upper portion and at least one solid particle outlet in the lower portion thereof, a-tubular inlet pipe of substantially uniform cross-section flow area for thedischarge therefrom of a mixture of solid particles. anda gaseous conveying medium into said chamber, and a. cylindrical member coaxial with said tubular inlet pipeand having a closed end and an open end, said open end being axially spaced from the discharge end of said inlet pipe-within said chamber, said closed end being replaceably secured ing ofgincreased cross-section as compared with the crosssection of said tubular inlet and having its closed upper end portion projecting beyond said chamber, said member being detachably secured to a wall of said chamber and defining a pocket to reverse the direction of movement of said solid particles and conveying medium while in contact with a continually changing suspension mixture of said particles and medium to separate the particles from the conveying medium.
References Cited in the file of this patent UNITED STATES PATENTS 293,445 Prick Feb. 12, 1884 2,172,133 Thuillard Sept. 5, 1939 2,626,141 Grossman Jan. 20, 1953 6 Kent Oct. 20, 1953 Bergstrom Jan. 19, 1954 Norris Mar. 16, 1954 Bergstrom Jan. 7, 1958 Drew Mar. 31, 1959 Bergstrom et al. Mar. 31, 1959 FOREIGN PATENTS Austria July 10, 1913 Great Britain Feb. 7, 1924 Great Britain J an. 14, 1941 Great Britain June 16, 1954 Germany Apr. 14, 1927 Belgium June 20, 1952
US671178A 1956-07-18 1957-07-11 Pocket shot separator Expired - Lifetime US2954843A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2954843X 1956-07-18

Publications (1)

Publication Number Publication Date
US2954843A true US2954843A (en) 1960-10-04

Family

ID=10918524

Family Applications (1)

Application Number Title Priority Date Filing Date
US671178A Expired - Lifetime US2954843A (en) 1956-07-18 1957-07-11 Pocket shot separator

Country Status (1)

Country Link
US (1) US2954843A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056248A (en) * 1959-07-22 1962-10-02 Metallgesellschaft Ag Separating apparatus
US10682620B1 (en) 2019-06-14 2020-06-16 X Energy, Llc. System for recovering entrained particles from an exhaust gas stream

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE507959A (en) * 1950-12-22
US293445A (en) * 1884-02-12 fbick
AT60155B (en) * 1912-04-20 1913-07-10 K E Gustav Hahn Fa Spark arrestor for locomotives, locomobiles and the like.
GB210597A (en) * 1922-12-23 1924-02-07 Albert Parker Improvements in the construction of a chimney or flue cap
DE443114C (en) * 1924-10-21 1927-04-14 Rheinische Maschinenfabrik Wind sifter with a baffle screen arranged over the mouth of the dust air tube
US2172133A (en) * 1936-12-24 1939-09-05 Thuillard Leon Separator
GB531919A (en) * 1938-07-19 1941-01-14 Celestin Triaire Improvements in and relating to cowl, aspirator or like devices for chimneys
US2626141A (en) * 1948-04-24 1953-01-20 Babcock & Wilcox Co Fluid heating apparatus
US2656009A (en) * 1951-01-29 1953-10-20 Moss A Kent Suction cleaner
US2666731A (en) * 1949-02-12 1954-01-19 Socony Vacuum Oil Co Inc Method and apparatus for hydrocarbon conversion
US2672374A (en) * 1951-07-19 1954-03-16 Houdry Process Corp Solids lift disengager
GB710619A (en) * 1951-08-25 1954-06-16 Mann & Hummel Filter New or improved separator for pneumatically conveyed granular material
US2819124A (en) * 1956-03-28 1958-01-07 Socony Mobil Oil Co Inc Method and apparatus for separating granular particles from lift gas in a pneumatic lift
US2880038A (en) * 1953-12-22 1959-03-31 Socony Mobil Oil Co Inc Gas solids separation in a pneumatic lift
US2880037A (en) * 1951-02-16 1959-03-31 Socony Mobil Oil Co Inc Hydrocarbon conversion process and apparatus therefor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US293445A (en) * 1884-02-12 fbick
AT60155B (en) * 1912-04-20 1913-07-10 K E Gustav Hahn Fa Spark arrestor for locomotives, locomobiles and the like.
GB210597A (en) * 1922-12-23 1924-02-07 Albert Parker Improvements in the construction of a chimney or flue cap
DE443114C (en) * 1924-10-21 1927-04-14 Rheinische Maschinenfabrik Wind sifter with a baffle screen arranged over the mouth of the dust air tube
US2172133A (en) * 1936-12-24 1939-09-05 Thuillard Leon Separator
GB531919A (en) * 1938-07-19 1941-01-14 Celestin Triaire Improvements in and relating to cowl, aspirator or like devices for chimneys
US2626141A (en) * 1948-04-24 1953-01-20 Babcock & Wilcox Co Fluid heating apparatus
US2666731A (en) * 1949-02-12 1954-01-19 Socony Vacuum Oil Co Inc Method and apparatus for hydrocarbon conversion
BE507959A (en) * 1950-12-22
US2656009A (en) * 1951-01-29 1953-10-20 Moss A Kent Suction cleaner
US2880037A (en) * 1951-02-16 1959-03-31 Socony Mobil Oil Co Inc Hydrocarbon conversion process and apparatus therefor
US2672374A (en) * 1951-07-19 1954-03-16 Houdry Process Corp Solids lift disengager
GB710619A (en) * 1951-08-25 1954-06-16 Mann & Hummel Filter New or improved separator for pneumatically conveyed granular material
US2880038A (en) * 1953-12-22 1959-03-31 Socony Mobil Oil Co Inc Gas solids separation in a pneumatic lift
US2819124A (en) * 1956-03-28 1958-01-07 Socony Mobil Oil Co Inc Method and apparatus for separating granular particles from lift gas in a pneumatic lift

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056248A (en) * 1959-07-22 1962-10-02 Metallgesellschaft Ag Separating apparatus
US10682620B1 (en) 2019-06-14 2020-06-16 X Energy, Llc. System for recovering entrained particles from an exhaust gas stream

Similar Documents

Publication Publication Date Title
US2981369A (en) Vortical whirl separator
US1930806A (en) Apparatus for separating suspended particles from gases
US2703936A (en) Apparatus for feeding and guiding coarse solid materials
US4842695A (en) Arrangement of a dry cooler for coke
US3820307A (en) Apparatus for scrubbing waste gases
US2732909A (en) Scrubber pukifier
US3883324A (en) Method and apparatus for agglomerating dry dust particles in a gas stream and separation
US2643737A (en) Apparatus for separating particles from gases
US2954843A (en) Pocket shot separator
US4932363A (en) Fluidized bed reactor
US6245300B1 (en) Horizontal cyclone separator for a fluidized bed reactor
US4934281A (en) Circulating fluidized bed reactor and a method of separating solid material from flue gases
US1908181A (en) Dust collector and separator system
US3415373A (en) Particle size classification method and apparatus
US2068459A (en) Dust separator and collector
US2762610A (en) Tube surface cleaning apparatus for tubular heat exchangers
US1464113A (en) Gas cleaner
US2881858A (en) Apparatus for separating dust or liquid drops from a gaseous medium
JP5320514B1 (en) Dust catcher for blast furnace gas
US2713920A (en) Mechanical dust collector
US1715549A (en) Dust collector and gas cleaner
US2946569A (en) Apparatus for cleaning the surfaces of heat exchange means
US3067991A (en) Blast furnace apparatus
US2956680A (en) Method of and apparatus for separating ash and cleaning shot
US3440806A (en) Separator tube cap