US2952638A - Deaeration and purification of anionic detergent compositions - Google Patents
Deaeration and purification of anionic detergent compositions Download PDFInfo
- Publication number
- US2952638A US2952638A US602046A US60204656A US2952638A US 2952638 A US2952638 A US 2952638A US 602046 A US602046 A US 602046A US 60204656 A US60204656 A US 60204656A US 2952638 A US2952638 A US 2952638A
- Authority
- US
- United States
- Prior art keywords
- slurry
- detergent
- carbon atoms
- water
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003599 detergent Substances 0.000 title claims description 81
- 239000000203 mixture Substances 0.000 title claims description 38
- 238000000746 purification Methods 0.000 title description 3
- 239000002002 slurry Substances 0.000 claims description 98
- -1 ALKALI METAL SALT Chemical class 0.000 claims description 68
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 24
- 150000001875 compounds Chemical class 0.000 claims description 24
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 24
- 235000011152 sodium sulphate Nutrition 0.000 claims description 24
- 239000000047 product Substances 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 19
- 230000002209 hydrophobic effect Effects 0.000 claims description 17
- 239000007921 spray Substances 0.000 claims description 17
- 239000007795 chemical reaction product Substances 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 13
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 12
- 239000004115 Sodium Silicate Substances 0.000 claims description 12
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 12
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 11
- 150000001298 alcohols Chemical class 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims description 8
- 229920001451 polypropylene glycol Polymers 0.000 claims description 8
- 229910010272 inorganic material Inorganic materials 0.000 claims description 6
- 239000011147 inorganic material Substances 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 230000003381 solubilizing effect Effects 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims 1
- XLYOFNOQVPJJNP-PWCQTSIFSA-N Tritiated water Chemical compound [3H]O[3H] XLYOFNOQVPJJNP-PWCQTSIFSA-N 0.000 claims 1
- 125000004432 carbon atom Chemical group C* 0.000 description 23
- 125000000129 anionic group Chemical group 0.000 description 18
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 16
- 239000002585 base Substances 0.000 description 13
- 238000013019 agitation Methods 0.000 description 10
- 239000007859 condensation product Substances 0.000 description 10
- 239000011734 sodium Substances 0.000 description 9
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 229910052708 sodium Inorganic materials 0.000 description 8
- 150000003254 radicals Chemical class 0.000 description 7
- 235000019832 sodium triphosphate Nutrition 0.000 description 7
- 239000003760 tallow Substances 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 6
- 229940077388 benzenesulfonate Drugs 0.000 description 6
- 235000019864 coconut oil Nutrition 0.000 description 6
- 239000003240 coconut oil Substances 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- HQPMKSGTIOYHJT-UHFFFAOYSA-N ethane-1,2-diol;propane-1,2-diol Chemical compound OCCO.CC(O)CO HQPMKSGTIOYHJT-UHFFFAOYSA-N 0.000 description 6
- 229920001993 poloxamer 188 Polymers 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000001694 spray drying Methods 0.000 description 6
- 238000012935 Averaging Methods 0.000 description 5
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 5
- 239000000271 synthetic detergent Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 150000004996 alkyl benzenes Chemical class 0.000 description 4
- 238000005282 brightening Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920002359 Tetronic® Polymers 0.000 description 3
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229940096386 coconut alcohol Drugs 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- HLHOHTNONYACFD-UHFFFAOYSA-N 1-[4-[4-morpholin-4-yl-1-[1-(pyridine-3-carbonyl)piperidin-4-yl]pyrazolo[3,4-d]pyrimidin-6-yl]phenyl]-3-pyridin-4-ylurea Chemical compound C=1C=C(C=2N=C3N(C4CCN(CC4)C(=O)C=4C=NC=CC=4)N=CC3=C(N3CCOCC3)N=2)C=CC=1NC(=O)NC1=CC=NC=C1 HLHOHTNONYACFD-UHFFFAOYSA-N 0.000 description 1
- DYBIGIADVHIODH-UHFFFAOYSA-N 2-nonylphenol;oxirane Chemical compound C1CO1.CCCCCCCCCC1=CC=CC=C1O DYBIGIADVHIODH-UHFFFAOYSA-N 0.000 description 1
- DUVVGYBLYHSFMV-YGEZULPYSA-N 4-methyl-n-[[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]carbamoyl]benzamide Chemical compound C1=CC(C)=CC=C1C(=O)NC(=O)N[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DUVVGYBLYHSFMV-YGEZULPYSA-N 0.000 description 1
- 244000101408 Abies amabilis Species 0.000 description 1
- VCCWZAQTNBYODU-UHFFFAOYSA-N CC(=C)CC(C)CCC(C)=C Chemical group CC(=C)CC(C)CCC(C)=C VCCWZAQTNBYODU-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000005192 alkyl ethylene group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical class CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- ZCYXXKJEDCHMGH-UHFFFAOYSA-N nonane Chemical compound CCCC[CH]CCCC ZCYXXKJEDCHMGH-UHFFFAOYSA-N 0.000 description 1
- BKIMMITUMNQMOS-UHFFFAOYSA-N normal nonane Natural products CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 150000002889 oleic acids Chemical class 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/02—Preparation in the form of powder by spray drying
Definitions
- This invention relates to detergent compositions, and more particularly to a chemical process for deaerating detergent composition slurries from which a high density spray dried detergent composition can be produced.
- nonionic polyether detergents to slurries containing sulfate and sulfonate anionic synthetic organic detergents and inorganic salts such as sodium sulfate and water-soluble alkali metal silicates effect a material and rapid reduction in the amount of entrained air in the slurry when the slurry is agitated, and that these chemically deacrated detergent slurries can be spray dried by conventional techniques to form a granular product having a desirable high product density.
- the present invention is based on the observation that the nonionic component (nonionic compound or mixture of nonionic compounds) causes a separation of slurry, which contains sulfate and/or sullonate anionic synthetic organic detergents, and inorganic salts such as sodium sulfate and water-soluble alkali metal silicates, into two distinct phases, viz. a low viscosity continuous lye phase which contains the inorganic materials and a discontinuous sopc phase which contains the organic constituents of the slurry.
- the word sope is used herein to designate one or more synthetic organic detergents.
- the degree of agitation necessary for deaeration can be obtained in mixing vessels of the types which are usually employed for mixing moderately viscous liquids.
- a bafllcd mixing vessel having a diameter of 30 inches and depth of 27 inches and equipped with a 15 inch turbine type agitator running at from 200 to 600 revolutions per minute has been found to be satisfactory for deaeration of a 400 pound detergent composition slurry.
- the moderate degree of agitation provided by this mixing vessel is sufiicient to cause dispersal of the discontinuous sope phase but not so drastic as to pull air into the slurry.
- a mixing vessel of this construction was employed in Examples I, I], and III, which follow.
- FIG 2 is a photomicrograph of an anionic sulfonate detergent paste which is commonly used in the preparation of detergent compositions. Air bubbles are visibly dispersed throughout and entrapped within the homo geneous paste. in the normal spray drying operation these bubbles would tend to cause the formation of a low bulk density granular product.
- the addition of silicate starts to break the tight emulsion as shown by the lines of lye phase in Figure 3, but very little air is released from the emulsion at this point.
- the addition of nonionic detergent grains out the slurry and results in the formation of a continuous lye phase and a discontinuous sope phase (Figure 1). At this point the slurry actually appears to be boiling.
- the air removal is usually not instantaneous and generally about 1 to 5 minutes of moderate agitation of the mixture are allotted for it to take place.
- Detergent composition slurries such as set forth in Example I, which follows, normally have a density of about 0.9 to 1.1 and such slurries can be spray dried to form granules which have a bulk density on the order of about 0.29 to 0.35.
- a completely dcaerated slurry such as this will have a density of about 1.35.
- the chemical deaeration resulting from the addition of silicate and nonionic detergent to a detergent slurry having a density of about 0.9 to 1.1 increases the density of the slurry to about 1.25 to 1.3 and this increased density slurry can be spray dried by conventional techniques to form granules having a bulk density of about 0.41 to 0.44.
- Detergent composition slurries such as set forth in Example I, which have been built with about 18 parts of sodium tripolyphosphate, have a density comparable to that of unbuilt slurries, i.e. about 0.9 to 1.1. Such slurries can be spray dried to a bulk density of about 0.31 to 0.39. However, when the slurry is chemically deacrated and the tripolyphosphate is subsequently incorporated therein with a minimum of agitation, a spray dried product having a maximum bulk density of from about 0.49 to 0.51 can be obtained.
- heavy duty detergent compositions will result from the combination of synthetic anionic sulfate and sulfonate detergents and from about 1 to about 5 parts of alkali metal tripolyphosphate, for example, those described in Byerly, U.S.P. 2,486,921 and Strain U.S.P. 2,486,922. It is often desirable to incorporate into such heavy duty detergent compositions a material which will inhibit the corrosion of aluminum, and water-soluble alkali metal silicates are among the most satisfactory of the known aluminum corrosion inhibitors. It is therefore apparent that the processes of the present invention are particularly well adapted to the manufacture of heavy duty detergent compositions.
- tripolyphosphate is advantageously added to the slurry subsequent to the addition of the nonionic detergent and after deaeration has occurred.
- a part of the tripolyphosphate may be mechanically mixed in with the spray dried product obtained from a deaerated slurry; detergent compositions having very high bulk densities, e.g. over 0.6, can be obtained by this technique.
- the nonionic compounds which effect the phase change essential for chemical deaeration of an agitated slurry containing anionic sulfate or sulfonate synthetic detergents and inorganic salts according to the present invention, may be broadly defined as compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature.
- alkylene oxide groups hydrophilic in nature
- organic hydrophobic compound which may be aliphatic or alkyl aromatic in nature.
- Pluronic a well known class of nonionics is made available on the market under the trade name of Pluronic. These compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol.
- the hydrophobic portion of the molecule exhibits water insolubility. Its molecular Weight is of the order of 1500 to 1800.
- the addition of polyoxyethylene radicals to this hydrophobic portion tends to increase the water solubility of the molecule as a whole. Liquid products are obtained up to the point where polyethylene content is about 50% of the total weight of the com densation product. Further increase in the relative content of polyoxycthylene to hydrophobic portion renders the final product wax-like or solid in consistency.
- the molecular weights of Pluronic L61, L64, and F68, which find particular utility in the practice of the present invention are approximately 2000, 3000, and 8000 respectively.
- Suitable nonionics also include the polyethylene oxide condensates of alkyl phenols. These include the condensation products of alkyl phenols having about 6 to about 12 carbon atoms, either straight chain or branch chain, in the alkyl group with ethylene oxide in amount equal to approximately to approximately 30 moles of ethylene oxide per mole of alkyl phenol.
- the alkyl substituent in such compounds may be derived from polymerized propylene, di-isobutylene, octane, or nonane, for example.
- Igepal CO-730 and Igepal CO-SSO which are understood to be nonyl phenol polyethylene oxide condensates having respectively, on the average, 15 and 30 moles of ethylene oxide per mole of nonyl phenol.
- nonionics may be derived by the condensation of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylene diamine.
- a series of compounds may be produccd, depending on the desired balance between hydrophobic and hydrophilic elements.
- compounds molecular weight from about 5000 to about 11,000
- a hydrophobic base constituted of the reaction products of ethylene diamine and excess propylene oxide, said base having a molecular weight of the order of 2500 to 3000
- This class of compounds is made commercially available under the trade name of Tetronics.
- nonionics include the condensation products of aliphatic alcohols having from about 8 to about 18 carbon atoms, either straight chain or branch chain, with ethylene oxide in amount equal to approximately 10 to approximately 30 moles of ethylene oxide per mole of alcohol.
- the alcohols may be derived from the higher alcohols produced by the reduction of tallow or coconut oil, for example.
- a coconut alcohol ethylene oxide condensate having approximately 15 moles of ethylene oxide per mole of coconut alcohol and an average molecular weight of about 800 has been found to be particularly satisfactory.
- the products which find use in the present invention have an overall molecular weight within the range of about 800 to about 11,000.
- the preferred nonionics employed in the practice of the present invention are those which possess a hydrophilic polyoxyethylene radical in combination with a hydrophobic base consisting of the reaction product of an excess of propylene oxide and ethylene diamine.
- the anioinic synthetic to which reference is made and which is a constituent of the dense heavy duty or unbuilt detergent granules which can be produced by the practice of the present invention, is generally referred to as a water-soluble salt of an organic sulfuric reaction product having in its molecular structure an alkyl radical having from about 8 to about 22 carbon atoms and a radical selected from the group consisting of sulfonic acid and sulfuric acid ester radicals.
- Important examples of the anionic synthetics which form an active part in the chemical deaeration techniques of the present invention are the sodium or potassium alkyl benzene sulfonates, especially those of the types described in U.S.P.
- alkyl groups contain from about 9 to 15 carbon atoms; sodium alkyl glyceryl ether sulfonates, especially those others of higher alcohols from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfates and sulfonates; sodium salts of sulfuric acid esters of the reaction product of one mole of a higher fatty alcohol (e.g. tallow or coconut oil alcohols) and about 3 moles of ethylene oxide; sodium alkyl sulfates obtained from the mixed higher alcohols produced by the reduction of coconut oil or tallow; and others known in the art, a number being specifically set forth in the Byerly and Strain patents.
- sodium alkyl glyceryl ether sulfonates especially those others of higher alcohols from tallow and coconut oil
- sodium coconut oil fatty acid monoglyceride sulfates and sulfonates sodium salts of sulfuric acid esters of the reaction product of one mole of a higher fatty
- miscellaneous ingredients including coloring agents, fluorescent dyes, perfumes, carboxymethylcellulose, sodium carbonate and other alkaline salts, and other materials well known as constituents in detergent compositions can be present.
- detergent composition slurries which can be deaerated according to this invention contain from about 40% to 60% of Water, from about 10% to 40% of anionic detergent, from about 5% to 25% of sodium sulfate, the weight ratio of sodium sulfate to anionic detergent being from about 1:7 to about 1:1, from about 5% to 15% of sodium silicate solids, and from about 1% to 4% of the nonionic compound.
- the detergent composition slurry contained from 40% to 60% of water, from 15% to 20% of anionic detergent, from 15% to 20% of sodium sulfate, the weight ratio of sodium sulfate to anionic detergent being about 1:1, from 6% to 12% of sodium silicate and about 2% of the nonionic compounds. These percentages are also by weight, based on the slurry.
- any of. the commercially available sodium silicate solutions having an Si0 /Na O ratio of from about 1:1 to about 3:1 is suitable for use in the practice of this invention, the preferred SiO /Na O ratio range is 1.511 to 20:1.
- Example I A slurry was formed in the following manner. To a paste consisting of 73.6 parts of a mixture of 23.5% sodium alkyl benzene sulfonate (the alkyl radical averaging about 12 carbon atoms and being derived from polypropylene) 56% water, 20% of sodium sulfate and 0.5% of miscellaneous ingredients, including carboxyrnethylcellulose, a tarnish inhibitor, and a fluorescent brightening agent, were added in succession 24.2 parts of sodium silicate (having a solids content of 45% and a ratio of SiO /Na O of 2:1) and 2.2 parts of Pluronic F68 (the condensation product of ethylene oxide with a polyoxypropylene base having a molecular Weight of about 1500 to about 1800, the condensation product having a molecular weight of about 8000).
- sodium silicate having a solids content of 45% and a ratio of SiO /Na O of 2:1
- Pluronic F68 the condensation product of ethylene oxide
- This slurry was mixed with moderate agitation at a temperature of 160 F., for about 3 minutes, during which time it was readily apparent both from the visible turbulence and the decrease in volume of the slurry that a considerable volume of air was being evolved.
- Slurries such as this prior to deaeration, have a density on the Order of about 0.9 to about 1.1 and will spray dry to give a product having a bulk density of from about 0.29 to 0.35. After completion of dcaeration, at which time the density will have increased to as high as about 1.25 to 1.30, these slurries can be spray dried to give a product having a bulk density of about 0.41 to about 0.44.
- Example II Following the procedure of Example I comparable results were obtained by substitution of the Pluronic F68 with an alkyl ethylene oxide condensate wherein the alkyl radical was derived from alcohols produced by the reduction of coconut oil fatty acids having from to 14 carbon atoms, said condensate having an average molecular weight of about 800.
- Example II To a paste consisting of 40 parts of a mixture of 10% sodium alkyl benzene sulfonate (the alkyl radical averaging about 12 carbon atoms and being derived from polypropylene), 12% of sodium alkyl sulfate (the alkyl groups being derived from higher alcohols produced by the reduction of tallow), 55% Water, 22.5% of sodium sulfate and 0.5% of miscellaneous ingredients including carboxymethylcellulose, a tarnish inhibitor, and a fluorescent brightening agent, is added in succession 16 parts of sodium silicate (having a solids content of 45% and a ratio of SiO :Na O of 2:1), and 2 parts of Tetronic 707 (a commercially available nonionic condensation product understood to have a molecular weight of about 11,000,
- the slurry thus formed is dcacrated with moderate agitation at a temperature of F. for about 2 minutes. Upon spray drying this slurry will produce granules having a bulk density of about 0.41 to 0.44.
- Example III This example includes a comparison of otherwise comparable deaerated and undeaerated detergent composition slurries and demonstrates the elfect which chemical deaeration has on the bulk density of a spray dried built detergent composition.
- Hyfac 431 a commercial fatty acid mixture derived from bydrogenated marine oil and reported to contain 8% myristic, 29% palmitic, 18% stearic, 26% arachidic, 17% behenic, and 2% oleic acids
- the density became 0.97.
- 21 parts of sodium sulfate and 56 parts of sodium tripolyphosphate the density changed to 0.99.
- alkyl benzene sulfonatc type synthetic detergents having from 9 to 15 carbon atoms, averaging about 12 carbon atoms, in the alkyl radical, or such alkyl benzene sulfonate detergents in admixture with alkyl sulfates of the type derived from the sulfation of higher alcohols produced by the reduction of tallow; other sulfate or sulfonate synthetic detergents well known in the art can be substituted therefor with good results, alone or in admixture, in these examples.
- sope and lye phases can be separated from each other, as by centrifugatio-n, to yield a lye phase consisting of water and a greater part of the electrolyte originally present in the slurry and a sope phase rich in anionic detergent and low in electrolyte.
- a high density spray dried detergent composition from a homogeneous fluid slurry initially containing entrained air, and containing from about 40% to 60% of water, from about 10% to 40% of at least one water-soluble alkali metal salt of an anionic organic sulfuric reaction product having in its molecular structure an alkyl radical having from 8 to 22 carbon atoms and a radical selected from the group consisting of sulfonic acid and sulfuric acid ester radicals, the said salt having pronounced detergent power in aqueous solution, and from about to 25% of sodium sulfate, the weight ratio of sodium sulfate to said anionic product being fro-m 1:7 to 1:1, and from about 5% to 15% of sodium silicate having an SiO :Na O ratio of from about 1:1 to about 3:1, the steps of (1) causing the homogeneous slurry to separate into a continuous lye phase which contains the inorganic materials of the slurry and a discontinuous phase which contains the organic constituents of the slurry by adding
- nonionic detergent is a nonyl phenol po-lyoxyethylene ether having on the average from about 15 to about 30 moles of ethylene oxide per mole of nonyl phenol.
- nonionic detergent is a polyoxyethylene condensation product with a polyoxypropylene base, said polyoxypropylene base having a molecular weight from about 1500 to about 1800 and the said condensation product having an overall molecular weight from about 2000 to about 8000.
- nonionic detergent is a polyoxy-ethylene condensation product with a hydrophobic base constituted of the reaction product of ethylene diamine and propylene oxide, said base having a molecular weight of from about 2500 to about 3000 and said nonionic compound having an overall molecular weight of from about 5000 to about 11,000.
- nonionic detergent is a polyoxyethylene condensation product with the higher alcohols produced by the reduction of coconut oil and said nonionic compound has an average molecular weight of about 800.
- nonionic detergent is a polyoxyethylene condensation product with a hydrophobic base constituted of the reaction product ,Of ethylene diamine and propylene oxide, said base having a molecular weight of about 3000 and said nonionic compound having an overall weight of about 11,000.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE559413D BE559413A (en, 2012) | 1956-08-03 | ||
US602046A US2952638A (en) | 1956-08-03 | 1956-08-03 | Deaeration and purification of anionic detergent compositions |
GB24298/57A GB812249A (en) | 1956-08-03 | 1957-07-31 | Improvements in or relating to detergent compositions |
FR744794A FR1279205A (fr) | 1956-08-03 | 1957-08-02 | Procédé pour la préparation d'une composition détersive à forte densité séchée par pulvérisation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US602046A US2952638A (en) | 1956-08-03 | 1956-08-03 | Deaeration and purification of anionic detergent compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US2952638A true US2952638A (en) | 1960-09-13 |
Family
ID=24409763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US602046A Expired - Lifetime US2952638A (en) | 1956-08-03 | 1956-08-03 | Deaeration and purification of anionic detergent compositions |
Country Status (3)
Country | Link |
---|---|
US (1) | US2952638A (en, 2012) |
BE (1) | BE559413A (en, 2012) |
GB (1) | GB812249A (en, 2012) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3177147A (en) * | 1960-09-23 | 1965-04-06 | Colgate Palmolive Co | Detergent compositions and preparation thereof |
US3242091A (en) * | 1961-12-19 | 1966-03-22 | Colgate Palmolive Co | Spray dried detergent concentrate |
US3248330A (en) * | 1963-05-24 | 1966-04-26 | Monsanto Co | Process for preparing a stable, freeflowing dishwashing composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2213477A (en) * | 1935-12-12 | 1940-09-03 | Gen Aniline & Film Corp | Glycol and polyglycol ethers of isocyclic hydroxyl compounds |
US2515577A (en) * | 1950-07-18 | Noncaking alkaryl sulfonate | ||
US2606156A (en) * | 1950-06-09 | 1952-08-05 | Purex Corp Ltd | Deaeration and drying of watersoluble sulfonated detergent compositions |
US2742436A (en) * | 1956-04-17 | Preparation of non-dusting organic |
-
0
- BE BE559413D patent/BE559413A/xx unknown
-
1956
- 1956-08-03 US US602046A patent/US2952638A/en not_active Expired - Lifetime
-
1957
- 1957-07-31 GB GB24298/57A patent/GB812249A/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2515577A (en) * | 1950-07-18 | Noncaking alkaryl sulfonate | ||
US2742436A (en) * | 1956-04-17 | Preparation of non-dusting organic | ||
US2213477A (en) * | 1935-12-12 | 1940-09-03 | Gen Aniline & Film Corp | Glycol and polyglycol ethers of isocyclic hydroxyl compounds |
US2606156A (en) * | 1950-06-09 | 1952-08-05 | Purex Corp Ltd | Deaeration and drying of watersoluble sulfonated detergent compositions |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3177147A (en) * | 1960-09-23 | 1965-04-06 | Colgate Palmolive Co | Detergent compositions and preparation thereof |
US3242091A (en) * | 1961-12-19 | 1966-03-22 | Colgate Palmolive Co | Spray dried detergent concentrate |
US3248330A (en) * | 1963-05-24 | 1966-04-26 | Monsanto Co | Process for preparing a stable, freeflowing dishwashing composition |
Also Published As
Publication number | Publication date |
---|---|
BE559413A (en, 2012) | |
GB812249A (en) | 1959-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3868336A (en) | Process for improving flowability of detergents | |
CA1201953A (en) | Detergent compositions | |
EP0238638B1 (en) | Process for preparing particulate detergent compositions | |
US2954348A (en) | Detergent compositions | |
CA1140829A (en) | Production of detergent compositions | |
US4264465A (en) | Process for the preparation of foam-controlled detergents | |
JPH0641597B2 (ja) | 洗剤用泡調節剤 | |
DE2001813B2 (de) | Fluessiges wasch- und reinigungsmittel | |
US3169930A (en) | Built liquid detergent | |
US4416809A (en) | Granular detergent composition | |
GB2060675A (en) | Method for retarding gelation of bicarbonate-carbonate-silicate crutcher slurries | |
US3576748A (en) | Free-flowing granular detergent compositions containing nta and soap | |
EP0364260B1 (en) | Liquid cleaning products and method for their preparation | |
US3971726A (en) | Process for lowering the bulk density of alkali making built synthetic detergent compositions | |
US4478735A (en) | Process for producing granular detergent composition | |
US4566993A (en) | Liquid detergents containing cellulose ethers stabilized by glycerol | |
US2952638A (en) | Deaeration and purification of anionic detergent compositions | |
US2947701A (en) | Spray dried detergent composition | |
US3963634A (en) | Powdery bleaching detergent composition | |
US3639288A (en) | Detergent slurry process | |
US2875153A (en) | Detergent compositions | |
IE44391B1 (en) | Detergent compositions and the production thereof | |
EP0075433A2 (en) | Antifoam compositions | |
EP0119746A1 (en) | Process for manufacturing detergent powder | |
US4083813A (en) | Process for making granular detergent composition |