US2944803A - Treatment of subterranean formations containing water-soluble minerals - Google Patents

Treatment of subterranean formations containing water-soluble minerals Download PDF

Info

Publication number
US2944803A
US2944803A US794845A US79484559A US2944803A US 2944803 A US2944803 A US 2944803A US 794845 A US794845 A US 794845A US 79484559 A US79484559 A US 79484559A US 2944803 A US2944803 A US 2944803A
Authority
US
United States
Prior art keywords
wells
well
stratum
ice
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US794845A
Inventor
Alden W Hanson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Priority to US794845A priority Critical patent/US2944803A/en
Application granted granted Critical
Publication of US2944803A publication Critical patent/US2944803A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • E21B43/283Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent in association with a fracturing process
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • E21B43/281Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent using heat

Definitions

  • the invention is related to solubilizing water-soluble minerals in a subterranean formation and to removing rangement of concentric pipes inserted into a well'pene; trating the mineral stratum, the inner pipe usually-being the input line and the outer pipe being the output line.
  • Another and more effective method is that described in US. Patent No. 2,850,270 which employs two or more separate wells, which penetrate the same soluble mineralbearing stratum, of which at least one well is an input well and at least, one other well is an output well.
  • Communication is provided between said input and output Wells by hydraulically fracturing theformation,*'i.e.;by injecting a fluid into one of the Wells at sufiicient pressure to .produce cracks or fissures in the formation, at least some of such fissures intercepting both an input and output well. Fluid is then circulated down theinput well, along a fissure to the output well, and out the output well.
  • Such circulation which is of small and relatively ineffectual volume at first is thereby gradually increased in accordance with that invention by forming a channel between the inputand output wells along the crack or fissure thus produced.
  • a particularly effective method of channeling through a formation, e.g., a salt stratum or bed between wells therein described in that patent is the embodiment designated (4) beginning-at line 69 of column 3 and com; pleting at line 2, column 4.
  • the embodiment there described consists essentially of pumping a slurry of crushed or chipped ice in water down an input well, i.e., one of two or more wells intercepted by a fissure in a formation, at a pressure sufiicient'to force the slurry through the fissure and up an output well, i.e., another well intercepted by the fissure.
  • the slurry of ice and water attains the objective of the invention, viz.
  • the slurry when pumped down the input Well contain as much crushed ice as will permit the slurry to be readily pumped the minerals so solu-' erally, in water at higher temperatures.
  • brine 1 water therethrough, said solution being nearly or fully may be ground, chipped, crushed, or broken into pieces saturated and preferably of the mineral inthe stratum to be subsequently solubilized hereinafter referred to as brine.
  • the temperature of the brine must be substantially'below that of the formation and preferably near the freezing temperature of the solution At'least two wells must penetrate theformation'and communication exist therebetween.
  • Two or more of the wells may be fractured if desired. The practice usually. followed is to drill two wells at a distance of between a few hundred feet and a few hundredyards apart, both wells penetrating the stratum of water-soluble mineral. One of the wells is fractured to effect communication between the wells.
  • a brine, usually near saturation of the mineral of the type in the stratum, is prepared and cooled by well known refrigeration means, for example, by employing a unit whereby the brine to be cooled is circulated incontact with pipes carrying a circulating gas which has been brought down to a temperature well'below 0 C. by its rapid expansion just prior to or during the period of contact with the brine.
  • the cold brine is pumped down one well, forced through a fissure into a second well and forced therefrom back to the refrigeration unit thereby providing a continuous circulation of the cooling brine.
  • Any well known pumping arrangement may be employed, eg those employed in deep well pumping units.
  • a slurry of ice and water is injected down one of the wells into the stratum in communication with another well.
  • a slurry of ice and water is injected down one of the wells into the stratum in communication with another well.
  • The'formatio n is then frachereinafter as fragments.
  • The-effectiveness of the ice slurry is now highly effective for channeling along a connecting fissure between the input and an output we'lL-
  • the ice As the ice slurry progresses along the fissure, or fissures, away from the input well, the ice continues to melt thereby releasing additional solvent at increasing distances from the input Well.
  • the abrasive action of the ice'aids to some extent the enlargement of fissures along the course leading to the output well.

Description

United States Patent i Patented July l2, 1960* TREATMENT OF SUBTERRANEAN FoRMA'rIoNs] CONTAINING WATER-SOLUBLE MINERALS Alden W. Hanson, Midland, Mich., assignor to The Dow from the subterranean formation Chemical Company, Midland, Mich.,"a corporation of Delaware No Drawing. Filed Feb. 24, 19s9,ser.No;794,s4s;-=
5 Claims. (Cl. 262-3) The invention is related to solubilizing water-soluble minerals in a subterranean formation and to removing rangement of concentric pipes inserted into a well'pene; trating the mineral stratum, the inner pipe usually-being the input line and the outer pipe being the output line. Another and more effective method is that described in US. Patent No. 2,850,270 which employs two or more separate wells, which penetrate the same soluble mineralbearing stratum, of which at least one well is an input well and at least, one other well is an output well. Communication is provided between said input and output Wells by hydraulically fracturing theformation,*'i.e.;by injecting a fluid into one of the Wells at sufiicient pressure to .produce cracks or fissures in the formation, at least some of such fissures intercepting both an input and output well. Fluid is then circulated down theinput well, along a fissure to the output well, and out the output well. Such circulation which is of small and relatively ineffectual volume at first is thereby gradually increased in accordance with that invention by forming a channel between the inputand output wells along the crack or fissure thus produced. The inherent difliculty existing in forming such a channel, due to the dissolution by the solvent of the mineral adjacent tothe input well until the point of saturation is reached at which dissolution stops, is overcome according to that invention by inhibiting the dissolving action of the solvent until it has progressed to more remote extremities of the fissure. A number of ways of effectively accomplishing the channeling are described in said U.S. Patent No. 2,850,270.
A particularly effective method of channeling through a formation, e.g., a salt stratum or bed between wells therein described in that patent is the embodiment designated (4) beginning-at line 69 of column 3 and com; pleting at line 2, column 4. The embodiment there described consists essentially of pumping a slurry of crushed or chipped ice in water down an input well, i.e., one of two or more wells intercepted by a fissure in a formation, at a pressure sufiicient'to force the slurry through the fissure and up an output well, i.e., another well intercepted by the fissure. The slurry of ice and water attains the objective of the invention, viz. channeling between wells, because the ice gradually melts to water, thus providing additional solvent as the slurry progresses away from the input well. It is recommended that the slurry when pumped down the input Well contain as much crushed ice as will permit the slurry to be readily pumped the minerals so solu-' erally, in water at higher temperatures.
so that someice will remain throughout the course to .theoutputwelh However, shouldall the ice be removedfrom at least portions of the water of-the slurry before reaching the output well, some additionaldissolution will occur as the result ,of increased solubility of A disadvantage associatedwith 'channelin-g through a water-soluble mineral in accordance'wi'th the embodiment of US. Patent 2,850,270 is that the heat of the formation requires large volumes of the ice and water slurry to be employed before the area of the formation exposed the appended 'claims.
along .fissures in contact with the slurry, have been sufficiently cooled to permit appreciable amounts, of the ice to remain unmelted for considerable distances from the input well.
A need, therefore, exists for a more expedient, economical, and effective method of channeling between wells penetrating a soluble mineral stratum.
The invention meets this need, by the employment of the steps hereinafter described and concisely defined in It consists essentially of animprovement of U.S. Patent 2,850,270 wherein a cold, aqueous solution is circulated through the fissures, pores,
and cavities in or adjacent'to a solubilizable miner-al- .stratum or bed' prior to circulating a slurry of .ice in:
1 water therethrough, said solution being nearly or fully may be ground, chipped, crushed, or broken into pieces saturated and preferably of the mineral inthe stratum to be subsequently solubilized hereinafter referred to as brine. The temperature of the brine must be substantially'below that of the formation and preferably near the freezing temperature of the solution At'least two wells must penetrate theformation'and communication exist therebetween. t
' In practicing the invention, at least tured according to a known fracturing procedure, e.g., that described in Reissue Patent 23,733 to Farris. To
proceed to the next step, at least one other well must.
exist in the formation or be drilled at this time'which intercepts at least one fissure produced in the fracturing operation. It'is unimportant whether the other well or wellsexisted before fracturing or after fracturing ofthe first well. Two or more of the wells may be fractured if desired. The practice usually. followed is to drill two wells at a distance of between a few hundred feet and a few hundredyards apart, both wells penetrating the stratum of water-soluble mineral. One of the wells is fractured to effect communication between the wells.
A brine, usually near saturation of the mineral of the type in the stratum, is prepared and cooled by well known refrigeration means, for example, by employing a unit whereby the brine to be cooled is circulated incontact with pipes carrying a circulating gas which has been brought down to a temperature well'below 0 C. by its rapid expansion just prior to or during the period of contact with the brine.
The cold brine is pumped down one well, forced through a fissure into a second well and forced therefrom back to the refrigeration unit thereby providing a continuous circulation of the cooling brine. Any well known pumping arrangement may be employed, eg those employed in deep well pumping units.
After the exposed faces of the formation walls are cooled, preferably to a temperature not substantially above 0 C., a slurry of ice and water is injected down one of the wells into the stratum in communication with another well. Usually the same input and output wells employed in the cooling circulation'are employed for the ice and water slurry circulation. The ice employed or bits of any convenient sizes and will be referred to salts, genone well'mustiexist or be drilled into a formation comprising a stratum oii"v water-solubilizable,mineral. The'formatio n is then frachereinafter as fragments. The-effectiveness of the ice slurry, as preceded by the brine cooling procedure of the invention, is now highly effective for channeling along a connecting fissure between the input and an output we'lL- As the ice slurry progresses along the fissure, or fissures, away from the input well, the ice continues to melt thereby releasing additional solvent at increasing distances from the input Well. The abrasive action of the ice'aids to some extent the enlargement of fissures along the course leading to the output well.
The potentialities of the use of the aqueous slurry of ice fragments employed in US. Patent 2,850,270 are fully realized by the practice of the instant invention. By circulating a cooling brine through the water-soluble formation prior to "injecting the ice water slurry effects substantial savings in the amount of ice consumed, renders the ice slurry injection much more effective by decreasing the time required to create adequate channels through the soluble stratum between wells and making channels of larger diameter entirely through the stratum up to the output well.
Having described the invention, what is claimed and desired to be protected by Letters Patent is:
1. The method of treating a subterranean formation having a temperature above C. containing a stratum of a water-solubilizable mineral traversed by a plurality of wells, at least two of said wells being in communica tion with each other through at least one fissure in the stratum which intercepts both wells, consisting of injecting down at least oneof the wells in communication, along the intercepting fissure therebetween, and out at least one other of said wells in communication, at a tempera ture below 0 C, a flow of cold brine followed by a two of said wells, circulating down one of said wells, designated input well, and out another of said wells, designated output well, a cold brine at a temperature below 0 C., continuously injecting down the input well an aqueous slurry of ice fragments, said ice gradually melting as the slurry progresses through said stratum, and continuously pumping the water of said aqueous slurry containing said mineral dissolved therein from the out-- put well.
3. The method of claim 2, wherein only one weil is sunk in said formation prior to fracturing' the formation and the other of said wells intercepting a fracture in the formation is sunk subsequent to fracturing.
4. The method of mining a salt from a natural salt bed having a temperature above 0 C. consisting essentially of drilling a plurality of holes into the salt bed, one of said holes being an input hole and one an output hole, fracturing said bed to producefractures therein, at least one of said fractures intercepting both input and output holes to provide-communication therebetween, circulating a highly concentrated brine at a temperature not above 0 C. into said input hole, thence through the V communicating fracture thus produced and out said output hole, pumping an aqueous slurry of ice fragments -ering the salt from the water of the ice slurry being flow of an aqueous slurry of ice fragments to enlarge and extend passageways between said Wells.
2. The method of treating a subterranean formation having a temperature above 0 C. having a water-solubilizable mineral stratum therein consisting of drilling at least two wells into said stratum, fracturing said stratum to produce a fracture in the stratum extending between pumped from said output hole, and circulating water through the channel thus formed to dissolve additionalsalt and carry it in solution out of the output hole and recovering the additional salt thus dissolved.
References Cited in the file of this patent UNITED STATES PATENTS 2,850,270 Hanson Sept. 2, 1958

Claims (1)

1. THE METHOD OF TREATING A SUBTERRANEAN FORMATION HAVING A TEMPERATURE ABOVE 0*C. CONTAINING A STRATUM OF A WATER-SOLUBILIZABLE MINERAL TRAVERSED BY A PLURALITY OF WELLS, AT LEAST TWO OF SAID WELLS BEING IN COMMUNICATION WITH EACH OTHER THROUGH AT LEAST ONE FISSURE IN THE STRATUM WHICH INTERCEPTS BOTH WELLS CONSISTING OF INJECTING DOWN AT LEAST ONE OF THE WELLS IN COMMUNICATION, ALONG THE INTERCEPTING FISSURE THEREBETWEEN, AND OUT AT LEAST ONE OTHER OF SAID WELLS IN COMMUNICATION, AT A TEMPERATURE BELOW 0*C., A FLOW OF COLD BRINE FOLLOWED BY A FLOW OF AN AQUEOUS SLURRY OF ICE FRAGMENTS TO ENLARGE AND EXTEND PASSAGEWAYS BETWEEN SAID WELLS.
US794845A 1959-02-24 1959-02-24 Treatment of subterranean formations containing water-soluble minerals Expired - Lifetime US2944803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US794845A US2944803A (en) 1959-02-24 1959-02-24 Treatment of subterranean formations containing water-soluble minerals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US794845A US2944803A (en) 1959-02-24 1959-02-24 Treatment of subterranean formations containing water-soluble minerals

Publications (1)

Publication Number Publication Date
US2944803A true US2944803A (en) 1960-07-12

Family

ID=25163849

Family Applications (1)

Application Number Title Priority Date Filing Date
US794845A Expired - Lifetime US2944803A (en) 1959-02-24 1959-02-24 Treatment of subterranean formations containing water-soluble minerals

Country Status (1)

Country Link
US (1) US2944803A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003432A (en) * 1975-05-16 1977-01-18 Texaco Development Corporation Method of recovery of bitumen from tar sand formations
US4134618A (en) * 1977-12-29 1979-01-16 Atlantic Richfield Company Restoration of a leached underground reservoir
US4476932A (en) * 1982-10-12 1984-10-16 Atlantic Richfield Company Method of cold water fracturing in drainholes
US20080087421A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Method of developing subsurface freeze zone
US20080173443A1 (en) * 2003-06-24 2008-07-24 Symington William A Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US7669657B2 (en) 2006-10-13 2010-03-02 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US20100282460A1 (en) * 2009-05-05 2010-11-11 Stone Matthew T Converting Organic Matter From A Subterranean Formation Into Producible Hydrocarbons By Controlling Production Operations Based On Availability Of One Or More Production Resources
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8641150B2 (en) 2006-04-21 2014-02-04 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation
US20230220266A1 (en) * 2021-08-04 2023-07-13 Thomas B. Smith Method for engineered geothermal system treatment using brines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2850270A (en) * 1956-03-19 1958-09-02 Alden W Hanson Mining soluble minerals using passageway formed by fracturing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2850270A (en) * 1956-03-19 1958-09-02 Alden W Hanson Mining soluble minerals using passageway formed by fracturing

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003432A (en) * 1975-05-16 1977-01-18 Texaco Development Corporation Method of recovery of bitumen from tar sand formations
US4134618A (en) * 1977-12-29 1979-01-16 Atlantic Richfield Company Restoration of a leached underground reservoir
US4476932A (en) * 1982-10-12 1984-10-16 Atlantic Richfield Company Method of cold water fracturing in drainholes
US7631691B2 (en) 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US20100078169A1 (en) * 2003-06-24 2010-04-01 Symington William A Methods of Treating Suberranean Formation To Convert Organic Matter Into Producible Hydrocarbons
US20080173443A1 (en) * 2003-06-24 2008-07-24 Symington William A Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US8641150B2 (en) 2006-04-21 2014-02-04 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US20090101348A1 (en) * 2006-10-13 2009-04-23 Kaminsky Robert D Method of Developing Subsurface Freeze Zone
US8104537B2 (en) 2006-10-13 2012-01-31 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US20080087421A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Method of developing subsurface freeze zone
US7647971B2 (en) 2006-10-13 2010-01-19 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US7647972B2 (en) 2006-10-13 2010-01-19 Exxonmobil Upstream Research Company Subsurface freeze zone using formation fractures
US7669657B2 (en) 2006-10-13 2010-03-02 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US20080087426A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Method of developing a subsurface freeze zone using formation fractures
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US7516785B2 (en) 2006-10-13 2009-04-14 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US7516787B2 (en) * 2006-10-13 2009-04-14 Exxonmobil Upstream Research Company Method of developing a subsurface freeze zone using formation fractures
US20090107679A1 (en) * 2006-10-13 2009-04-30 Kaminsky Robert D Subsurface Freeze Zone Using Formation Fractures
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US9347302B2 (en) 2007-03-22 2016-05-24 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US8540020B2 (en) 2009-05-05 2013-09-24 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US20100282460A1 (en) * 2009-05-05 2010-11-11 Stone Matthew T Converting Organic Matter From A Subterranean Formation Into Producible Hydrocarbons By Controlling Production Operations Based On Availability Of One Or More Production Resources
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9739122B2 (en) 2014-11-21 2017-08-22 Exxonmobil Upstream Research Company Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US10385257B2 (en) 2015-04-09 2019-08-20 Highands Natural Resources, PLC Gas diverter for well and reservoir stimulation
US10385258B2 (en) 2015-04-09 2019-08-20 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation
US20230220266A1 (en) * 2021-08-04 2023-07-13 Thomas B. Smith Method for engineered geothermal system treatment using brines

Similar Documents

Publication Publication Date Title
US2944803A (en) Treatment of subterranean formations containing water-soluble minerals
US3303883A (en) Thermal notching technique
US2094479A (en) Treatment of wells
SU1082332A3 (en) Method for working oil deposits
US4848468A (en) Enhanced hydraulic fracturing of a shallow subsurface formation
US3878884A (en) Formation fracturing method
CA1145246A (en) Temporarily plugging a subterranean reservoir with a self-foaming aqueous solution
US4597444A (en) Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation
US4883124A (en) Method of enhancing hydrocarbon production in a horizontal wellbore in a carbonate formation
US3271962A (en) Mining process
US2547778A (en) Method of treating earth formations
US3498378A (en) Oil recovery from fractured matrix reservoirs
US8720568B2 (en) Swellable/degradable “sand” plug system for horizontal wells
US3262741A (en) Solution mining of potassium chloride
US3612179A (en) Method of stimulating well production
US4572297A (en) Method of formation permeability treatment with alkali metal hydroxide
US3612192A (en) Cryogenic drilling method
US3301326A (en) Method for selectively increasing the porosity and permeability of subterranean geologic formations
US3379250A (en) Thermally controlling fracturing
US3240271A (en) Method for cleaning a formation in the vicinity of a well bore
US3837400A (en) Selective plugging process
US3612608A (en) Process to establish communication between wells in mineral formations
RU2368769C2 (en) Bottom-hole formation zone treatment method
US3205012A (en) Solution mining system using heat exchange tubes
US3370887A (en) Hole preparation for fracturing solution mining wells