US2918611A - Electromagnetic relay - Google Patents

Electromagnetic relay Download PDF

Info

Publication number
US2918611A
US2918611A US737182A US73718258A US2918611A US 2918611 A US2918611 A US 2918611A US 737182 A US737182 A US 737182A US 73718258 A US73718258 A US 73718258A US 2918611 A US2918611 A US 2918611A
Authority
US
United States
Prior art keywords
armature
relay
core
force
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US737182A
Inventor
Pettersson Gustaf Adolf
Kornfeldt Paul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE538144D priority Critical patent/BE538144A/xx
Priority to FR1131997D priority patent/FR1131997A/en
Priority to DEP14101A priority patent/DE1023823B/en
Priority claimed from GB1396755A external-priority patent/GB781119A/en
Priority to CH341230D priority patent/CH341230A/en
Priority to US518872A priority patent/US2858488A/en
Priority claimed from US518872A external-priority patent/US2858488A/en
Priority to US737182A priority patent/US2918611A/en
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US2918611A publication Critical patent/US2918611A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements

Definitions

  • the present invention relates to electromagnetic switches or relays, and more particularly to electromagnetic relays used in telephone communication systems.
  • Electromagnetic relays play an important part within the field of communication.
  • the great number of components of this kind which for example are used in an automatic telephone station, entails that any fault occurring in these relays in respect of construction or operation is multiplied many times and influences the technical and economical effect of the whole system.
  • Two essential factors to be considered in the construction of relays are the space occupied by a relay and the consumption of current necessary for their operation. If the dimensions of the relays can be reduced, material and space will be saved, whereby the stands, for instance-of telephone stations, can be made smaller and more easily accessible.
  • the consumption of current of the relays can be reduced by eliminating to the greatest possible extent losses, for example due to leakage, and by giving the magnetic field between the magnet core and the armature an optimal shape and strength.
  • all other demands normally made on the functionsvof the relay such as the lifting force of the armature, must of course also be satisfied, including sufficient margins of performance.
  • One of the objects of the present invention is to substitute for the heretofore used trial and error methods a definite rule of calculating the lifting force K of a relay armature as a function of factors determining the. magnitude of the force, such as, for example, the distance between the turning axis of the armature and the point of application of the force on the relay contacts, the ampere turns of the coil or coils, the maximum air gap between the armature and the core and the reluctance of the magnetic circuit.
  • Fig. l is a diagrammatic isometric view of the magnet core and the armature of a conventional flat armature relay, the paths of the lines of force being indicated.
  • Fig. 2 is a diagrammatic elevational sideview of the relay according to Fig. 1-.
  • Figs. 3a and 3b are graphs showing curves representing the lifting force of an armature as a function of the distance (R) of the armature from its turning axis in a practical case, the curve K of Fig. 3a representing the conditions present when the reluctance in the iron circuit is neglected and the curve K representing the con-' ditions when the reluctance of 'the iron circuit is not neglected.
  • Fig. 3b shows the zcro end of curve K, the scale of R being greatly enlarged.
  • Fig. 4 is a graph showing a curve of the lifting force of an armature as a function magnetic material.
  • Fig. 5 is a diagrammatic elevational side view of a relay with a permanent air gap between thearmature and the core.
  • Fig. 7 is a diagrammatic isometric view of core of a novel relay design.
  • Fig. 8 is an isometric view ofa novel armature.
  • Fig. 9 is side view of a core according to Fig. 7 and a magnet an armature according to Fig. 8, which form a relay ac cording to the invention.
  • Fig. 10 is another embodiment of a magnet core.
  • Fig. 11 is the armature for the magnet core according and air respectively.
  • the subsequentcalculation is made in connection with a fiat armature relay according to Fig. 1, in which reference numerals 1 and 2 designate the two branches of a relay structure.
  • This structure is magnetically equivalent to a magnet core with three branches or legs, in which the area of the central branch is twice the area of each of the outer branches.
  • Reference numeral 3 designates the transverse member (the yoke) which in the equivalent circuit c'onnects the branches.
  • the flat armature of the relay has a transverse portion 4 and a longitudinal branch 5. The armature is shown in the non-operative position and forms an angle a with the general plane of the magnet core. 1
  • the path of the lines of force through the relay is indicated by a dashed line extending through the rear part of branch 1, branch 5 of the armature, portion 4 of the armature, a dash and dot line extending through the air gap, and a dashed line extending through branch 2, yoke 3 and again through branch 1.
  • Fig. 6 is a graph showing comparative curves of the lifting force of an armature as a function of the distance.
  • R is the distance between the turning axis and the edge of the armature as shown in Fig. 2.
  • the lifting force K is obtained by dividing the moment M by the distance (R-i-l) between the turning axis of the armature and the lifting stud of the relay. Then the equation will be as follows:
  • the maximum of the force K is found to lie at values for R of about 2-10- meters. This partly is due to the fact that the flux of leakage from the underside of the armature, when the values for R are small, impinges upon the magnet core beyond the turning axis of the armature and thereby gives rise to a moment which is directed against the principal moment, and partly because in practice there always remains a certain air gap (compare the curve K in Fig, 6). When greater values for R are concerned, the two moments cooperate.
  • relay constructions can be improved in different respects. It may for instance be desirable to reduce the amount of material in the iron circuit, when otherwise the values for a, IN, and K are unchanged.
  • the aim may be to reduce the ampere turns IN as much as possible, the above data as to a, K, and the amount of material in
  • weak current systems are involved, the use of material, the permeability, and the lifting force of the lifting studs of the contact spring group are given, as regards the electromagnetic relays which are included in such a system.
  • the electromagnetic relays which are included in such a system.
  • the next problem is how to achieve the desired minimum when using the available quantity of material. Furthermore, space must be left for the winding, and the leakage between the difierent portions of the relay must be kept at a low value.
  • the geometrical quantities occurring in the for mulas set forth above must be chosen so that certain demands as to space are satisfied.
  • a certain amount of material must be added, as shown above, which is needed to comply with the mechanical requirements.
  • the path of the lines of force through the outer branch 1 of the core is concentrated within an area around the turning axis of the armature 4.
  • the portion of the outer branch 1 located in front of this turning axis is magnetically inoperative. Consequently, in regard to the magnetic action the branch need not be longer than about half the length shown, that is, it needs to extend only to the turning axis of the armature.
  • the branches must have a certain length in excess of that necessary for magnetic reasons only.
  • the compromise between the magnetic and the mechanical demands for dimensioning that must be made for practical use has been found to be a length (g) of the outer branches of the core which is at most 80% of the length (e) of the central branch; for certain particularly advantageous practical constructions of the relay 60% are sufficient.
  • the sum of the width of the active branches is greater than half the sum of the Width of the passive branches, and said sum may also be greater than the sum of the height of these branches divided by the number of branches.
  • the Lifting power is in this case 4.55 times greater than in the previous case (425 gms.).
  • the distance (R) between the rear edge and the turning axis of the armature must be made considerably larger than the theoretical value (0.00O75 l()- m.) according to the curve representing K in Fig. 6, for instance 2 lO" rn.
  • the distance (R) between the armature and its turning axis should be not more than at most 60%, for example 50% of the whole length (R-l-L) of the armature.
  • the leakage has been neglected.
  • the factor 0.9 must be placed before y. in the expression for K.
  • a relay core comprising two outer branches 7 and a central leg 6 and a yoke 8 carrying a winding 9.
  • the central leg 6 has a width b and a height h and a length e, whereas the length of each outer branch is g.
  • the width of the yoke is f.
  • armature 10 is shown in Fig. 8, whereby 11 represents the central portion or leg and 12 represents the outer portions or legs of the armature.
  • the relay is shown in side view in Fig. 9 wherein 13 represents a holding means for maintaining the armature 10 against the core. 14 is an adjusting screw and A represents the airgap between the outer left hand ends of parts 6 and 10.
  • Figs. 10 and 11 a relay obtained when modifying the relay of Figs. 7 to 9 in the above suggested manner.
  • An active branch is a branch of the core, no point of which is in magnetic contact with the armature when the latter is in its released position.
  • the force required for the lifting operation of the relay is generated in the air gap between the underside of the branches and the armature.
  • An outer branch or passive branch is a branch of the core, which is in permanent magnetic contact with those parts of the armature which constitute the turning axis of the armature. Owing to this contact, a magnetic short circuit occurs and no part of the flux theoretically passes through the air gap between the underside of the passive branch and the armature.
  • reference numeral 15 designates the active branch and 16 designates the passive branch.
  • the coil winding is designated by 17.
  • FIG. 11 an armature 18 is shown, R being the distance between the armature and its turning axis, while L is the active length of the armature.
  • FIG. 12 A symmetrical relay built in accordance with the same principle is shown in Fig. 12.
  • the relay of Fig. 12 is developed from the one according to Fig. 10 by dividing the active branch into two halves, each having a width of [7/2, b being the total width of the active branches. The two halves are situated on both sides of the passive branch.
  • the total width (b/2+b/2) of the active branches is in an approximate relationship to the height it such as 7 to 1.
  • the reference numeral 19 designates the passive branch of a core, and 20 designates the active branches.
  • the coil windings encompassing the passive branch 19 are designated by 21.
  • Fig. 13 shows an associated armature 22.
  • a magnetic relay circuit comprising a relay coil, a magnet core having an active branch and two passive branches, said active branch being disposed symmetrically in relation to the passive branches, a pivotally mounted armature having a main portion and at least one arm portion, said armature forming a variable airgap with the active branch of the core, the length of the arm portion of the armature, the length of the main portion of the armature, the distance between the pivot axis of the 11 I armature and the point of contact of the outer forces acting 'upon the armature, the airgap, the permeability of the magnetic material used in the magnetic circuit, the cross-sectional area of the core at a right angle to the direction of the magnetic lines of force and the width of the core being correlated in accordance with the equation:
  • R is the length of the arm portion of the armature, L the length of the main portion of the armature, (R+l) the distance between the pivot axis of the armature and the point of attack of the outer force acting upon the armature, 5 the maximum airgap between the armature and the core, a the permeability of the magnetic material, A; the cross-sectional area of the core at right angles to the direction of the magnetic lines of force, b the width of the core, and (D+L half the length of the path of the lines of force in the magnetic material for selectively providing a maximum lifting force of the armature for a given number of ampere turns of the coil and a minimum number of ampere turns for a given lifting force respectively.
  • a magnetic relay circuit according to claim 1 wherein said core has a transverse portion and a longitudinal portion disposed at a rightangle thereto, said longitudinal portion constituting the active branch of the core, the total width (1) of the transverse portion of the core being at least equal to the length (e) of the longitudinal portion of the core.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)

Description

Dec. 22, 1959 G. A. PETTERSSON ETAL 2,918,611
' ELECTROMAGNETIC RELAY Original Filed June 29, 1955 2 Sheets-Sheet 1 0 [km K j 2 K I Rm! 6 O 0.005 00/ r 0 Inc 2000 3000 4000 5000 FIG. 4 1 6-\ 5- 4- 6 INVENTORS GUSTAF ADOLF FETTERSSOA/ 2 PAU KOR/VFELDF "MM mm 5 10 1'5 20 W A r TOR/V5 Y Dec. 22, 1959 e. A. PETTERSSON ETAL 2,918,611
ELECTROMAGNETIC RELAY Original Filed June 29, 1955 2 Sheets-Sheet 2 FIG. I?)
IN VEN TORS GUSTAF ADOLF PETTEK SSOA/ k BY k A T T RNEY United States Patent ELECTROMAGNETIC RELAY Gustaf Adolf Petterssou, Stockholm, and Paul Kornfeldt, Linkoping, Sweden Original application June 29, 1955, Serial No. 518,872, nowvPatent No. 2,858,488, dated October 28, 1958. Divided and this application March 27, 1958, Serial No. 737,182
Claims priority, application Sweden February 19, 1955 9 Claims. (Cl. 317-198) The present invention relates to electromagnetic switches or relays, and more particularly to electromagnetic relays used in telephone communication systems.
Electromagnetic relays play an important part within the field of communication. The great number of components of this kind which for example are used in an automatic telephone station, entails that any fault occurring in these relays in respect of construction or operation is multiplied many times and influences the technical and economical effect of the whole system. Two essential factors to be considered in the construction of relays are the space occupied by a relay and the consumption of current necessary for their operation. If the dimensions of the relays can be reduced, material and space will be saved, whereby the stands, for instance-of telephone stations, can be made smaller and more easily accessible. The consumption of current of the relays can be reduced by eliminating to the greatest possible extent losses, for example due to leakage, and by giving the magnetic field between the magnet core and the armature an optimal shape and strength. At the same time, all other demands normally made on the functionsvof the relay, such as the lifting force of the armature, must of course also be satisfied, including sufficient margins of performance.
The required demands on electromagnetic relays have hitherto largely been satisfied empirically, that is, by establishing by means of control measurements the performance of relays of varying shapes and dimensions of certain parts, for example of magnet core and armature. Apart from the fact, that'such trial and "error methods are uneconomical, they do not produce exact technical data for different requirements, and the obtained data will be more or less accidental.
One of the objects of the present invention is to substitute for the heretofore used trial and error methods a definite rule of calculating the lifting force K of a relay armature as a function of factors determining the. magnitude of the force, such as, for example, the distance between the turning axis of the armature and the point of application of the force on the relay contacts, the ampere turns of the coil or coils, the maximum air gap between the armature and the core and the reluctance of the magnetic circuit.
In order to be able to obtain a general equation of this kind an expression must first be found for length of the paths of the flux lines of force in the iron (8,) and in air (8,), and for the torque M acting upon the armature of the magnet. Thereafter equations may be developed for the lifting force K due to the action of the iron circuit. In addition, different ways of arranging the armature in relation to the core of the magnet must be considered.
The new rule according to the invention is explained in conjunction with the accompanying drawings showing a generally conventional"electromagnetic relay of the flat armature type.
Fig. l is a diagrammatic isometric view of the magnet core and the armature of a conventional flat armature relay, the paths of the lines of force being indicated.
, Fig. 2 is a diagrammatic elevational sideview of the relay according to Fig. 1-.
Figs. 3a and 3b are graphs showing curves representing the lifting force of an armature as a function of the distance (R) of the armature from its turning axis in a practical case, the curve K of Fig. 3a representing the conditions present when the reluctance in the iron circuit is neglected and the curve K representing the con-' ditions when the reluctance of 'the iron circuit is not neglected.
Fig. 3b shows the zcro end of curve K, the scale of R being greatly enlarged.
Fig. 4 is a graph showing a curve of the lifting force of an armature as a function magnetic material. f
Fig. 5 is a diagrammatic elevational side view of a relay with a permanent air gap between thearmature and the core.
from the turning axis for the relay according to Fig. 2 and Fig. 5 respectively.
Fig. 7 is a diagrammatic isometric view of core of a novel relay design.
Fig. 8 is an isometric view ofa novel armature.
Fig. 9 is side view of a core according to Fig. 7 and a magnet an armature according to Fig. 8, which form a relay ac cording to the invention. i
Fig. 10 is another embodiment of a magnet core.
Fig. 11 is the armature for the magnet core according and air respectively. The subsequentcalculation is made in connection with a fiat armature relay according to Fig. 1, in which reference numerals 1 and 2 designate the two branches of a relay structure. This structure is magnetically equivalent to a magnet core with three branches or legs, in which the area of the central branch is twice the area of each of the outer branches. Reference numeral 3 designates the transverse member (the yoke) which in the equivalent circuit c'onnects the branches. The flat armature of the relay has a transverse portion 4 and a longitudinal branch 5. The armature is shown in the non-operative position and forms an angle a with the general plane of the magnet core. 1
The path of the lines of force through the relay is indicated by a dashed line extending through the rear part of branch 1, branch 5 of the armature, portion 4 of the armature, a dash and dot line extending through the air gap, and a dashed line extending through branch 2, yoke 3 and again through branch 1.
I. Determination of the paths of the lines of force 1 and 2. The path of the lines of force in the iron 'co r r{ i sists of two parts, namely the path in the core of the relay and the path in the arcature. The former is entirely dependent upon the dimensions of the core and the latter of the permeability of the Fig. 6 is a graph showing comparative curves of the lifting force of an armature as a function of the distance.
is dependent upon the distribution of flux in the air gap.
When, along the length of the armature a coordinate p of position is introduced as measured with the datum line 0, one may, for sake of simplicity, calculate a value for the ordinate p corresponding to the center of the lines of forces in the operative part 4 of the armature, such a value of Q is denoted by L and thus one half the flux may be considered to leave the armature and cross the air gap along the distance O L and the other half to cross between L and L. The point L is determined through an equation:
wherein R is the distance between the turning axis and the edge of the armature as shown in Fig. 2.
L varies between and L/2, when R increases from 0 to infinity. That L =0 when R=O appears directly from the equation. This condition corresponds to a magnetic short circuit, the whole flux passing through the point of contact between the armature and the core. For R== the armature and the core are parallel whereby the density of flux is constant in the air gap. This signifies that the total flux leaves the armature partly at the center.
In accordance with the references indicated in Fig. 1, the following expression is obtained for the length of the paths of the lines of force in the iron (5,) and air (S respectively.
and
where (D+L is half the path of the lines of force in iron.
If the magnetic leakage is neglected the flux in air must equal the flux in the iron.
II. Determination of the torque M acting upon the armature of the magnet The specific surface force acting upon the magnet is:
1 1 l l=H0 l B being equal to the magnetic density of flux, H being equal with the density of ampere turns, and n being a constant factor in the MKS system equal to 41r10' The force acting on a surface element having the Width b and the length d is:
The total moment is obtained by integration between the limits 0 and L R-l-L I 2 M (M g R III. Determination of the lifting force K of the armature on the lifting stud of a relay with an air gap according to Fig. 2
The lifting force K is obtained by dividing the moment M by the distance (R-i-l) between the turning axis of the armature and the lifting stud of the relay. Then the equation will be as follows:
IV. Determination of the lifting force K of the armature when the reluctance of the iron circuit is neglected In order to be able to neglect the effect of the reluctance of the iron circuit, the magnetic reluctance of the iron circuit must be small as compared with that of the air gap. This is the case when the permeability is very great. When ,u.=, the equation is:
when R=O, K: 00 and decreases thereafter asymptotically with increasing values for R towards when R= V. Calculation of a lifting force K on a contact spring group as the function of a distance R for a practical case with introduction of numerical values As the expression for the force K is difficult to treat mathematically and a general determination of extreme values, if any, therefore will be complicated, a special case will be treated as an illustration in which numerical values have been-inserted in the formula for K obtained in Example III. Then the following figures are obtained, reference being made to Figs. 1 and 2.
All values are given in the MKS-system. The unit of force in this system is l newton (l n.=l02 gms.).
The result will be seen from the table below and Figs. 3a and 3b, the distance R being the abscissa and the force K the ordinate.
Part of Armature length of Torque force on liftarmature ing stud (in (in cm newton) R M K 'VI Determination of the maximum value of the force K as a function of the distance R in the practical case and determine the maximum of this function. The result then will be that k =7.27 newtons for meters, that is close to zero (compare Fig. 3b). The approximation made in the equation for determining K according to Example III, vit. R=0, is thus justified.
For practical measurements the maximum of the force K is found to lie at values for R of about 2-10- meters. This partly is due to the fact that the flux of leakage from the underside of the armature, when the values for R are small, impinges upon the magnet core beyond the turning axis of the armature and thereby gives rise to a moment which is directed against the principal moment, and partly because in practice there always remains a certain air gap (compare the curve K in Fig, 6). When greater values for R are concerned, the two moments cooperate.
VII. Determination of the force K as a function of the permeability ,u
For a distance R=3-10- the force K has been calculated as a function of the permeability The result will be seen from the following table and Fig. 4.
As will be seen from Fig. 4, the course of the curve is relatively flat when the values for ,u are of higher order. Thus, a change of the permeability from 4000 to 6000 (vit. 50%) will result in an increase of the lifting force from 4.2 to about 4.8. It is easy to show that the stated increase of the force can be alternatively eifected by increasing the ampere turns from 175 to about 187 At. the permeability remaining at 4000.
It is obvious that the use of special materials in the magnetic circuit generally is not a suitable solution.
VIII. Determination of the lifting force K (at neglected action from the iron circuit) as a function of the distance R for the case where the reluctance of the iron circuit is neglected co 0. 1-10" 14. 8 0. -10 10. 5 1 8. 7 2 -10- 7. 2 5 -10 5. 6 10 JO" 4. 6 -10 4. 0 -10 3. 8
6 As will be seen (Fig. 3a) the values for the forces K and K differ so much that it is permissible to neglect the reluctance of the iron circuit only when approximate calculations of the lifting force are required.
IX. Calculation of certain dimensions of a relay using the equation for the force K according to Example III The calculation is carried out with a relay, which when the ampere turns IN are At., develops a lifting force K=425 gms.
In accordance with the formula obtained in Example III, relay constructions can be improved in different respects. It may for instance be desirable to reduce the amount of material in the iron circuit, when otherwise the values for a, IN, and K are unchanged.
Alternatively, the aim may be to reduce the ampere turns IN as much as possible, the above data as to a, K, and the amount of material in When weak current systems are involved, the use of material, the permeability, and the lifting force of the lifting studs of the contact spring group are given, as regards the electromagnetic relays which are included in such a system. However, heretofore there has been no definite rule available, how a minimum of the ampere turns IN is simultaneously obtained.
The condition for a minimum of ampere turns IN is deduced from the expression for the force according to Example III.
the derivate being put equal with 0, whereby the following condition for minimum is obtained:
which gives:
( min: 16K6(D+L,)
nuo i It can be seen from the last mentioned equation for (IN) that for given values for K, 6, and ,u, the crosssectional area A; of the core (=b-h according to Fig. 7) should be chosen as large as possible, and the paths of the lines of force in the iron S-=2(LL as short as possible in order to obtain as small a value as possible for IN.
The equation defining the conditions for obtaining minimum ampere turns is more general than is indicated above. It is obvious that the conditions for minimum are true not only for IN but also for For a given value of IN the lifting force K thus has its maximum when the relay dimensions are calculated according to the equation obtained for (IN) min.
The next problem is how to achieve the desired minimum when using the available quantity of material. Furthermore, space must be left for the winding, and the leakage between the difierent portions of the relay must be kept at a low value.
the iron circuit being fixed.-
Thus, the geometrical quantities occurring in the for mulas set forth above, must be chosen so that certain demands as to space are satisfied. To the amount of material required for the magnetic function intended, a certain amount of material must be added, as shown above, which is needed to comply with the mechanical requirements. The path of the lines of force through the outer branch 1 of the core is concentrated within an area around the turning axis of the armature 4. The portion of the outer branch 1 located in front of this turning axis is magnetically inoperative. Consequently, in regard to the magnetic action the branch need not be longer than about half the length shown, that is, it needs to extend only to the turning axis of the armature. However, for various mechanical-constructive reasons, such as the mounting of the contact spring group in the longitudinal direction of these branches 1, 2 (as indicated in Fig. 2), the pivotal mounting of the armature on the underside of. the branches, and the necessary space in lateral direction for the winding (for example winding 9 in Fig. 7), the branches must have a certain length in excess of that necessary for magnetic reasons only. The compromise between the magnetic and the mechanical demands for dimensioning that must be made for practical use has been found to be a length (g) of the outer branches of the core which is at most 80% of the length (e) of the central branch; for certain particularly advantageous practical constructions of the relay 60% are sufficient.
While it has been found to be impossible to satisfy all these conditions simultaneously, it is possible to arrive at an approximate solution by applying the following rules:
(1) b h(b being one side of the cross-sectional area A, which is substantially at right angles to the direction of the force K),
(4) By placing the winding on the transverse portion of the core.
In a relay comprising several active branches which together with the armature form active airgaps, and one or more passive branches, the sum of the width of the active branches is greater than half the sum of the Width of the passive branches, and said sum may also be greater than the sum of the height of these branches divided by the number of branches.
A minimum value for IN will be obtained in a practical case with reference to Fig. l and using the equation for (IN) min. in Example IX:
K 4.16 newton.
6=0.8-10" m. p.=4-10 II1. L= 30-10- rn.
l= 2910- m. p =47r'10 the result being D=38.75-10- m. L =6.00-10' m. A,-=72-10- m.
According to the equation for (IN) the result is:
(IN) =81.3 At.
but the condition for a mathematical minimum is not exactly fulfilled in practice.
For the adopted data the following theoretical result is obtained.
and 1N=8l.8 At. Thus, the practical value is reasonably close to the mathematically calculated extreme value for IN.
The result is that by application of the formula of the invention according to Example III (the values for the use of material, the permeability, and the force being maintained) produces a reduction of the ampere turns from At. to 82 At., that is a reduction of 53%. This reduction demonstrates the practical usefulness of the new formula as per Example III.
When it is desired to maintain the number of ampere turns: IN=l75 At., and instead to obtain as large a force K as possible, the following result is obtained from the equation for the lifting power:
2 K =4.16-( =18.95n.=1903 gms.
The Lifting power is in this case 4.55 times greater than in the previous case (425 gms.).
The reason why the practical dimensioning of the distance R between the operative part of the armature and its turning axis differs from the calculated theoretical value is as follows: A part of the magnetic flux leaves the underside of the armature (for example the armature 4 in Fig. 1) and passes from there to the central branch of the core. When the distance (R) is small, some of this flux will impinge upon the central branch of the core behind the turning axis of the armature, whereby the flux of leakage gives rise to a torque which is directed opposite to the mechanically acting torque. The result is the lifting force acting upon the lifting studs. Owing to this, the distance (R) between the rear edge and the turning axis of the armature must be made considerably larger than the theoretical value (0.00O75 l()- m.) according to the curve representing K in Fig. 6, for instance 2 lO" rn. However, the distance (R) between the armature and its turning axis should be not more than at most 60%, for example 50% of the whole length (R-l-L) of the armature.
X. Calculation of the lifting force K in a relay with a composite air gap as per Fig. 5
To facilitate the separation of the armature it is sometimes desirable to provide an air gap remaining between the armature and the central branch of the core, when the relay is in operative position. Such remaining air gap is obtained by bending the central leg in relation to the branches. The air gap is in such case composed of a variable portion m and a stationary portion a The calculation of the force K is analogous to that of the previous case, in which the variable part of the air gap only was considered. The following result is obtained.
in which S=the distance between the bending axis of the By inserting in the expression for K the same numerical values as above and for e =0.758-10- a =1'10 3. 68 0. 1 10 3. 77 0. -11) 3. 85. 1 '10 3. 88 2 40 3. 75 5 3. 41 10 '10 3. '10- 2. 88 30 'IlCl' 2. 79
There is still another reason for selecting R larger than the theoretical value obtained from the respective equation for K. In the practice, the air gap always forms some angle 0: as the armature plate and the core respectively cannot be made entirely plane. Hence, the angle a =0 applies to the theoretical case only. However, according to the equation in Example X, the lifting force K is also dependent on the stationary part a of the air gap and respectively the distance R and the length (R+L) of the armature. Hence, to obtain the desired maximum for the lifting force K in the case of a practical construction, the distance R must be selected at a suitable relationship to the whole length (R+L) of the armature.
XI. Control of calculated values through measuring Control measurements on an unloaded flat armature relay with a distance R=3-10 have shown that 30 ampere turns are required to overcome frictional resistance and counter moments caused by the weight of the armature. The same relay must have 200 ampere turns to lift maximum 400 grams that is, to obtain the lifting force necessary for lifting by means of lifting studs the maximum number of contact springs in a group of contact springs conceivable in the practice. The maximum lifting force of the lifting stud has been stated as 400 grams giving a contact pressure of grams per spring with a group of contact springs consisting of 2x7: 14 contact springs and a margin of about 15%. The number of ampere turns IN active in the lifting operation thus amounts to 170. As the force K is proportional to the square of IN, a relay with 175 ampere turns will be able to lift:
The quantity of material required for the armature and the core amounts to 10,500 mm. and the permeability of the iron is =4000.
According to Fig. 3a, the corresponding theoretical value of the force will be 4.25 newton=434 gms. However, in the above calculations the leakage has been neglected. When in a practical case the leakage is calculated to amount to 10%, the factor 0.9 must be placed before y. in the expression for K. The force corrected in this way will be 4.10 newton=419 gms., while the really measured force as per above is 424 gms.
=424 grams XII. The embodiments according to Figs. 10-13 For practical reasons it is often desirable to reduce the lateral width of a relay. This is elfected by placing one of the outer branches of a core, for example as shown in the embodiment of Fig. 7, upon the other outer branch. As a result, the relay obtains the appearance of Fig. 10.
In Fig. 7 a relay core is'shown comprising two outer branches 7 and a central leg 6 and a yoke 8 carrying a winding 9. The central leg 6 has a width b and a height h and a length e, whereas the length of each outer branch is g. The width of the yoke is f.
The corresponding armature 10 is shown in Fig. 8, whereby 11 represents the central portion or leg and 12 represents the outer portions or legs of the armature.
The relay is shown in side view in Fig. 9 wherein 13 represents a holding means for maintaining the armature 10 against the core. 14 is an adjusting screw and A represents the airgap between the outer left hand ends of parts 6 and 10.
In Figs. 10 and 11 is shown a relay obtained when modifying the relay of Figs. 7 to 9 in the above suggested manner. In this connection it is more adequate to intro duce other expressions instead of the definitions central branch, and outer branch of the core used in connection with the previous embodiments, such as, for example active branch, and passive branch. An active branch is a branch of the core, no point of which is in magnetic contact with the armature when the latter is in its released position. The force required for the lifting operation of the relay is generated in the air gap between the underside of the branches and the armature. An outer branch or passive branch is a branch of the core, which is in permanent magnetic contact with those parts of the armature which constitute the turning axis of the armature. Owing to this contact, a magnetic short circuit occurs and no part of the flux theoretically passes through the air gap between the underside of the passive branch and the armature.
In the example of Fig. 10 reference numeral 15 designates the active branch and 16 designates the passive branch. The coil winding is designated by 17. The designations of the dimensions are the same as before, that is, b=the Width of the branch, e=the length of the active branch, g=the length of the passive branch and f=the length of the transverse part of the core.
In Fig. 11 an armature 18 is shown, R being the distance between the armature and its turning axis, while L is the active length of the armature.
A symmetrical relay built in accordance with the same principle is shown in Fig. 12. The relay of Fig. 12 is developed from the one according to Fig. 10 by dividing the active branch into two halves, each having a width of [7/2, b being the total width of the active branches. The two halves are situated on both sides of the passive branch. The total width (b/2+b/2) of the active branches is in an approximate relationship to the height it such as 7 to 1.
In Fig. 12 the reference numeral 19 designates the passive branch of a core, and 20 designates the active branches. The coil windings encompassing the passive branch 19 are designated by 21. The designations of the dimensions are the same as before, b/2=half the width of the active branches 20.
Fig. 13 shows an associated armature 22.
The present application is a divisional application divided out of pending application Serial No. 518,872, filed June 29, 1955, now Patent No. 2,858,488, granted October 28, 1958.
The invention has been described above in connection with certain embodiments of flat armature relays, but it may also be applied to relays of other constructions.
What is claimed is:
1. A magnetic relay circuit comprising a relay coil, a magnet core having an active branch and two passive branches, said active branch being disposed symmetrically in relation to the passive branches, a pivotally mounted armature having a main portion and at least one arm portion, said armature forming a variable airgap with the active branch of the core, the length of the arm portion of the armature, the length of the main portion of the armature, the distance between the pivot axis of the 11 I armature and the point of contact of the outer forces acting 'upon the armature, the airgap, the permeability of the magnetic material used in the magnetic circuit, the cross-sectional area of the core at a right angle to the direction of the magnetic lines of force and the width of the core being correlated in accordance with the equation:
R+L ;.LA; (RlLZ) R 2b(D+L where R is the length of the arm portion of the armature, L the length of the main portion of the armature, (R+l) the distance between the pivot axis of the armature and the point of attack of the outer force acting upon the armature, 5 the maximum airgap between the armature and the core, a the permeability of the magnetic material, A; the cross-sectional area of the core at right angles to the direction of the magnetic lines of force, b the width of the core, and (D+L half the length of the path of the lines of force in the magnetic material for selectively providing a maximum lifting force of the armature for a given number of ampere turns of the coil and a minimum number of ampere turns for a given lifting force respectively.
2. A magnetic relay circuit according to claim 1 wherein the width of the active branch is greater than the width of one passive branch.
3. A magnetic relay circuit according to claim 1, wherein the length of the passive core branch is at most of the length of the active core branches.
4. A magnetic relay circuit according to claim 1 wherein said core has a transverse portion and a longitudinal portion disposed at a rightangle thereto, said longitudinal portion constituting the active branch of the core, the total width (1) of the transverse portion of the core being at least equal to the length (e) of the longitudinal portion of the core.
5. A magnetic relay circuit according to claim 4 wherein said relay coil is wound about the transverse portion of the core.
6. A magnetic relay circuit according to claim 5 wherein said coil is divided into two equal parts disposed on the transverse portion on both sides of the active branch of the core.
7. A magnetic relay circuit according to claim 1 wherein the width of the active branch is more than twice the Width of one passive branch.
8. A magnetic relay circuit according to claim 7 wherein the proportion between the Width of the active branch and the height of the said branch is greater than 1.
9. A magnetic relay circuit according to claim 8 wherein said proportion is greater than 2.
No references cited.
US737182A 1955-02-19 1958-03-27 Electromagnetic relay Expired - Lifetime US2918611A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BE538144D BE538144A (en) 1955-02-19
FR1131997D FR1131997A (en) 1955-02-19 1955-05-12 Electro-magnetic relays
DEP14101A DE1023823B (en) 1955-02-19 1955-05-12 Electromagnetic relay
CH341230D CH341230A (en) 1955-02-19 1955-05-13 Electromagnetic relay
US518872A US2858488A (en) 1955-02-19 1955-06-29 Electromagnetic relay
US737182A US2918611A (en) 1955-02-19 1958-03-27 Electromagnetic relay

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE2858488X 1955-02-19
GB1396755A GB781119A (en) 1955-05-13 1955-05-13 Improvements in or relating to electro-magnetic relays
US518872A US2858488A (en) 1955-02-19 1955-06-29 Electromagnetic relay
US737182A US2918611A (en) 1955-02-19 1958-03-27 Electromagnetic relay

Publications (1)

Publication Number Publication Date
US2918611A true US2918611A (en) 1959-12-22

Family

ID=32398128

Family Applications (1)

Application Number Title Priority Date Filing Date
US737182A Expired - Lifetime US2918611A (en) 1955-02-19 1958-03-27 Electromagnetic relay

Country Status (4)

Country Link
US (1) US2918611A (en)
BE (1) BE538144A (en)
CH (1) CH341230A (en)
FR (1) FR1131997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514711A (en) * 1983-07-30 1985-04-30 Matsushita Electric Works, Ltd. AC Drive electromagnetic relay

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT387376B (en) * 1986-02-21 1989-01-10 Leopold Makovec WATER TREATMENT ARRANGEMENT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514711A (en) * 1983-07-30 1985-04-30 Matsushita Electric Works, Ltd. AC Drive electromagnetic relay

Also Published As

Publication number Publication date
FR1131997A (en) 1957-03-04
CH341230A (en) 1959-09-30
BE538144A (en)

Similar Documents

Publication Publication Date Title
US4591942A (en) Current sensing transformer assembly
US4531108A (en) Three-phase choke with a five-leg core
US2918611A (en) Electromagnetic relay
US2858488A (en) Electromagnetic relay
US3154728A (en) High sensitivity magnetic relay
Pokharel et al. Analytical modeling of a ferromagnetic core reactor
US1953519A (en) Current transformer
JP7015657B2 (en) Current limiting coil for DC power supply
US3843945A (en) Temperature compensation of electromagnetic device
US2825783A (en) Polarized relay
US3369206A (en) Electromagnetic telephone relay
KR970705157A (en) REACTOR AND METHOD OF MAKING THE SAME
JPS5776811A (en) Composite core for transformer
US2507320A (en) Alternating current electrical instrument and electromagnet therefor
GB1044207A (en) Improvements in and relating to electromagnetic contactors
US2047845A (en) Transformer
US1231516A (en) Phantom loading-coil.
WO2017204264A1 (en) Current limiting coil for dc power supply
CN114864251B (en) Double-framework common-winding current transformer structure and design method thereof
US1806331A (en) Induction meter
JP3365521B2 (en) Zero-phase current transformer
US1835861A (en) Electric meter of ferraris type
JPH05844B2 (en)
SU1631658A1 (en) Aerial solidly-earthed-neutral there-phase power line
Upson et al. Abridgment of magnetic leakage and fringing flux calculations