US2876538A - Movable clipper blade and drive transmission for same - Google Patents

Movable clipper blade and drive transmission for same Download PDF

Info

Publication number
US2876538A
US2876538A US614562A US61456256A US2876538A US 2876538 A US2876538 A US 2876538A US 614562 A US614562 A US 614562A US 61456256 A US61456256 A US 61456256A US 2876538 A US2876538 A US 2876538A
Authority
US
United States
Prior art keywords
blade
dimension
finger
recess
drive transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US614562A
Inventor
John F Wahl
Leo J Wahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wahl Clipper Corp
Original Assignee
Wahl Clipper Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wahl Clipper Corp filed Critical Wahl Clipper Corp
Priority to US614562A priority Critical patent/US2876538A/en
Application granted granted Critical
Publication of US2876538A publication Critical patent/US2876538A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B19/00Clippers or shavers operating with a plurality of cutting edges, e.g. hair clippers, dry shavers
    • B26B19/28Drive layout for hair clippers or dry shavers, e.g. providing for electromotive drive
    • B26B19/282Motors without a rotating central drive shaft, e.g. linear motors

Definitions

  • Fig. 4 is a bottom view of the forward end of finger member 30, end plane 33 of the member being in the plane of the drawing as indicated by line 4-4 in Fig. 3.
  • the bottom corners of finger member 30 are bevelled to provide bearing surfaces. These surfaces are designated 35, 36, 37 and 3S in Fig. 4, and similarly, where appropriate, in Figs. 2, 3 and 5.
  • each of the corner surfaces 35-38 is inclined at an angle of substantially 30 degrees to the transverse axis 39 of finger end 32.
  • Each corner surface also is inclined at an angle of substantially degrees to the longitudinal axis of the finger end as shown in Fig. 5.
  • each bearing surface, for example, surface 35 is inclined at substantially degrees to the transverse axis of the finger end and also inclined at an angle of substantially 20 degrees to the longitudinal axis of the finger end.
  • the 20 degree inclination is the critical one from the standpoint of the driving relationship between the finger member and its associated blade.
  • linger member 30 of the drive transmission engages and cooperates with movable clipper blade 20 which is illustrated in Figs. 6-8 and which now will be described.
  • Movable blade 20 is generally rectangular in shape and it has a row of cutting teeth 40 along one of its sides.
  • the upper surface of blade 20 has an elongated, generally central recess 43.
  • This recess is shaped to conform to the shape of finger end 32.
  • the upper surface corners of recess 43 are shaped, respectively, to provide bearing surfaces 45, 46, 47 and 48. These surfaces, respectively, receive the surfaces -38 of linger end 32 and establish a wedging relationship between the finger member and the blade.
  • each bearing surface in recess 43 has an inclination of substantially 30 degrees to the longitudinal axis of the recess (Fig. 6) and an inclination of substantially 20 degrees to a plane normal to the blade (Fig. 8).
  • One important structural feature of the invention is that one adjacent pair of the bearing surfaces, for ex ample surfaces 4S and 46, is spaced from the other adjacent pair, namely, surfaces 47 and 43, by an effective distance which is approximately one-half the width of blade 20 measured along the row of teeth 40.
  • the dimension C shown in Fig. 6 must be approximately one-half the aforesaid blade width.
  • dimension C must be approximately twice the length of dimension A, the latter being the distance from the forward teeth ends to the longitudinal axis of recess 43. Since dimension B (Fig. 6) is one-half dimension C, it will be seen that dimension A is approximately equal to dimension B.
  • blade 20 reciprocates back and forth in response to movement of finger member 30 which is carried and driven by vibrating armature 17.
  • finger member 30 aided by spring member 22 exerts a bias or pressure on blade 20, this bias or pressure being of optimum cutting value.
  • finger member 30 When the product of F and B exceeds or equals the product of R and A, finger member 30 retains its proper seated relationship with recess 43, i. e. no unseating occurs. This is true under conditions of optimum bias.
  • the unseating tendency is substantially eliminated when the dimension B is greater than or at least not smaller than the dimension A, and this relationship is one of the main features of the invention.
  • the dimension B is less than the dimension A it is necessary to increase the cutting bias and thus increase the value F in order to resist the tendency toward unseating and this expedient, as previously mentioned, is objectionable because it results in excess friction between blades.
  • Another main feature of this invention which cooperates with the dimensioning described above is the previously mentioned shape of the bearing surfaces 35-38 and 45-48. These bearing surfaces are such that close manufacturing tolerances are not required. Thus, relatively inexpensive manufacturing processes may be followed in shaping the surfaces 35--38 on the finger and the surfaces 45-48 in blade 20. Minor deviation from the desired shapes in manufacture do not result in failure of bearing engagement as would be the case, for example, if an inclination of substantially less than 20 degrees were used in place of the substantially 20 degrees specified.
  • the substantially 2O degree angle is as steep as practical for simplified, inexpensive manufacturing processes.
  • the bias pressure between blades is restricted to that necessary only for proper cutting action. Elimination of the unseating tendency under conditions of optimum bias pressure and extreme loads is accomplished by increasing the width of the finger member to a dimension which is approximately one-half the width of the blade or which is approximately twice the distance between the longitudinal axis of the recess and the forward end of the cutting teeth.
  • the leverage provided by the respective bearing surfaces thus is increased without increasing the bias pressure, and the transmission is such that unseating ordinarily does not occur even at loads high enough to stall the motor, i. e., loads which impose maximum torque or twisting leverage on finger member 30.
  • a movable clipper blade and drive transmission for same comprising a blade having a row of teeth along one longitudinal edge and having a central elongated recess extending widthwise in the upper surface thereof, the extremities of said recess each having a pair of double-inclined bearing surfaces, each bearing surface inclined at an angle of about 30 degrees with the longitudinal axis of the recess and at an angle of about 20 degrees with a plane normal to the blade, the said pairs of bearing surfaces spaced from each other by approximately twice the distance from said teeth to the longitudinal axis of said recess, said spacing corresponding approximately to one-half the width of the blade, a drive finger having bearing surfaces disposed and shaped to be seated on the bearing surfaces of said recess, and vibrating means secured to said drive finger and biasing same against said blade with optimum cutting pressure.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dry Shavers And Clippers (AREA)

Description

March 10, 1959 J. F. WAHL ETAL 2,876,538
MovABLE CLIPPERBLADE .AND DRIVE'LT'RANsMisswN FOR SAME Filed Oct. 8, 1956 MavfME/vr l LL.L.L.L.A.L.LL.
F I l l 3 Wardly extending axis of the end 32 makes an angle of approximately 60 degrees with the plane of spring member 22, and end plane 33 of nger member 30 is normal to this axis.
Fig. 4 is a bottom view of the forward end of finger member 30, end plane 33 of the member being in the plane of the drawing as indicated by line 4-4 in Fig. 3. The bottom corners of finger member 30 are bevelled to provide bearing surfaces. These surfaces are designated 35, 36, 37 and 3S in Fig. 4, and similarly, where appropriate, in Figs. 2, 3 and 5.
As shown in Fig. 4, each of the corner surfaces 35-38 is inclined at an angle of substantially 30 degrees to the transverse axis 39 of finger end 32. Each corner surface also is inclined at an angle of substantially degrees to the longitudinal axis of the finger end as shown in Fig. 5. Thus, each bearing surface, for example, surface 35, is inclined at substantially degrees to the transverse axis of the finger end and also inclined at an angle of substantially 20 degrees to the longitudinal axis of the finger end. The 20 degree inclination is the critical one from the standpoint of the driving relationship between the finger member and its associated blade.
The aforesaid linger member 30 of the drive transmission engages and cooperates with movable clipper blade 20 which is illustrated in Figs. 6-8 and which now will be described.
Movable blade 20 is generally rectangular in shape and it has a row of cutting teeth 40 along one of its sides.
The upper surface of blade 20 has an elongated, generally central recess 43. This recess is shaped to conform to the shape of finger end 32. Thus, the upper surface corners of recess 43 are shaped, respectively, to provide bearing surfaces 45, 46, 47 and 48. These surfaces, respectively, receive the surfaces -38 of linger end 32 and establish a wedging relationship between the finger member and the blade.
As shown in Figs. 6 and 8, each bearing surface in recess 43 has an inclination of substantially 30 degrees to the longitudinal axis of the recess (Fig. 6) and an inclination of substantially 20 degrees to a plane normal to the blade (Fig. 8).
One important structural feature of the invention is that one adjacent pair of the bearing surfaces, for ex ample surfaces 4S and 46, is spaced from the other adjacent pair, namely, surfaces 47 and 43, by an effective distance which is approximately one-half the width of blade 20 measured along the row of teeth 40. Thus, the dimension C shown in Fig. 6 must be approximately one-half the aforesaid blade width.
Another important structural feature of the invention is that dimension C must be approximately twice the length of dimension A, the latter being the distance from the forward teeth ends to the longitudinal axis of recess 43. Since dimension B (Fig. 6) is one-half dimension C, it will be seen that dimension A is approximately equal to dimension B.
In operation, blade 20 reciprocates back and forth in response to movement of finger member 30 which is carried and driven by vibrating armature 17. As previously mentioned, finger member 30 aided by spring member 22 exerts a bias or pressure on blade 20, this bias or pressure being of optimum cutting value.
Assuming blade 20 is moving to the left as viewed in Fig. 6, teeth and consequently the blade encounter a resistance indicated by R. This resistance R is applied to blade 20 on an arm indicated by dimension A. The resultant moment which is represented by the product R times A reacts on finger member 30 as a torque which under certain circumstances tends to unseat the finger member. This torque (R times A) or twisting leverage is resisted by a moment represented by the product of a force F applied by the tinger member and the arm in- Adicated by the dimension B.
When the product of F and B exceeds or equals the product of R and A, finger member 30 retains its proper seated relationship with recess 43, i. e. no unseating occurs. This is true under conditions of optimum bias.
Thus, the unseating tendency is substantially eliminated when the dimension B is greater than or at least not smaller than the dimension A, and this relationship is one of the main features of the invention. Where the dimension B is less than the dimension A it is necessary to increase the cutting bias and thus increase the value F in order to resist the tendency toward unseating and this expedient, as previously mentioned, is objectionable because it results in excess friction between blades.
Another main feature of this invention which cooperates with the dimensioning described above is the previously mentioned shape of the bearing surfaces 35-38 and 45-48. these bearing surfaces are such that close manufacturing tolerances are not required. Thus, relatively inexpensive manufacturing processes may be followed in shaping the surfaces 35--38 on the finger and the surfaces 45-48 in blade 20. Minor deviation from the desired shapes in manufacture do not result in failure of bearing engagement as would be the case, for example, if an inclination of substantially less than 20 degrees were used in place of the substantially 20 degrees specified.
To summarize, it has been found that the substantially 2O degree angle is as steep as practical for simplified, inexpensive manufacturing processes. Further, the bias pressure between blades is restricted to that necessary only for proper cutting action. Elimination of the unseating tendency under conditions of optimum bias pressure and extreme loads is accomplished by increasing the width of the finger member to a dimension which is approximately one-half the width of the blade or which is approximately twice the distance between the longitudinal axis of the recess and the forward end of the cutting teeth. The leverage provided by the respective bearing surfaces thus is increased without increasing the bias pressure, and the transmission is such that unseating ordinarily does not occur even at loads high enough to stall the motor, i. e., loads which impose maximum torque or twisting leverage on finger member 30.
From the above description it is thought that the construction and advantages of our invention will be readily apparent to those skilled in the art. Various changes in detail may be made without departing from the spirit or losing the advantages of the invention.
Having thus described our invention, what we claim as new and desire to secure by Letters Patent is:
A movable clipper blade and drive transmission for same comprising a blade having a row of teeth along one longitudinal edge and having a central elongated recess extending widthwise in the upper surface thereof, the extremities of said recess each having a pair of double-inclined bearing surfaces, each bearing surface inclined at an angle of about 30 degrees with the longitudinal axis of the recess and at an angle of about 20 degrees with a plane normal to the blade, the said pairs of bearing surfaces spaced from each other by approximately twice the distance from said teeth to the longitudinal axis of said recess, said spacing corresponding approximately to one-half the width of the blade, a drive finger having bearing surfaces disposed and shaped to be seated on the bearing surfaces of said recess, and vibrating means secured to said drive finger and biasing same against said blade with optimum cutting pressure.
References Cited in the file of this patent UNITED STATES PATENTS 431,965 Cook et al. July 8, 1890 1,708,315 Lutes Apr. 9, 1929 2,306,039 Cromonic Dec. 22, 1942 2,640,261 Wahl June 2, Y19,53
The described shape or inclinations of
US614562A 1956-10-08 1956-10-08 Movable clipper blade and drive transmission for same Expired - Lifetime US2876538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US614562A US2876538A (en) 1956-10-08 1956-10-08 Movable clipper blade and drive transmission for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US614562A US2876538A (en) 1956-10-08 1956-10-08 Movable clipper blade and drive transmission for same

Publications (1)

Publication Number Publication Date
US2876538A true US2876538A (en) 1959-03-10

Family

ID=24461795

Family Applications (1)

Application Number Title Priority Date Filing Date
US614562A Expired - Lifetime US2876538A (en) 1956-10-08 1956-10-08 Movable clipper blade and drive transmission for same

Country Status (1)

Country Link
US (1) US2876538A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3047948A (en) * 1959-04-08 1962-08-07 Wahl Clipper Corp Drive finger for vibrating motor
US3136058A (en) * 1962-10-26 1964-06-09 Andis Clipper Co Hair clipper blade drive in a vibratory type clipper
US20100299930A1 (en) * 2007-12-20 2010-12-02 Koninklijke Philips Electronics N.V. Shaving device comprising a pivotably arranged assembly of cutting elements
DE102009045545A1 (en) * 2009-10-09 2011-04-14 Aesculap Suhl Gmbh Animal shearing machine, has reduction gear with output shaft coupled with movable shearing blade, where reduction gear is formed as planetary gear, and output shaft is arranged parallel and coaxial to shaft of electric motor
US8769824B2 (en) 2009-04-20 2014-07-08 Aesculap Suhl Gmbh Animal shearing machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US431965A (en) * 1890-07-08 Island
US1708315A (en) * 1927-04-07 1929-04-09 A C Flack Magnetic hair clipper
US2306039A (en) * 1941-07-24 1942-12-22 Cromonic Joseph Detachable and adjustable plate for hair clippers
US2640261A (en) * 1951-01-02 1953-06-02 Wahl Clipper Corp Transmission for electric hair clippers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US431965A (en) * 1890-07-08 Island
US1708315A (en) * 1927-04-07 1929-04-09 A C Flack Magnetic hair clipper
US2306039A (en) * 1941-07-24 1942-12-22 Cromonic Joseph Detachable and adjustable plate for hair clippers
US2640261A (en) * 1951-01-02 1953-06-02 Wahl Clipper Corp Transmission for electric hair clippers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3047948A (en) * 1959-04-08 1962-08-07 Wahl Clipper Corp Drive finger for vibrating motor
US3136058A (en) * 1962-10-26 1964-06-09 Andis Clipper Co Hair clipper blade drive in a vibratory type clipper
US20100299930A1 (en) * 2007-12-20 2010-12-02 Koninklijke Philips Electronics N.V. Shaving device comprising a pivotably arranged assembly of cutting elements
US8458914B2 (en) * 2007-12-20 2013-06-11 Koninklijke Philips Electronics N.V. Shaving device comprising a pivotably arranged assembly of cutting elements
US8769824B2 (en) 2009-04-20 2014-07-08 Aesculap Suhl Gmbh Animal shearing machine
DE102009045545A1 (en) * 2009-10-09 2011-04-14 Aesculap Suhl Gmbh Animal shearing machine, has reduction gear with output shaft coupled with movable shearing blade, where reduction gear is formed as planetary gear, and output shaft is arranged parallel and coaxial to shaft of electric motor

Similar Documents

Publication Publication Date Title
US2965967A (en) Scissors
EP0282117B1 (en) Cutting unit
US2876538A (en) Movable clipper blade and drive transmission for same
US2295385A (en) Pruning shears
US3456341A (en) Cutter head for dry shaving apparatus
US4262415A (en) Hair trimmer
US2142738A (en) Shears
US3562908A (en) Hand tools
US2903867A (en) Zero-backlash coupling for shafts or the like
US3052026A (en) Scissors, shears and like implements
US3101535A (en) Blade assembly with lateral extensions
US2314068A (en) Shaving device
US2322744A (en) Safety razor blade
US874932A (en) Hair-clipping device.
EP0111372B1 (en) Hair-cutting device
US3191300A (en) Guide means for inner cutter of a dry shaver
US714087A (en) Shears.
US2657460A (en) Razor blade
US2198118A (en) Hair clipper
EP0151828B1 (en) Hair trimmer
US2715769A (en) Wire cutting and retaining nipper
US2462519A (en) Hair cutting comb
US1047002A (en) Scissors.
US2284823A (en) Wiper blade
US2399399A (en) Wiper blade connector