US2865816A - Method and apparatus for the assay of viable microorganisms - Google Patents

Method and apparatus for the assay of viable microorganisms Download PDF

Info

Publication number
US2865816A
US2865816A US610695A US61069556A US2865816A US 2865816 A US2865816 A US 2865816A US 610695 A US610695 A US 610695A US 61069556 A US61069556 A US 61069556A US 2865816 A US2865816 A US 2865816A
Authority
US
United States
Prior art keywords
aerosol
chamber
vol
dilution
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US610695A
Inventor
Stefanye David
Jule N Dews
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US610695A priority Critical patent/US2865816A/en
Application granted granted Critical
Publication of US2865816A publication Critical patent/US2865816A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/10Petri dish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/44Multiple separable units; Modules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers

Landscapes

  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

Dec.
D. STEFANYE ETAL METHOD AND APPARATUS FOR THE ASSAY OF VIABLE MICROORGANISMS Filed Sept. 18, 1956 zzvmvrozes Dav/d .Sfefanye Jule N. Dews By W ATTORNE United States Patent METHOD AND APPARATUS FOR THE ASSAY OF VIABLE MICROORGANISMS David Stefanye and Jule N. Dews, Frederick, Md. Application September 18, 1956, Serial No. 610,695 7 Claims. 01. 19s 103.s
(Granted under Title 35, U. S. Code (1952), sec. 266) The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes Without the payment to us of any royalty thereon.
This invention relates to an apparatus for diluting an aerosol to enable a count to be made of the viable organisms therein. More specifically, the invention relates to a mechanism for preparing and diluting an aerosol by a known amount and of depositing the remaining or a proportion of the remaining organisms on a nutrient media for culturing and counting.
The established method for determining the number of viable organisms in a liquid isto introduce a measured amount of liquid into a large amount of water or other diluent and shake the resulting mixture. A sample is then withdrawn, rediluted and reshaken until a final degree of dilution is obtained such that a given volume of liquid may be plated out on a suitable media in a Petri dish and incubated. The resulting colonies are then counted and the original concentration determined from the dilution ratio. This method of determining the presence and number of viable organisms in a liquid has some disadvantages. It is quite slow, requiring much mixing, and the repeated sampling and redilution may be dangerous when toxic organisms are handled.
The present invention avoids these difii'culties by making an aerosol of a given quantity of liquid and rapidly diluting the same before any appreciable settling takes place. This procedure eliminates the mixing and shaking problem inherent in dilution in the liquid state. Moreover, the aerosol is continuously inside of the ap paratus during the entire determination so that no contamination can take place and the plating out on Petri dishes is automatically taken care of. Moreover, by utilizing a suitable atomizer or nebulizer, aerosol particle size approaches the dimensions of a single microorganism, thus causing chains and clusters of cells to separate, whereupon a more exact count is realized.
In Figure 1, beginning at the top, the five sections of the apparatus are shown in descending order at 2, 4, 6, 8 and 10. Atomizer inlet 12 in section 2 provides for the admission of the aerosol into the upper chamber. Stopcocks 26, 28, 30, 32 and 34 serve to connect the respective sections with line 35 for admitting a sterile gas to the system. In a similar manner, the respective compartments 2, 4, 6 and 8 are fitted with outlet connections 36, 38, 40 and 42, which are equipped with stopcocks 37, 39, 41 and 43 respectively. Corresponding inlet connections 52, 54, 56 and 58, together with stopcocks 53, 55, 57 and 59, are fitted to chambers 4, 6, 8 and 10. These inlet and outlet connections are joined to sub-chambers 44, 46, 48 and 50, the outlet from one chamber and inlet to the next lower chamber being connected to the same sub-chamber. By means of these several connections it is possible for an aerosol to be passed from one compartment to another via the subchambers and connections therebetween. The sub-cham- Patented 'Dec; 23 1 958 bers are vented into line 62 by means of stopcocks 45, 47, 49 and 51.
The respective chambers and sub-chambers may be of any reasonable size, but for convenience in calcula tions the following sizes were used:
By choosing these sizes,
the following volumetric relationships obtain:
Vol. 2+vol. 44:1,000ml. and vol. 44=a 10 dilution.
Vol. 4+vol. 44+vol. 46:1,000 ml. and vol. 46:21 10 dilution.
Vol. 6+vol. 46+vol. 48:1,000 ml. and vol. 48=a 10 dilution.
Vol. 8+vol. 48+vol. 50:1,000 ml. and vol. 50=a 10 dilution.
The apparatus may be constructed of glass, metal, ceramics or plastics, the only requirements being that it shall be airtight, capable of sustaining asubstantialvacuum and must be capable of being sterilized by steam,
heat, chemicals or gases. In addition, the walls should be smooth and not toxic to the organisms tested. In the preferred form the apparatus is made ofv glass having ground joints at 9 and 11.
The transverse shape of the present apparatus is trifoliate, although a circular or other cross section could also be used. The section shown was chosen since it permits the close fitting of three Petri-dishes as shown in Fig. 2. With this design, almost all of the aerosol settling out will fall on one or another of the dishes.
The two lower sections 8 and 10 are fitted with trans* verse sealed joints 9 and 11, thereby permitting the sections to be opened for: the placing or removing of the Petri dishes.
In operation, the apparatus is assembled and sterilized with steam, with all stopcocks open. The apparatus is then cooled to about 37 C. and the Petri dishes with their nutrient media are inserted in chambers 8 and 10. The purpose of having plates in both of the lower chambers is to obtain an adjacent count differing by a power of 10. Stopcocks 26, 28, 30, 32 and 34 are closed and the entire apparatus is evacuated through line 62 after which all stopcocks are closed. A measured amount of liquid containing viable organisms to be counted is now introduced into chamber 2 through the spray nozzle 12 as a finely divided aerosol. Sterile air or inert gas is admitted through stopcock 26 to bring chamber 2 to substantially atmospheric pressure. A sample of the aerosol is now taken into sub-chamber 44 by opening stopcock 37. Subchamber 44, being under a vacuum, will fill promptly from chamber 2, the latter being at atmospheric pressure. This latter sample now contains ,4 of the organisms originally present in chamber 2. Stopcocks 26 and 37 are closed and 53 opened, thereby transferring most of the sample in sub-chamber 44 to chamber 4. The total volume of the selected sample of aerosol is now volume 4+volume 44. Stopcock 28 is opened to bring about equilibrium with sterile air or gas as before. Stopcock 39 is then opened to transfer part of the sample to sub chamber 46. The total volume occupied by the selected aerosol sample is now vol. 4+vol. 44+vol. 46,
time, by means of the exhaust system.
This total volume has already been defined as 1,000 ml. and since vol. 46 is ml., there is again a dilution of 100 to 1 or a total of 10,000 to 1 (10 between vol. 46 and the initial aerosol volume.
Stopcocks 28 and 39 are now closed and 55 opened, thereby largely transferring the aerosol into chamber 6.
. Stopcock 30 is opened for pressure equilibrium as before and the sample partially transferred in succession to subchamber 48, then chamber 8, sub-chamber 50, and chamber 10.. The stabilization of pressures through stopcocks 26, 28, 30, 32 and 34 is not essential to correct results, but it assists the movement of aerosol from chamber to chamber by maintaining the required pressure differential. The manipulation of stopcocks should be as indicated. Stopcocks 26, 28, 30, 32 and 34 are closed in order as indicated to prevent line 35 from being contaminated from the content of the upper aerosol chambers. In each transfer of aerosol there is a specific dilution of 100 to 1 and in the last stage between chamber 8 and sub-chamber 50 there is a dilution of 10 to 1. This gives a multi-stage dilution of 10 10 10 and 10 or a total of 10' to 1.
This dilution is sufliciently high so that when the organisms reach chamber 10 they are so sparse that upon settling out on Petri dishes 60 and incubated, the resulting colonies can be counted. This count, multiplied by the dilution ratio, gives the organism count in the original liquid sample with a high degree of accuracy.
The use of settling out in both chambers 8 and 10 in a 10 to 1 ratio provides a check against the accuracy of the findings of the lower chamber. In practice it is not feasible to wait for the settling out of every viable particle in chamber 10. On the contrary, it is adequate to permit the greater number of particles to settle and then to remove the particles remaining after a specified In practice, a settling time of one-half hour results in an almost complete count of all viable particles. Since settling time varies for difierent size particles it is desirable to standardize the apparatus for different particle sizes. Thus, where particle size range of a given aerosol is known, this standardization permits of some economy of time in running the determination.
In operating the mechanism, the entire dilution procedure can be carried out in a matter of minutes and before any appreciable settling out takes place. After the multi-stage dilutioh has been carried out it will be noted that the several chambers are full of aerosol at the various concentrations obtained at that particular stage. Thus, the settling out that is allowed to take place in stage 8, in nowise affects the subsequent dilution into stage 10. In order to preclude extensive settling in stages 2, 4 and 6, the aerosol contents of these stages may be exhausted through 62 as soon as the aerosol dilution has been carried beyond that particular stage. This reduces somewhat the cleaning necessary in the various stages.
We claim:
1. A dilution apparatus comprising a series of sealed main volumetric stages, intermediate smaller substages connected in series with said main stages and having valved inlet and outlet connections between stages, each substage having additional valved outlet connections into a common conduit to permit evacuation of the apparatus.
2. A method of diluting and culturing an aerosol of viable organisms which comprises enclosing a volume of the aerosol, withdrawing a fractional decimal volume of the original volume, enlarging said smaller volume, withdrawing a further fractional decimal volume and repeating this process in subsequent stages until the aerosol is sufficiently dilute, allowing the diluted aerosol to settle out on a nutrient media, culturing and counting the resulting colonies and multiplying this value by the decimal dilution factor to secure the number of organisms in the original volume.
3. Apparatus in accordance with claim 1, wherein an additional vent is fitted to each main stage to permit direct admission of gas to said stage.
4. An apparatus in accordance with claim 1, wherein the last main stage is fitted with Petri dishes to enable the culturing of any organisms settling out thereon.
' 5. An apparatus in accordance with claim 4, wherein the apparatus is made of glass in a trifoliate section.
6. An apparatus in accordance with claim 1, wherein the first stage is fitted with an atomizer for introducing an aerosol into the stage.
7. An apparatus in accordance with claim 1, wherein the volumetric ratios of the various stages and substages are such that the ratio of the volume of the first substage to the sum of the volumes of the first stage and substage is a positive power of 10 and the ratio of the volume of subsequent substages to the sum of the volumes of the substage in question plus the previous stage and substage is a positive power of 10.
References Cited in the file of this patent UNITED STATES PATENTS 1,043,361 Romer Nov. 5, 1912

Claims (1)

1. A DILUTION APPARATUS COMPRISING A SERIES OF SEALED MAIN VOLUMETRIC STAGES, INTERMEDIATE SMALLER SUBSTAGES CONNECTED IN SERIES WITH SAID MAIN STAGES AND HAVING VALVED INLET AND OUTLET CONNECTIONS BETWEEN STAGES, EACH
US610695A 1956-09-18 1956-09-18 Method and apparatus for the assay of viable microorganisms Expired - Lifetime US2865816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US610695A US2865816A (en) 1956-09-18 1956-09-18 Method and apparatus for the assay of viable microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US610695A US2865816A (en) 1956-09-18 1956-09-18 Method and apparatus for the assay of viable microorganisms

Publications (1)

Publication Number Publication Date
US2865816A true US2865816A (en) 1958-12-23

Family

ID=24446054

Family Applications (1)

Application Number Title Priority Date Filing Date
US610695A Expired - Lifetime US2865816A (en) 1956-09-18 1956-09-18 Method and apparatus for the assay of viable microorganisms

Country Status (1)

Country Link
US (1) US2865816A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2894877A (en) * 1958-08-29 1959-07-14 Frank W Sinden Wide range aerosol sampler
US3968012A (en) * 1975-06-06 1976-07-06 Jones Jay A Aerosol bacterial contamination test kit
US4172013A (en) * 1976-05-28 1979-10-23 Dr. Rentschler Arzneimittel Gmbh & Co. Process for the mass growth of cells and system of chambers for the carrying out thereof
US4195131A (en) * 1977-03-09 1980-03-25 Papas Gary R Environmentally controlled unit
US4892818A (en) * 1987-02-05 1990-01-09 Floyd Ramp Bioreactor
US5166072A (en) * 1986-06-26 1992-11-24 Bayer Aktiengesellschaft Apparatus for the cultivation of immobilized micro-organisms
US20070065933A1 (en) * 2003-02-28 2007-03-22 Peter Esser Tray stack adapted for active gassing
US20100216229A1 (en) * 2009-02-25 2010-08-26 Kenney David A Cell culture system with manifold
US11905506B2 (en) 2005-07-26 2024-02-20 Corning Incorporated Multilayered cell culture apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1043361A (en) * 1912-01-08 1912-11-05 Adolf Roemer Process for the continuous manufacture by fermentation of beverages containing carbonic acid.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1043361A (en) * 1912-01-08 1912-11-05 Adolf Roemer Process for the continuous manufacture by fermentation of beverages containing carbonic acid.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2894877A (en) * 1958-08-29 1959-07-14 Frank W Sinden Wide range aerosol sampler
US3968012A (en) * 1975-06-06 1976-07-06 Jones Jay A Aerosol bacterial contamination test kit
US4172013A (en) * 1976-05-28 1979-10-23 Dr. Rentschler Arzneimittel Gmbh & Co. Process for the mass growth of cells and system of chambers for the carrying out thereof
US4195131A (en) * 1977-03-09 1980-03-25 Papas Gary R Environmentally controlled unit
US5166072A (en) * 1986-06-26 1992-11-24 Bayer Aktiengesellschaft Apparatus for the cultivation of immobilized micro-organisms
US4892818A (en) * 1987-02-05 1990-01-09 Floyd Ramp Bioreactor
US20070065933A1 (en) * 2003-02-28 2007-03-22 Peter Esser Tray stack adapted for active gassing
US7867761B2 (en) * 2003-02-28 2011-01-11 Nunc A/S Tray stack adapted for active gassing
US11905506B2 (en) 2005-07-26 2024-02-20 Corning Incorporated Multilayered cell culture apparatus
US20100216229A1 (en) * 2009-02-25 2010-08-26 Kenney David A Cell culture system with manifold
US9752111B2 (en) * 2009-02-25 2017-09-05 Corning Incorporated Cell culture system with manifold
US10316281B2 (en) 2009-02-25 2019-06-11 Corning Incorporated Cell culture system with manifold

Similar Documents

Publication Publication Date Title
US2865816A (en) Method and apparatus for the assay of viable microorganisms
CN104565808B (en) Rigid container gas displacement method and device based on quantitative pumping inflation technology
GB869047A (en) Improvements in or relating to methods and apparatus for separating gases
CN113950367A (en) Closed system for mixing dry powder with solvent during pharmaceutical production or processing
JP2020528731A (en) Fully automatic cell culture method based on robot arm and its system
CN211069216U (en) Multi-connected vacuum suction filter
Nicholson Multicell diffusion trays for determining inorganic fluoride in physiological materials
CN110004044A (en) A kind of Molecular Detection integration device and its detection method based on electrochemical sensing
Williams et al. Determination of trace oxygen in gases
CN112857957B (en) Preparation device and preparation method of balance gas in carbonate cluster isotope test
US4718462A (en) Method and apparatus for forming gaseous mixtures
Burford et al. Simple and Versatile Vacuum and Pressure Reactors for Air-Sensitive Materials
CN209060912U (en) A kind of new-type fluorine gas and inert gas mixing arrangement
Knight et al. Comparison of a dual‐inlet gas isotope ratio mass spectrometry system and an automated single‐inlet mass spectrometry system for δ13C analysis
CN110203522A (en) Bio-safety transfer hopper for living animal fluorescence imaging
CN111220445A (en) Dynamic preparation device for gas sample
CN115901914A (en) Soil invertebrate carbon stabilization isotope testing device and using method
CN210084945U (en) Lithium hexafluorophosphate preparation multipurpose cabinet
CN213913194U (en) Gas diluting device for polluted gas purification test
CN116448698B (en) High-flux integrated solid sample detection device
Walsh A method for the convenient preparation of artificial gas mixtures in closed containers
WO2004025667A1 (en) Method for completely filling a glove box with a gas, and corresponding glove box
CN211412054U (en) Biological safety cabinet
CN206762632U (en) One kind chemical reaction exhaust gas processing device
US4816080A (en) Method of washing solids with liquified gases