US2858481A - Operating circuit for compact type arc lamps - Google Patents

Operating circuit for compact type arc lamps Download PDF

Info

Publication number
US2858481A
US2858481A US433954A US43395454A US2858481A US 2858481 A US2858481 A US 2858481A US 433954 A US433954 A US 433954A US 43395454 A US43395454 A US 43395454A US 2858481 A US2858481 A US 2858481A
Authority
US
United States
Prior art keywords
lamp
voltage
light
transformer
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US433954A
Inventor
Lester F Bird
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engelhard Industries Inc
Original Assignee
Engelhard Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engelhard Industries Inc filed Critical Engelhard Industries Inc
Priority to US433954A priority Critical patent/US2858481A/en
Application granted granted Critical
Publication of US2858481A publication Critical patent/US2858481A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/16Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies
    • H05B41/20Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch
    • H05B41/23Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch for lamps not having an auxiliary starting electrode
    • H05B41/231Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch for lamps not having an auxiliary starting electrode for high-pressure lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp

Definitions

  • It is an object of the present invention to provide an operating circuit particularly suited for operating compact type are lamps from which the emitted light is in the form of discrete pulses with substantially non-emission phases therebetween. It is another object of the present invention to provide an operating circuit for compact type lamps from which the emitted light is in the form of discrete light pulses lasting from less than /3 to /s of the time of /2 cycle.
  • Figure 1 is a schematic representation of the circuit according to the invention
  • Figure 2 is an oscilloscopic diagram of the voltage characteristics across a lamp forming part of this circuitry
  • V Figure 3 is an oscilloscopic diagram of the current characteristics across a lamp forming part of the circuitry
  • Figure 4 is a diagrammatic representation of the pulsating light output in accordance with this invention.
  • the present invention deals with an operating circuit for producing particular discrete light pulses with substantially non-emission phases therebeween, said discrete light pulses lasting from less than A to /s of the time of /2 cycle.
  • the lamp is a compact type are lamp comprising a light transmissive envelope enclosing spaced electrodes of solid metal spaced apart from each other less than 2 cm. in an ionizable atmosphere. High pressure and super high pressure lamps of the compact type are well known in the art.
  • input leads 1 and 2 lead to a source of alternating current power capable of maintaining operating of a compact lamp containing an ionizable atmosphere of at least 2 atmospheres pressure, said leads being connected across a transformer primary winding 3 of transformer 4 in spaced relation with a second- 2,858,481 Patented Oct. 28, 1958 ary winding 5, the transformer having magnetic leakage shunts as an integral part of the core construction.
  • a series capacitor 6 is connected in one of the secondary leads between the transformer secondary 5 and a lamp 7 in series with one terminal of the secondary winding 5 and lamp '7, and is an operable chosen capacitor having a volt ampere rating of several times that of the lamp 7, which, for example, operates at a voltage of volts and 30 amperes.
  • a shunting capacitor 8 is shunted across both secondary leads between the capacitor 6 and lamp 7. This shunt capacitor serves two functions, one function being that of a radio-frequency by-pass across the lines, and the other function being to assist in the ignition of the arc lamp 7.
  • a secondary coil of a radiofrequency transformer which provides high voltage, high frequency current for igniting the arc lamp.
  • a primary coil lid of the radio frequency transformer is operatively associated with the secondary coil 9.
  • a radio-frequency capacitor 11 is connected into one line leading to the R. F. primary coil, and a sparking gap 12 is connected across the primary leads of the R. F. transformer between the capacitor 11, and the secondary 13 of a high voltage transformer having core 14 and primary winding 15.
  • the circuit for the R. F. generator for ignition is purely dia grammatic and may be varied in many details without effecting either its performance or the performance of the rest of the circuit.
  • the transformer 4 Before the lamp 7 is ignited, the transformer 4 is delivering about 150 volts across the lamp. Immediately upon ignition of the lamp, the secondary voltage of the transformer jumps to a higher value which may be about 300 volts and assumes a condition of considerable stability at this level because of high saturation of the core iron under the secondary coil of the transformer. Also the reactance of the secondary coil of the transformer has been reduced to a comparatively low value because of the saturation of the iron under the secondary coil. The reactance of this coil is very unsteady under these conditions and varies rapidly with changes in the induced volt J age in the secondary winding. These changes in reactance in combination with the reactance of the capacitor combine to produce an overall circuit reactance that increase with increasing line voltage and is reduced with reducing line voltage. In this manner the secondary compensates for the changing input voltage conditions. Also the wattage delivered to the lamp and, consequently, the light output of the lamp becomes quite stable and unaffected by the line supply voltage.
  • the transformer 4 is a special type of reactive trans former having a core structure built up of thin 10w loose lamination steel on which are placed the primary coil 3 in spaced relationship to the secondary coil 5 and having a magnetic leakage plug or plugs between the said coils so providing loose coupling between the magnetic struc- '3 "U tures beneath these coils.
  • the voltage that is delivered from the secondary coil is between about 90 volts as a minimum and possibly 250 volts as a maximum. Voltages below 90 volts from the transformer are not suitable because ofinstability in the arc lamp which-may cause it to be'extinguished. The 90 volts corresponds to the minimum possible line voltage on the primary of the transformer.
  • the capacitor 6 which is connected to one terminal of the secondary Winding 5 of the transformer 4.
  • This capacitor is chosen to have a voltage rating corresponding with the capacitor reactance and the cur rent through it.
  • the kva. of this capacitor is chosen, for example, to be from 3 to about 12 times the kva. of the arc lamp 7, such that when the arc lamp is operating at a voltage of 35 volts and a current of 30 amperes, the capacitor is operating at a voltage of possibly 300 volts and a current of 30 amperes.
  • Such a capacitor has a reactance of ohms and at 60 cycles has a capacity of about 265 microfarads.
  • the remainderof the operating circuit comprises the ignition system which may be made up in a number of forms and is not concerned with the operation of the arc lamp after it is lighted and in steady operating condition.
  • the transformer 4 Upon closing a switch leading to the power supply, the transformer 4 is excited and voltage is applied to the lamp circuit by the secondary coil 5. The lamp will not start on this low voltage and it remains out. Voltage is then applied to the primary circuit of the transformer 14, which in turn delivers high voltage to the capacitor 11. When the voltage across the capacitor reaches the potential that will break down the spark gap, this spark gap breaks down and becomes essentially a short circuit. Oscillations are established as the condenser 11 is discharged through the inductance 10. High voltage is' supplied from the secondary coil flowing through the lamp and condenser 8. The high frequency currents ionize a path through the enclosed gas of the arc lamp and the low voltage follows through the ionized path, so establishing an are at the low voltage.
  • the voltage delivered by the secondary of the transformer 4 is distorted from a sign wave and is quite flat-topped, indicating the presence of harmonics some of which have considerable magnitude. They are mainly 3rd and 5th harmonics of the supply.
  • Figures 2, 3 and 4 there is shown the shape of the voltage wave existing across the lamp as displayed on the screen of an oscilloscope.- Because there is no current flowing for the major part of the cycle the voltage wave tends to follow the shape of the voltage from the secondary of the transformer 4 without load until the current starts to flow, at which time, there is a dip in the voltage wave corresponding to the time of current flow.
  • the current Wave is particularly shown by Figure 3 representing the current wave of the lamp as displayed on a screen of an oscilloscope.
  • the current flows in the form of sharp pulses of current at the time when the voltage is approaching its maximum.
  • Figure 4 shows the form of the pulses of Wattage as demonstrated by the light output of the lamp.
  • the light is emitted in the form of discrete pulses with an out period between when there is no light nor power consumption.
  • the lamp Since a photocell picking up the light is a linear device, and the current is an average of the light response, the lamp consuming, for example, 100 Watts, is emitting at a much higher rate than this during the light flashes which last, for example, /3 or less of the time period.
  • the voltage across such an arc lamp is commonly of a certain well established form.
  • the voltage starts at 0 and rises very rapidly to a peak which may be appreciably higher than the average voltage. Beyond the peak the voltage falls to a relatively fiat region for an appreciable portion of the half cycle and then drops again to 0 for the excursion in the opposite direction.
  • the current through the arc lamp may be quite distorted and effectively displaced in phase from the voltage wave.
  • the current wave is observed to be a very narrow shape pulse at about the middle of the half cycle.
  • a light pulse producing system for compact type are lamps, comprising in combination a transformer having mounted thereon a primary input coil and a secondary inductive coil in spaced relation to each other with a magnetic shunt between said coils, a compact type are lamp containing an ionizable atmosphere of at least two atmospheres pressure, leads connecting said lamp to said secondary winding, a first capacitor in one of said leads in series with said lamp said capacitor having a volt ampere rating greater than said lamp, a second capacitor connected across said leads, and high frequency means connected to one of said leads, said combination being a light pulse producing system characterized by light flashes having a duration of up to two-thirds the time of one-half cycle.
  • a light pulse producing system wherein said light pulses have a duration of between 50 and 110 electrical degrees of the electrical time cycle.
  • said high frequency means comprises a radio frequency transformer having its secondary'winding connected into one of said secondary leads and its primary winding connected to a high voltage transformer with a spark-gap therebetween.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

Oct. 28, 1958 L. F. 'BIRD 2,858,481
OPERATING CIRCUIT FOR COMPACT TYPE ARC LAMPS Filed June 2, 1954 1: q q q 8 8 LAMP VOLT46 o 7-wefgoa Y L M came T/ME A P 5N7 W I 5150 I v AAMP WATTS ANOL/GHT 550 3601/4. c. crcLE INVENTOR.
' A E5 751? E 5/190 ATTORNEK OPERATING CIRCUIT FOR COMPACT TYPE ARC LAMPS Lester F. Bird, Newark, N. J., assignorto Engelhard Industries, Inc, a corporation of New Jersey Application June 2, 1954, Serial No. 433,954
3 Claims. (Cl. 315173) picture projection where it is desirable to have the light of a light source emitted in the form of light pulses of relatively short duration with an out or dead space between pulses. With a light source having such .characteristics it is possible to-eliminate the shutter commonly employed with the motion picture projector and move the frame of the film during the out periods of the light source.
There are many reasons for the desirability of such an arrangement, notably the possibility of increasing the effective light reaching the screen and the possibility of more efficient use of the light source as Well as the utilization of the same light source in larger projection areas.
It is an object of the present invention to provide an operating circuit particularly suited for operating compact type are lamps from which the emitted light is in the form of discrete pulses with substantially non-emission phases therebetween. It is another object of the present invention to provide an operating circuit for compact type lamps from which the emitted light is in the form of discrete light pulses lasting from less than /3 to /s of the time of /2 cycle. Other objects and advantages of this invention will become apparent from the description here'- inafter following and the drawings forming a part hereof, in which:
Figure 1 is a schematic representation of the circuit according to the invention,
Figure 2 is an oscilloscopic diagram of the voltage characteristics across a lamp forming part of this circuitry,
V Figure 3 is an oscilloscopic diagram of the current characteristics across a lamp forming part of the circuitry, and
Figure 4 is a diagrammatic representation of the pulsating light output in accordance with this invention.
The present invention deals with an operating circuit for producing particular discrete light pulses with substantially non-emission phases therebeween, said discrete light pulses lasting from less than A to /s of the time of /2 cycle. The lamp is a compact type are lamp comprising a light transmissive envelope enclosing spaced electrodes of solid metal spaced apart from each other less than 2 cm. in an ionizable atmosphere. High pressure and super high pressure lamps of the compact type are well known in the art.
Referring to Figure 1, input leads 1 and 2 lead to a source of alternating current power capable of maintaining operating of a compact lamp containing an ionizable atmosphere of at least 2 atmospheres pressure, said leads being connected across a transformer primary winding 3 of transformer 4 in spaced relation with a second- 2,858,481 Patented Oct. 28, 1958 ary winding 5, the transformer having magnetic leakage shunts as an integral part of the core construction.
A series capacitor 6 is connected in one of the secondary leads between the transformer secondary 5 and a lamp 7 in series with one terminal of the secondary winding 5 and lamp '7, and is an operable chosen capacitor having a volt ampere rating of several times that of the lamp 7, which, for example, operates at a voltage of volts and 30 amperes. A shunting capacitor 8 is shunted across both secondary leads between the capacitor 6 and lamp 7. This shunt capacitor serves two functions, one function being that of a radio-frequency by-pass across the lines, and the other function being to assist in the ignition of the arc lamp 7. Between the shunt capacitor 8 and the lamp 7, in one of the lines, is a secondary coil of a radiofrequency transformer which provides high voltage, high frequency current for igniting the arc lamp. A primary coil lid of the radio frequency transformer is operatively associated with the secondary coil 9. A radio-frequency capacitor 11 is connected into one line leading to the R. F. primary coil, and a sparking gap 12 is connected across the primary leads of the R. F. transformer between the capacitor 11, and the secondary 13 of a high voltage transformer having core 14 and primary winding 15. The circuit for the R. F. generator for ignition is purely dia grammatic and may be varied in many details without effecting either its performance or the performance of the rest of the circuit.
Before the lamp 7 is ignited, the transformer 4 is delivering about 150 volts across the lamp. Immediately upon ignition of the lamp, the secondary voltage of the transformer jumps to a higher value which may be about 300 volts and assumes a condition of considerable stability at this level because of high saturation of the core iron under the secondary coil of the transformer. Also the reactance of the secondary coil of the transformer has been reduced to a comparatively low value because of the saturation of the iron under the secondary coil. The reactance of this coil is very unsteady under these conditions and varies rapidly with changes in the induced volt J age in the secondary winding. These changes in reactance in combination with the reactance of the capacitor combine to produce an overall circuit reactance that increase with increasing line voltage and is reduced with reducing line voltage. In this manner the secondary compensates for the changing input voltage conditions. Also the wattage delivered to the lamp and, consequently, the light output of the lamp becomes quite stable and unaffected by the line supply voltage.
When an arc lamp of this type is operated from a 60-cycle supply, the light is emitted at a continuous varyeach frame of the motion picture.
' ing rate having peaks at twice the line frequency or cycles per second. Since it is accepted practice to project motion pictures at a rate of 24 frames per second there would normally be 5 peaks of light from the arc during These peaks are at such a frequency that there is no flicker apparent to the human eye from such a light source. The only requirement for the use of such a light source in a projector is that the mechanical movement of the film from frame to frame occurs during a time when the light is very low or out. With the light emitted in discrete pulses with dead spaces between, it is possible to move the film when there is no light from the arc lamp and so have no problem with film motion and light.
The transformer 4 is a special type of reactive trans former having a core structure built up of thin 10w loose lamination steel on which are placed the primary coil 3 in spaced relationship to the secondary coil 5 and having a magnetic leakage plug or plugs between the said coils so providing loose coupling between the magnetic struc- '3 "U tures beneath these coils. The voltage that is delivered from the secondary coil is between about 90 volts as a minimum and possibly 250 volts as a maximum. Voltages below 90 volts from the transformer are not suitable because ofinstability in the arc lamp which-may cause it to be'extinguished. The 90 volts corresponds to the minimum possible line voltage on the primary of the transformer. It may be desirable to have higher voltages to reduce the size and cost of the second unit of the control, that is the capacitor 6, which is connected to one terminal of the secondary Winding 5 of the transformer 4. This capacitor is chosen to have a voltage rating corresponding with the capacitor reactance and the cur rent through it. The kva. of this capacitor is chosen, for example, to be from 3 to about 12 times the kva. of the arc lamp 7, such that when the arc lamp is operating at a voltage of 35 volts and a current of 30 amperes, the capacitor is operating at a voltage of possibly 300 volts and a current of 30 amperes. Such a capacitor has a reactance of ohms and at 60 cycles has a capacity of about 265 microfarads.
The remainderof the operating circuit comprises the ignition system which may be made up in a number of forms and is not concerned with the operation of the arc lamp after it is lighted and in steady operating condition.
Upon closing a switch leading to the power supply, the transformer 4 is excited and voltage is applied to the lamp circuit by the secondary coil 5. The lamp will not start on this low voltage and it remains out. Voltage is then applied to the primary circuit of the transformer 14, which in turn delivers high voltage to the capacitor 11. When the voltage across the capacitor reaches the potential that will break down the spark gap, this spark gap breaks down and becomes essentially a short circuit. Oscillations are established as the condenser 11 is discharged through the inductance 10. High voltage is' supplied from the secondary coil flowing through the lamp and condenser 8. The high frequency currents ionize a path through the enclosed gas of the arc lamp and the low voltage follows through the ionized path, so establishing an are at the low voltage.
With this kind of control device for the arc, the voltage delivered by the secondary of the transformer 4 is distorted from a sign wave and is quite flat-topped, indicating the presence of harmonics some of which have considerable magnitude. They are mainly 3rd and 5th harmonics of the supply. Referring to Figures 2, 3 and 4, there is shown the shape of the voltage wave existing across the lamp as displayed on the screen of an oscilloscope.- Because there is no current flowing for the major part of the cycle the voltage wave tends to follow the shape of the voltage from the secondary of the transformer 4 without load until the current starts to flow, at which time, there is a dip in the voltage wave corresponding to the time of current flow.
The current Wave is particularly shown by Figure 3 representing the current wave of the lamp as displayed on a screen of an oscilloscope. The current flows in the form of sharp pulses of current at the time when the voltage is approaching its maximum.
Figure 4 shows the form of the pulses of Wattage as demonstrated by the light output of the lamp. The light is emitted in the form of discrete pulses with an out period between when there is no light nor power consumption.
Since a photocell picking up the light is a linear device, and the current is an average of the light response, the lamp consuming, for example, 100 Watts, is emitting at a much higher rate than this during the light flashes which last, for example, /3 or less of the time period.
The voltage across such an arc lamp is commonly of a certain well established form. The voltage starts at 0 and rises very rapidly to a peak which may be appreciably higher than the average voltage. Beyond the peak the voltage falls to a relatively fiat region for an appreciable portion of the half cycle and then drops again to 0 for the excursion in the opposite direction.
The current through the arc lamp may be quite distorted and effectively displaced in phase from the voltage wave. When viewed on an oscilloscope, the current wave is observed to be a very narrow shape pulse at about the middle of the half cycle.
Since the light from the lamp follows the wattage consumption closely, it is notable that the only time there is wattage for the lamp is during the time when both current and voltage are present across the arc tube. This condition is met for only a short period at the middle of the half cycle during the current time. As a result the light has to follow the current pulses and does so in practice.
What I claim is:
1. A light pulse producing system for compact type are lamps, comprising in combination a transformer having mounted thereon a primary input coil and a secondary inductive coil in spaced relation to each other with a magnetic shunt between said coils, a compact type are lamp containing an ionizable atmosphere of at least two atmospheres pressure, leads connecting said lamp to said secondary winding, a first capacitor in one of said leads in series with said lamp said capacitor having a volt ampere rating greater than said lamp, a second capacitor connected across said leads, and high frequency means connected to one of said leads, said combination being a light pulse producing system characterized by light flashes having a duration of up to two-thirds the time of one-half cycle.
2. A light pulse producing system according to claim 1, wherein said light pulses have a duration of between 50 and 110 electrical degrees of the electrical time cycle.
3. A light pulse producing system according to claim 1, Wherein said high frequency means comprises a radio frequency transformer having its secondary'winding connected into one of said secondary leads and its primary winding connected to a high voltage transformer with a spark-gap therebetween.
References Cited in the file of this patent UNITED STATES PATENTS 1,445,206 Elderkin Feb. 13, 1923 1,668,615 Toulin May 8, 1928 2,122,436 Pirani et a1. July 5, 1938 2,212,950 Pfeilsticker Aug. 27, 1940 2,352,992 Von Henke July 4, 1944 2,470,460 Bird May 17, 1949 OTHER REFERENCES Becker, abstract of application Serial Number 151,616, pub. Dec. 18, 1951, O. G. December 18, 1951.
US433954A 1954-06-02 1954-06-02 Operating circuit for compact type arc lamps Expired - Lifetime US2858481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US433954A US2858481A (en) 1954-06-02 1954-06-02 Operating circuit for compact type arc lamps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US433954A US2858481A (en) 1954-06-02 1954-06-02 Operating circuit for compact type arc lamps

Publications (1)

Publication Number Publication Date
US2858481A true US2858481A (en) 1958-10-28

Family

ID=23722235

Family Applications (1)

Application Number Title Priority Date Filing Date
US433954A Expired - Lifetime US2858481A (en) 1954-06-02 1954-06-02 Operating circuit for compact type arc lamps

Country Status (1)

Country Link
US (1) US2858481A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2955230A (en) * 1958-11-26 1960-10-04 Philco Corp Apparatus for controlling the supply of electrical energy to a load
US3309566A (en) * 1964-11-20 1967-03-14 Berkey Photo Inc Electrical system for gas discharge lamp
US3309567A (en) * 1965-10-22 1967-03-14 Berkey Photo Inc Pulse discharge lamp circuit
US3555352A (en) * 1967-10-09 1971-01-12 Berkey Photo Inc Gas discharge lamp operating system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1445206A (en) * 1921-07-08 1923-02-13 James K Elderkin Thermionic rectifier and circuits therefor
US1668615A (en) * 1925-07-03 1928-05-08 Relais A Arc Sa Des Device for controlling and adjusting the current passing through an arc fed with alternating current
US2122436A (en) * 1935-04-01 1938-07-05 Gen Electric Lighting system including electrical discharge tubes
US2212950A (en) * 1937-11-24 1940-08-27 Heraeus Gmbh W C Method and apparatus for spectrum excitation
US2352992A (en) * 1938-12-28 1944-07-04 American Electric Fusion Corp Electric switch
US2470460A (en) * 1948-06-05 1949-05-17 Hanovia Chemical & Mfg Co Wattage controlling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1445206A (en) * 1921-07-08 1923-02-13 James K Elderkin Thermionic rectifier and circuits therefor
US1668615A (en) * 1925-07-03 1928-05-08 Relais A Arc Sa Des Device for controlling and adjusting the current passing through an arc fed with alternating current
US2122436A (en) * 1935-04-01 1938-07-05 Gen Electric Lighting system including electrical discharge tubes
US2212950A (en) * 1937-11-24 1940-08-27 Heraeus Gmbh W C Method and apparatus for spectrum excitation
US2352992A (en) * 1938-12-28 1944-07-04 American Electric Fusion Corp Electric switch
US2470460A (en) * 1948-06-05 1949-05-17 Hanovia Chemical & Mfg Co Wattage controlling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2955230A (en) * 1958-11-26 1960-10-04 Philco Corp Apparatus for controlling the supply of electrical energy to a load
US3309566A (en) * 1964-11-20 1967-03-14 Berkey Photo Inc Electrical system for gas discharge lamp
US3309567A (en) * 1965-10-22 1967-03-14 Berkey Photo Inc Pulse discharge lamp circuit
US3555352A (en) * 1967-10-09 1971-01-12 Berkey Photo Inc Gas discharge lamp operating system

Similar Documents

Publication Publication Date Title
US3906302A (en) Arrangement provided with a gas and/or vapour discharge lamp
US3889152A (en) Starting and operating ballast for high pressure sodium lamps
US1950395A (en) Means for operating gas filled luminescent tubes
EP0195248A2 (en) High intensity discharge lamp starting and operating apparatus
US3170085A (en) Ballast circuit and system for dimming gaseous discharge lamps
US2487092A (en) Flickerless operation of electric lighting elements
US3771014A (en) Power supply for starting and operating arc lamps
US3170084A (en) Lamp starting and operating circuit
US3780342A (en) Ballast apparatus for starting and operating arc lamps
US5013977A (en) Ignitor for high pressure arc discharge lamps
US2858481A (en) Operating circuit for compact type arc lamps
US2870379A (en) Operating circuit for compact type arc lamps
US3476977A (en) Impulse starting and operating circuit for gas discharge lamps
US4187449A (en) Discharge lamp operating circuit
US2867730A (en) Arc welding apparatus
US3389298A (en) Single-transistor flasher circuit
US4051412A (en) Discharge lamp operating circuit
CA1093143A (en) Discharge lamp operating circuit
US3931543A (en) Starting and operating circuit for gaseous discharge lamps
US3174076A (en) Electric system for discharge device utilizing resonant circuit to provide constant current output
US4092564A (en) Discharge lamp operating circuit
US2938149A (en) Pulse circuit for arc lamp
US3508112A (en) Circuit for applying ionizing pulses and boosted alternating current to an arc discharge lamp
US2170448A (en) Electric discharge apparatus
US4045710A (en) Discharge lamp operating circuit