US2856900A - Hydraulic control means for roller mills and the like - Google Patents

Hydraulic control means for roller mills and the like Download PDF

Info

Publication number
US2856900A
US2856900A US623431A US62343156A US2856900A US 2856900 A US2856900 A US 2856900A US 623431 A US623431 A US 623431A US 62343156 A US62343156 A US 62343156A US 2856900 A US2856900 A US 2856900A
Authority
US
United States
Prior art keywords
pressure
valve
piston
line
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US623431A
Inventor
Bosshard Ernst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buehler AG
Original Assignee
Buehler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buehler AG filed Critical Buehler AG
Application granted granted Critical
Publication of US2856900A publication Critical patent/US2856900A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/28Details
    • B02C4/32Adjusting, applying pressure to, or controlling the distance between, milling members

Definitions

  • the present invention provides means to avoid such disadvantages of the hydrodynamic system and relates to a device for hydraulically regulating or controlling a bearing pressure, for example, in connection with roller mills, with the aid of a continuously feeding pump, a check valve being inserted in the line from a control valve to a pressure-generating cylinder.
  • the novel device is characterized by the provision of a free passage of small cross-sectional area between the two sides of the check valve.
  • FIG. 1 shows the hydrodynamic system and one form of its application, a pressure-control valve and two check valves being illustrated in section drawn to a much larger scale than the other components
  • Fig. 2 depicts another form of application of the system shown in Fig. l.
  • a continuously feeding pump 1 supplies oil from a tank 3 through a line 2 into a relief valve 4 which communicates with tank 3 via a return line 5. From valve 4 the oil passes through a line 7 to a four-way valve 8.
  • line 7 is connected to a pressure-control valve 11 of known construction through a line 10, and a line 12 from the release side of a double-acting piston 13 moving in a cylinder 14 is connected via valve 8 to a line 15 leading to tank 3.
  • lines 7 and 12 on one hand, and and on the other hand are interconnected.
  • Line 10 leads into an inlet chamber 16 in the casing of valve 11, and this chamber 16 communicates with an outlet chamber 18 via a bore 17.
  • a line 20 leads from chamber 18 via a check valve 21 to the pressure side of piston 13 which, through its rod 13a, transmits the generated bearing pressure to the element to be regulated, for example, to a movable roller MR coacting with a fixed roller FR, or to a grinding bar 51 (Fig. 2) coacting with a roller R.
  • Valve 21 is necessary to prevent the 2,856,900 Patented Oct. 21, 1958 transmission of any possible surges in valve 11 to piston 13.
  • valve 11 serves as cylinder for a piston 23 which latter has two heads 24 and 25 of the same diameter as bore 17, said heads being interconnected by a rod 26 of smaller diameter.
  • Head 24 is loaded by a spring 28 and is subjected to the pressure in an equalizing chamber 29'.
  • Head 25 is provided with bores 31 and 32 of relatively large diameters in order to positively subject its bottom side to the pressure in chamber 18.
  • Bore 32 communicates with chamber 29 via a bore 33 of small diameter, and the pressure in chamber 29 is controlled by a relief valve 36 which normally closes a bore 35 communicating with chamber 29.
  • the ball, of valve 36 is loaded by a spring 37 whose force may be adjusted which is provided with a notch or flute 43 of small cross sectional area so as to aiford a free passage between the two sides of the valve 21.
  • a line 45 which branches off from line 20, extends from the pressure side of piston 13 via a second check valve 46, with piston 47 under pressure by spring 48, to high-pressure chamber 16 of control valve 11.
  • the novel hydrodynamic system operates as follows. Operating lever 9 is in the position shown in solid lines, and roller MR (Fig. 1) or grinding bar 51 (Fig. 2) is held under pressure by piston 13. In order to increase the load or hearing pressure, screw 38 is slightly tightened to raise the response pressure of valve 36. The resulting higher pressure in outlet chamber 18 is transmitted through check valve 21 to the pressure side of piston 13. When the pressure in outlet chamber 18 exceeds the response pressure of valve 36, the latter opens and a portion of the oil in equalizing chamber 29 is returned through line 39 back into tank 3. The pressure in chamber 29 drops, and piston 23 moves against the action of spring 28 since bore 33 is of relatively small cross-section. The free cross-section at the point of throttling between bore 17 and slide-valve head 25 decreases.
  • screw 38 is slightly loosened to decrease the responsive pressure of valve 36 and the pressure in outlet chamber 18. Due to the provision of groove 43 in the body 42 of valve 21, such pressure decrease is transmitted to the pressure side of piston 13.
  • check valve 21 prevents the roller MR (Fig. 1) or grinding bar 51 (Fig, 2) from striking back.
  • the desired pressure is gradually built up through groove 43.
  • this check valve 46 is also a safety device and prevents the build-up of undesirably high pressure.
  • operating lever 9 In order to release roller MR or grinding bar 51, operating lever 9 is swung into position 9', whereby the lines 7 and 12 are interconnected, and the oil under pressure flows to the opposing side of piston 13. The oil on the pressure side of piston 13 then flows back into tank 3 through lines 20 and 45, check valve 46, highpressure chamber 16, line 10, four-way valve 8 and return line 15, as indicated by the single-tip broken-line arrows.
  • This arrangement permits gradual increase or reduction of the bearing pressure and also afiords a positive disengagement ofthe bearing pressure.
  • a hydrodynamic system comprising a source of constant pressure, at least one pressure control valve connected to said source of constant pressure, adjustable means associated With said pressure control valve for providing a controlled return flow of a fluid under pressure therefrom, a hydraulic cylinder, a piston in said cylinder, a first check valve and a second check valve between said cylinder at one side of said piston and said pressure control valve, said first check valve operating in a sense toward said cylinder and said second check valve operating in a sense opposed to that of said first check valve, the improvement which consists in that said first check valve has a relatively small passage for return flow of fluid under pressure from said cylinder to said pressure control valve.

Description

Oct. 21, 1958 E; BQSSHARD 4 2,355,900
' HYDRAULIC CONTROL MEANS FOR ROLLER MILLS AND THE LIKE Filed Nov. 20, 1956 Fig.1
United States Patent HYDRAULIC CONTROL MEANS FOR ROLLER MILLS AND THE LIKE Ernst Bosshard, Steinacker, Uzwil, Switzerland, assignor to Gebrueder Buehler, Uzwil, Switzerland, a Swiss firm Application November 20, 1956, Serial No. 623,431
Claims priority, application Switzerland November 26, 1955 2 Claims. (Cl. 121-38) For regulating the forces in grinding roller-mills, hydraulic means are used on account of their easy adjustability. Two types of hydraulic systems are known in the art, namely, the hydrostatic system and the hydrodynamic system which latter comprises a continuously feeding pump. The hydrostatic system is of simple construction, but the forces vary even in response to slight temperature changes, and thus the operator has to pay continuous and full attention to the grinding mill. The hydrodynamic system is somewhat more complicated but has the great advantage that the pressure set on a pressure-regulating or control valve remains constant without any special supervision. However, in spite of this important advantage, the hydrodynamic system has not been used to any appreciable extent since it only permits increases but no decreases in force without first reversing the pressure to zero.
The present invention provides means to avoid such disadvantages of the hydrodynamic system and relates to a device for hydraulically regulating or controlling a bearing pressure, for example, in connection with roller mills, with the aid of a continuously feeding pump, a check valve being inserted in the line from a control valve to a pressure-generating cylinder. The novel device is characterized by the provision of a free passage of small cross-sectional area between the two sides of the check valve.
A preferred embodiment of the invention and two examples of its application are shown in the accompanying drawing, in which Fig. 1 shows the hydrodynamic system and one form of its application, a pressure-control valve and two check valves being illustrated in section drawn to a much larger scale than the other components, and Fig. 2 depicts another form of application of the system shown in Fig. l.
A continuously feeding pump 1 supplies oil from a tank 3 through a line 2 into a relief valve 4 which communicates with tank 3 via a return line 5. From valve 4 the oil passes through a line 7 to a four-way valve 8. In the position of an operating lever 9 shown in solid lines, line 7 is connected to a pressure-control valve 11 of known construction through a line 10, and a line 12 from the release side of a double-acting piston 13 moving in a cylinder 14 is connected via valve 8 to a line 15 leading to tank 3. When moving lever 9 into the position 9 shown in broken lines, lines 7 and 12 on one hand, and and on the other hand are interconnected.
Line 10 leads into an inlet chamber 16 in the casing of valve 11, and this chamber 16 communicates with an outlet chamber 18 via a bore 17. A line 20 leads from chamber 18 via a check valve 21 to the pressure side of piston 13 which, through its rod 13a, transmits the generated bearing pressure to the element to be regulated, for example, to a movable roller MR coacting with a fixed roller FR, or to a grinding bar 51 (Fig. 2) coacting with a roller R. Valve 21 is necessary to prevent the 2,856,900 Patented Oct. 21, 1958 transmission of any possible surges in valve 11 to piston 13.
The casing of valve 11 serves as cylinder for a piston 23 which latter has two heads 24 and 25 of the same diameter as bore 17, said heads being interconnected by a rod 26 of smaller diameter. Head 24 is loaded by a spring 28 and is subjected to the pressure in an equalizing chamber 29'. When piston 23 moves against the action of spring 28, head 25 can fill'entirely and thus closes the bore 17. Head 25 is provided with bores 31 and 32 of relatively large diameters in order to positively subject its bottom side to the pressure in chamber 18. Bore 32 communicates with chamber 29 via a bore 33 of small diameter, and the pressure in chamber 29 is controlled by a relief valve 36 which normally closes a bore 35 communicating with chamber 29. The ball, of valve 36 is loaded by a spring 37 whose force may be adjusted which is provided with a notch or flute 43 of small cross sectional area so as to aiford a free passage between the two sides of the valve 21.
A line 45, which branches off from line 20, extends from the pressure side of piston 13 via a second check valve 46, with piston 47 under pressure by spring 48, to high-pressure chamber 16 of control valve 11.
The novel hydrodynamic system operates as follows. Operating lever 9 is in the position shown in solid lines, and roller MR (Fig. 1) or grinding bar 51 (Fig. 2) is held under pressure by piston 13. In order to increase the load or hearing pressure, screw 38 is slightly tightened to raise the response pressure of valve 36. The resulting higher pressure in outlet chamber 18 is transmitted through check valve 21 to the pressure side of piston 13. When the pressure in outlet chamber 18 exceeds the response pressure of valve 36, the latter opens and a portion of the oil in equalizing chamber 29 is returned through line 39 back into tank 3. The pressure in chamber 29 drops, and piston 23 moves against the action of spring 28 since bore 33 is of relatively small cross-section. The free cross-section at the point of throttling between bore 17 and slide-valve head 25 decreases.
In operation, there is a steady, slight return flow of oil through bore 33, equalizing chamber 29, bore 35, valve 36 and line 39 into tank 3, as indicated by the double-tipped broken-line arrows. Due to this slight, continuous return flow, the pressure remains at its set value.
In order to decrease the bearing pressure exerted by piston 13, screw 38 is slightly loosened to decrease the responsive pressure of valve 36 and the pressure in outlet chamber 18. Due to the provision of groove 43 in the body 42 of valve 21, such pressure decrease is transmitted to the pressure side of piston 13.
When a harder fragment is being ground, check valve 21 prevents the roller MR (Fig. 1) or grinding bar 51 (Fig, 2) from striking back. The desired pressure is gradually built up through groove 43.
When a foreign body is passing between the grinding elements, i. e. between the rollers MR and FR or between the roller R and the grinding bar 51, and the pressure increases to between a value above that of the pressure generated by pump 1 in the chamber 16, the oil can flow back through the check valve 46. Thus this check valve 46 is also a safety device and prevents the build-up of undesirably high pressure. After the passing of the foreign body, the grinding elements return into engaging position.
In order to release roller MR or grinding bar 51, operating lever 9 is swung into position 9', whereby the lines 7 and 12 are interconnected, and the oil under pressure flows to the opposing side of piston 13. The oil on the pressure side of piston 13 then flows back into tank 3 through lines 20 and 45, check valve 46, highpressure chamber 16, line 10, four-way valve 8 and return line 15, as indicated by the single-tip broken-line arrows.
The flow of oil to the pressure side of piston 13 is indicated in Fig. l by arrows shown in solid lines.
The arrangement shown and described is particularly suited in cases when several control valves 11 are connected with a single relief. valve 4.
This arrangement permits gradual increase or reduction of the bearing pressure and also afiords a positive disengagement ofthe bearing pressure.
What I claim as new and desire to secure by Letters Patent, is:
1. In a hydrodynamic system comprising a source of constant pressure, at least one pressure control valve connected to said source of constant pressure, adjustable means associated With said pressure control valve for providing a controlled return flow of a fluid under pressure therefrom, a hydraulic cylinder, a piston in said cylinder, a first check valve and a second check valve between said cylinder at one side of said piston and said pressure control valve, said first check valve operating in a sense toward said cylinder and said second check valve operating in a sense opposed to that of said first check valve, the improvement which consists in that said first check valve has a relatively small passage for return flow of fluid under pressure from said cylinder to said pressure control valve.
2. The structure according to claim 1, wherein a plurality of pressure control valves are connected to said source of constant pressure.
References Cited in the file of this patent UNITED STATES PATENTS 577,489 Mills Feb. 23, 1897 1,972,462 Schafer Sept. 4, 1934 2,293,118 Cumming Aug. 18, 1942 2,460,774 Trautman Feb. 1, 1 949 2,735,404 Komph Feb. 21, 1,956 2,784,729 Schofiel Mar. 12, 19-57 FOREIGN PATENTS 506,355 Great Britain May 26, 1 939
US623431A 1955-11-26 1956-11-20 Hydraulic control means for roller mills and the like Expired - Lifetime US2856900A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH2856900X 1955-11-26

Publications (1)

Publication Number Publication Date
US2856900A true US2856900A (en) 1958-10-21

Family

ID=4572329

Family Applications (1)

Application Number Title Priority Date Filing Date
US623431A Expired - Lifetime US2856900A (en) 1955-11-26 1956-11-20 Hydraulic control means for roller mills and the like

Country Status (1)

Country Link
US (1) US2856900A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1177888B (en) * 1959-09-02 1964-09-10 New York Air Brake Co Control spool with a relief valve
DE1185024B (en) * 1959-07-03 1965-01-07 Cessna Aircraft Co Control for a double-acting hydraulic consumer with a control slide
DE1188886B (en) * 1959-06-25 1965-03-11 Cessna Aircraft Co Control for a double-acting hydraulic motor with a control slide
US3205788A (en) * 1962-06-11 1965-09-14 Plessey Co Ltd Control valve devices for hydraulic rams
DE1273942B (en) * 1963-10-11 1968-07-25 Commercial Shearing Control valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US577489A (en) * 1897-02-23 Mortimer b
US1972462A (en) * 1932-06-29 1934-09-04 Nat Automatic Tool Co Hydraulic circuit back pressure control
GB506355A (en) * 1937-11-26 1939-05-26 Francis Shaw And Company Ltd Improvements in or relating to hydraulic pressure device for rolling, mixing or grinding mills and the like
US2293118A (en) * 1940-02-12 1942-08-18 Vickerts Inc Power transmission
US2460774A (en) * 1943-09-18 1949-02-01 Bendix Aviat Corp Valve
US2735404A (en) * 1956-02-21 L- komph
US2784729A (en) * 1952-02-24 1957-03-12 Schoffel Ludwig Valve device for independent pressure control of plural outlet bores

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US577489A (en) * 1897-02-23 Mortimer b
US2735404A (en) * 1956-02-21 L- komph
US1972462A (en) * 1932-06-29 1934-09-04 Nat Automatic Tool Co Hydraulic circuit back pressure control
GB506355A (en) * 1937-11-26 1939-05-26 Francis Shaw And Company Ltd Improvements in or relating to hydraulic pressure device for rolling, mixing or grinding mills and the like
US2293118A (en) * 1940-02-12 1942-08-18 Vickerts Inc Power transmission
US2460774A (en) * 1943-09-18 1949-02-01 Bendix Aviat Corp Valve
US2784729A (en) * 1952-02-24 1957-03-12 Schoffel Ludwig Valve device for independent pressure control of plural outlet bores

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1188886B (en) * 1959-06-25 1965-03-11 Cessna Aircraft Co Control for a double-acting hydraulic motor with a control slide
DE1185024B (en) * 1959-07-03 1965-01-07 Cessna Aircraft Co Control for a double-acting hydraulic consumer with a control slide
DE1177888B (en) * 1959-09-02 1964-09-10 New York Air Brake Co Control spool with a relief valve
US3205788A (en) * 1962-06-11 1965-09-14 Plessey Co Ltd Control valve devices for hydraulic rams
DE1273942B (en) * 1963-10-11 1968-07-25 Commercial Shearing Control valve

Similar Documents

Publication Publication Date Title
US3820920A (en) Power transmission
US2102865A (en) Combined flow control and relief valve
US2892312A (en) Demand compensated hydraulic system
US4738102A (en) Hydrostatic drives
US2649115A (en) Pressure-responsive mechanism
US2238063A (en) Fluid pressure system and valve mechanism therefor
EP0023591B1 (en) Hydraulic control with a line rupture protection valve for a double-acting driving cylinder, used especially for positioning a strand guiding roller in a continuous casting plant
US2360816A (en) Relief valve
US3995425A (en) Demand compensated hydraulic system with pilot line pressure-maintaining valve
US4307654A (en) Filling and exhaust valve for the control of the hydraulic flow on presses and shears
DE2603563C2 (en) Control device for a pump unit consisting of at least two pumps
US2856900A (en) Hydraulic control means for roller mills and the like
CA1124616A (en) Fluid horsepower control system
US4625756A (en) Pilot operated relief valve
US2239148A (en) Fluid pressure relief or unloading valve
US3124343A (en) Hydraulic cushion for die pads in presses
US3435648A (en) Rolling mill
US3623321A (en) Hydraulic regulating arrangement
US3003374A (en) Hydraulic roll pressure control system
US4212599A (en) Method and device for regulating the output quantity of compressed medium of single and multi-stage screw and turbo compressor systems
US2855947A (en) Pressure responsive valves
EP0555612B1 (en) Power limiter control for a variable displacement axial piston pump
US3464320A (en) Decompression system for press brakes or the like
US3601504A (en) Compensator and pressure limiting device
US3330298A (en) Cushion valve arrangement