US2836565A - Lubricating compositions - Google Patents

Lubricating compositions Download PDF

Info

Publication number
US2836565A
US2836565A US456063A US45606354A US2836565A US 2836565 A US2836565 A US 2836565A US 456063 A US456063 A US 456063A US 45606354 A US45606354 A US 45606354A US 2836565 A US2836565 A US 2836565A
Authority
US
United States
Prior art keywords
esters
thioether
hexyl
test
sebacate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US456063A
Inventor
Elliott John Scotchford
Edwards Eric Descamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CC Wakefield and Co Ltd
Original Assignee
CC Wakefield and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB25753/53A external-priority patent/GB757219A/en
Application filed by CC Wakefield and Co Ltd filed Critical CC Wakefield and Co Ltd
Application granted granted Critical
Publication of US2836565A publication Critical patent/US2836565A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/08Lubrication
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M1/00Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
    • C10M1/08Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/302Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/304Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • C10M2209/111Complex polyesters having dicarboxylic acid centres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • C10M2209/112Complex polyesters having dihydric acid centres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/044Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms having cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/02Macromolecular compounds obtained by reactions of monomers involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • C10N2040/13Aircraft turbines

Definitions

  • the present invention comprises improvements in or relating to lubricating compositions and relates particularly to fluid lubricants capable of use over a very wide range of temperatures.
  • a mineral oil which will satisfactorily lubricate an internal combustion engine must have a sufficiently high viscosity to provide adequate lubrication at elevated temperatures and must also afford adequate resistance to Wear of moving parts.
  • oils of a certain minimum viscosity are unsuitable for use at very low temperatures on account of their greatly increased viscosity and inability to flow due to the separation of Waxy constituents at said very low temperatures.
  • typical internal combustion engine lubricants which are perfectly satisfactory in service under normal operating conditions may be quite unsuitable at temperatures below 0 F. as they do not possess a sufiiciently low pour-point.
  • oils are selected which will flow freely at relatively low temperatures, it is found that they are quite unsuitable for use at high temperatures e. g, in internal combustion engines on account of their low viscosity, high volatility and lack of adequate lubricating properties.
  • lubricating compositions in the lubrication of gas turbines, especially the propeller a turbine type where the lubricant is required to lubricate not only the bearings but also the reduction gearing, said lubricating compositions also being stable and fluid at low or very low temperatures e. g. down to 40 F. or even 80 F.
  • esters It has previously been proposed to stabilize these esters by the addition of minor amounts of metal salts of organic dithiophosphoric acids, with or Without the further addition of metal salts of oil-soluble petroleum sulphonic acids.
  • the esters could be stabilized against oxidation at relatively high temperatures, and rendered suitable for the lubrication of internal combustion engines and gas turbines.
  • Recent improvements in the design of gas turbine engines have increased the severity of the demands made upon the lubricant, which must have good oxidation resistance at high temperatures, e. g. of the order of 200 C., at the same time being non-corrosive towards metals used in the construction of the turbine engines, e. g. steel, copper, brass, magnesium, aluminium and cadmium-plated steel. It must also possess a high loadcarrying capacity, in order to provide adequate lubrication of the reduction gearing in the propeller-turbine type of engines.
  • additives such as the metal salts of organic dithiophosphoric acids, and the dialkyl thioethers and dithiocarbamates which are among the most effective antioxidants for mineral lubricating oils used in internal combustion engines, are not entirely satisfactory when used in dicarboxylic acid diester type lubricants for gas turbine engines, due to lack of adequate thermal stability at the very high temperatures encountered.
  • additives which by reason of lack of solubility, or for other reasons, have not found application in mineral lubricating oils.
  • examples of such additives are phenothiazine and some of its derivatives, as described in the journal entitled Industrial and Engineering hemistry, December 1950, p. 2479 to p. 2489.
  • this invention consists in a lubricating composition
  • neutral ester used throughout the specification and claims is tobe understood as referring to esters having an acidity not exceeding 1 mg. KOH per gm.
  • the preferred esters have the general formula COORi wherein R is'an aliphatic or cycloaliphatic hydrocarbon radical having from 2 to 8 carbon atoms, and R and R are the same or different and are branched-chain alkyl or alkyl-substituted cycloalkyl radicals having at least 4 carbon atoms.
  • R is'an aliphatic or cycloaliphatic hydrocarbon radical having from 2 to 8 carbon atoms
  • R and R are the same or different and are branched-chain alkyl or alkyl-substituted cycloalkyl radicals having at least 4 carbon atoms.
  • R are CH: CH, (CI-i (where n is an integer from 2 to 8) and /CE2 -CH CH.CHs-
  • esters having the above general formula are preferred, it is also within the scope of the invention to employ esters obtained by esterifying the dicarboxylic acids with a mixture of an alcohol and a glycol to give complex esters having the general formula R OOC.R-COOR OC-RCOOR wherein R, R and R are as defined above and OH Ra is a glycol or polyglycol having not more than about 12 carbon atoms.
  • complex esters which may be employed are prepared by esterifying a dicarboxylic acid (1 mol) with a glycol (2 mols) and a monocarboxylic acid (2 mols) or with 1 mol each of a glycol, a monocarboxylic acid and a monohydric alcohol.
  • Esters may be employed derived from succinic, maleic,
  • esters pyrotartaric, glutaric, adipic, pimelic, suberic, azelaic, sebacic and pinic acids, specific esters being:
  • di(1:3-dimethyl butyl) adipate, di(3-methyl butyl) sebacate have relatively high freezing points (above 0 F.), and therefore would not normally be suitable for the purposes of this invention, except in admixture with other esters of lower freezing point.
  • esters may be selected according to the conditions under which the lubricant is to be used. Thus for use at very high temperatures it will be preferred to employ the esters of high molecular Weight and particularly the higher branchedchain di-esters of azelaic and sebacic acid.
  • the complex esters which may be employed are preferably prepared by esterifying 2 mols. of the dicarboxylic acid, 2 mols. of the branched-chain aliphatic or alkylsubstituted cycloaliphatic alcohol, and not more than 1 mol. of glycol.
  • glycols which may be used are ethylene, propylene and hexylene glycols and the polyglycols, e. g., diethylene, triethylene, and tetraethylene glycol.
  • a monocarboxylic acid When a monocarboxylic acid is used in preparing a complex ester this should be a straight or branched-chain aliphatic acid having from 2-10 carbon atoms inclusive.
  • the simple diesters of dicarboxylic acids or the complex esters may be employed in accordance with the present invention, these materials have certain limitations.
  • the simple esters have rather too low viscosities to be suitable as such for lubricating the existing types of aircraft gas turbines which normally require a lubricant having a minimum viscosity of 7.5 centistokes at 210 F.
  • the complex esters in general have insufliciently low pour-points which should desirably be of the order of F. or below.
  • the dicarboxylic acid diesters of. the type described are thickened to the desired degree by the addition of polymers of esters of acrylic or alkyl-substituted acrylic acids, e. g. methacrylic acid.
  • Compositions of this type can be produced having sufliciently high viscosities combined with very low pour-points.
  • the polymers are employed in proportions of from 1% to 15%, preferably from 5% to 10%, by weight on the weight of the final composition.
  • polymers which may be employed are the polymerised n-hexyl, 3:5:5-trimethyl hexyl and lauryl esters of methacrylic acid, and various commercially available materials sold under the trade name Acryloid. It is preferred to use polymers which are not only freely soluble in the diester lubricants but also miscible with mineral oil.
  • the hydroxy-substituted diaryl thioethers to be employed in accordance with the present invention have the general formula pp'-Dihydroxy diphenyl thioether Di 3 -methyl-4-hydroxyphenyl) thioether Di(4-methyl-3-tertiary butyl-Z-hydroxyphenyl) thioether Thioether prepared from tertiary butyl catechol Di 3-methoxy-4-hydroxyphenyl) thioether Thioether prepared from o-phenyl phenol
  • These compounds can be prepared by well known methods such as by the action of sulphur dichloride on the desired phenol in an inert solvent such as benzene or carbon tetrachloride or, in the case of the last compound, by the action of sulphur dichloride on o-phenyl phenol in the presence of a metal catalyst such as copper powder or iron filings.
  • tertiary butyl phenols and cresols which themselves have antioxidant properties
  • thioethers derived from phenols which are unsubstituted or substituted only by short alkyl radicals such as methyl groups and preferably by not more than one methyl group, although the use of more highly alkylated phenols is not excluded.
  • This preferred class of phenol thioethers have good solubility in the esters of the present invention, but their solubility in most mineral oils is so limited that their use as antioxidants in that connection would hardly be considered.
  • polymeric compounds such as those obtained by the action of more than one (but less than 2) mols. of sulphur dichloride, on 2 mols. of a phenol having at least two free orthoor para-positions in the nucleus.
  • the compounds selected for use must have adequate solubility in the esters in which they are to be dissolved.
  • Thioethers in which the radicals Ar in the above general formula consist .of condensed aryl nuclei, e. g., naphthyl groups have inadequate solubility unless compensating nuclear alkyl substituents or ether groups are present.
  • compounds in which x, y or z are more than 1 tend to lack solubility and must be compensated in the same way.
  • the radicals Ar are phenyl radicals and x and z are 1, n being zero.
  • Suitable amines which may be used are n-octylamine and higher primary aliphatic amines, dibutylamine, and'higher secondary aliphatic amines, cycloaliphatic amines such as dicyclohexylamine, and heterocyclic amines such as the lupetidines and higher homologues of piperidine.
  • Tertiary amines having basic properties may also be employed, e. g., di-n-octylmethylamine and 2:6-lutidine.
  • these amines will be employed in relatively small amounts, e. g., from 0.01 to 1.0 percent by weight on the weight of the final composition, and preferably from 0.05 to 0.5 percent by weight on the weight of the final composition.
  • the preferred lubricants of this invention which are designed for the satisfactory lubrication of jet engines of the propeller-turbine type, include a hydroxy-substituted diaryl thioether and an amine of the type described.
  • rust inhibitors such as very small amounts of metal petroleum sulphonates, or other known compounds capable of inhibiting rust formation in presence of water and extreme pressure agents.
  • lubricants in which a certain amount of mineral oil is added to the composition.
  • the amount added and type of mineral oil will depend upon the pour-point required for the particular application in mind, but in any case the amount of mineral oil present should not exceed 50% by weight on the weight of the composition.
  • compositions which may be employed in accordance with the present invention are exemplified in the tables of test results which follow.
  • Test Test 1 D1 (2. ethyl None 12.56 18. 89 50.4 9.0 hexyl) sebaeate.
  • Viscosity at 100 F. cs.
  • Percent Acidity Test No. Ester or Ester Blend Additives Viscosity mgs.
  • Test Test 5 Di(3:5:5-trimethyl hexyl) None 18. 16 26. 41 +45. 4 .10. 0
  • phenyl 1 leather. 47%b Dti(2-ethyl hexyl) se aca e 2.07 p 'dlhydroxydi- 1s 47% Dims-5 methyl fien l t oether. 40.11 40.44 +0.7 0.45
  • the polymeric thioether used in test No. 13 was prepared from 1.2 mols. p-octyl (uwy' -tetramethyl butyl) phenol and 1 mol. sulphur dichloride.
  • the Z-ethyl hexyl capryl siiecinate used in tests 14 'and 15 was a mixed ester prepared from succinic acid (1mo1.), capry1 alcohol (l-methyl heptanol) (111191.), and 2ethy1,hexa11ol (1 mol).
  • Acryloid 710 was a commercially available mineral
  • the initial acidity of the diesters was an important oil concentrate of a mixture of polymethacrylate esters. factor in their oxidation stability, and it was generally
  • the polynonyl methacrylaic used was a comparatively desirable to employ esters having an initial acidity not low molecular Weight polymer of 3:5:5-t1imethyl hexyl exceeding 0.3 mg. KOl-l per gram.
  • Mineral oil A was a solvent refined mineral oil of viscosity about seconds Redwood at 140 F.
  • the oleylamine used in test 29 was a commercially available material containing approximately unsaturated G15 amines, 10% saturated C amines, and 10% lower amines (C and 01 about 88% of the amines being primary.
  • test No. 6 illustrates the comparative ineflectiveness at high temperatures of an additive typical of those heretofore proposed. It was noteworthy that when severe oxidation took place blends containing polymers often showed a decrease in viscosity due to degradation of the polymeric thickening agent.(tests 12, 19 and 27).
  • test results indicate the specially effective inhibition of oxidation achieved by the use of thioethers derived from phenol and the cresols, as in tests 2, 7, 8, 11, 17, 18, 20, 23, 25 and 26, other thioethers-even those derived from the xylenols' (tests 15, 21, 22 and 28) being distinctly less effective.
  • test 40 demonstrated that phenothiazine, hitherto regarded as the most effective high-temperature antioxidant for synthetic diester-type lubricants (see Journal of Industrial and Engineering Chemistry, December 1950, pages 2479-2489) not only produced an undesirable amount of tarnishing of the copper specimen and catalyst, but attacked the cadmiumplated steel specimen very severely.
  • a lubricating composition comprising a major proportion of at least one ester selected from the group consisting of di(2-ethyl hexyl) azelate, di(2-ethyl hexyl) sebacate, di(3:5:5-trimethylhexyl) azelate and di(3:5;5- trimethyl hexyl) sebacate and from 0.05% to 2.0% of pp'-dihydroxydiphenyl thioether.
  • a lubricating composition comprising a major proportion of at least one ester selected from the group consisting of di-(2-ethy1 hexyl) azelate, di(2-ethyl hexyl)
  • Tests 30 and 36 are illustrative of the very high acid- 1 tion under the conditions. of this test, resulted in severe sebacate, di(3:5:5-trimethyl hexyl) azelate and di(3:5:5- trirnethyl hexyl) sebacate, from 5% to 10% of polynonyl methacrylate and from 0.05% to 2.0% of pp'-dihydroxy diphenyl thioether.
  • a lubricating composition comprising a major proportion of at least one ester selected from the group consisting of di(2-ethyl hexyl) azelate, di(2-ethyl hexyl) sebacate, di(3:5:5-trimethyl hexyl) azelate and di(3:5:5-
  • trimethyl hexyl) sebacate from 5% to 10% of polynonyl methacrylate, from 0.05% to 2.0% of pp'-dihydroxy diphenyl thioether and from 0.05% to 0.5% of dicyclohexylamine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

United States Patent rnnnrcarnso comosrrrons No Drawing. Application September 14, 1954 Serial No. 456,063
Claims priority, application Great Britain September 17, 1953 3 Claims. (Cl. 252-484) The present invention comprises improvements in or relating to lubricating compositions and relates particularly to fluid lubricants capable of use over a very wide range of temperatures.
The commonly used lubricating compositions based on mineral hydrocarbon oils have certain well-known disadvantages which limit their utility.
Thus, for example a mineral oil which will satisfactorily lubricate an internal combustion engine must have a sufficiently high viscosity to provide adequate lubrication at elevated temperatures and must also afford adequate resistance to Wear of moving parts.
Furthermore it must not be unduly volatile and in order to ensure this, it is found necessary to employ oils of a certain minimum viscosity. Such oils, however, are unsuitable for use at very low temperatures on account of their greatly increased viscosity and inability to flow due to the separation of Waxy constituents at said very low temperatures. Thus typical internal combustion engine lubricants which are perfectly satisfactory in service under normal operating conditions may be quite unsuitable at temperatures below 0 F. as they do not possess a sufiiciently low pour-point.
If, on the other hand oils are selected which will flow freely at relatively low temperatures, it is found that they are quite unsuitable for use at high temperatures e. g, in internal combustion engines on account of their low viscosity, high volatility and lack of adequate lubricating properties.
It is an object of the present invention to provide lubricating compositions suitable for use over a wide range of temperatures and under a variety of conditions and suitable for use in internal combustion engines or other mechanisms where high temperatures are involved e. g.
in the lubrication of gas turbines, especially the propeller a turbine type where the lubricant is required to lubricate not only the bearings but also the reduction gearing, said lubricating compositions also being stable and fluid at low or very low temperatures e. g. down to 40 F. or even 80 F.
It has already been proposed to employ as lubricants (especially suited for use at low temperatures) certain diesters of aliphatic dicarboxylic acids with branchedchain aliphatic alcohols, a number of such esters being described in the journal entitled Industrial and Engineering Chemistry April 1947, p. 484 to p. 497.
These esters possess extremely low pour-points, have excellent viscosity-temperature characteristics and good lubricating properties and have been found very satisfactory lubricants for a variety of instruments such as watches, clocks, aeronautical compasses, gyroscopes, meters, gun-turret mechanisms and a variety of aircraft 2,836,565 Patented May 27, 1958 and other scientific instruments, especially where, as in aircraft, very low temperatures are encountered.
it has also been proposed to stabilise such esters by the addition of antioxidants such as organic amines and phenols of various types.
It has previously been proposed to stabilize these esters by the addition of minor amounts of metal salts of organic dithiophosphoric acids, with or Without the further addition of metal salts of oil-soluble petroleum sulphonic acids. By this means the esters could be stabilized against oxidation at relatively high temperatures, and rendered suitable for the lubrication of internal combustion engines and gas turbines.
Recent improvements in the design of gas turbine engines have increased the severity of the demands made upon the lubricant, which must have good oxidation resistance at high temperatures, e. g. of the order of 200 C., at the same time being non-corrosive towards metals used in the construction of the turbine engines, e. g. steel, copper, brass, magnesium, aluminium and cadmium-plated steel. It must also possess a high loadcarrying capacity, in order to provide adequate lubrication of the reduction gearing in the propeller-turbine type of engines.
While it is true that many additives which have been used in the past to improve the properties of hydrocarbons, e. g. mineral lubricating oils, in various respects are also efiective in dicarboxylic acid diesters for the same purpose, this is by no means universally true. Furthermore, the very high temperatures encountered in gas turbine engines, coupled with the presence of metals susceptible to chemical attack, greatly restrict the types of chemical additives which can be employed either as antioxidants or as extreme pressure agents. Thus, additives such as the metal salts of organic dithiophosphoric acids, and the dialkyl thioethers and dithiocarbamates which are among the most effective antioxidants for mineral lubricating oils used in internal combustion engines, are not entirely satisfactory when used in dicarboxylic acid diester type lubricants for gas turbine engines, due to lack of adequate thermal stability at the very high temperatures encountered.
The loss of these additives by thermal decomposition results in the rapid loss of oxidation resistance, While the liberated sulphur is capable of causing serious damage to the cuprous metals present. Other additives containing metals such as barium, though widely used in mineral lubricating oils for internal combustion engines, are not so suitable for use in gas turbine lubricants as they tend to promote the formation of carbonaceous deposits on very hot metal surfaces. This is particularly undesirable as, after switching off the engine, the oil soak temperature of the bearings may reach 350 C. or even higher, and it is important that the residual oil film shall volatilize without leaving an appreciable residue.
On the other hand, it may be possible to employ, in aliphatic dicarboxylic acid diesters, additives which by reason of lack of solubility, or for other reasons, have not found application in mineral lubricating oils. Examples of such additives are phenothiazine and some of its derivatives, as described in the journal entitled Industrial and Engineering hemistry, December 1950, p. 2479 to p. 2489. These compounds are undoubtedly very eliective antioxidants for diester type lubricants at high temperatures, but they suiier from certain serious disadvantages, notably a tendency to undergo photo-chemical oxidation with consequent precipitation of sludge, a tendency to promote lacquer and sludge formation at high temperatures, and a marked tendency to liberate sulphur or sulphur compounds corrosive towards cuprous metals both in the liquid and in the vapour phase.
It is an object of the present invention to provide antioxidants for dialkyl esters of aliphatic dicarboxylic acids which are effective at high temperatures, at the same time being relatively free from objectionable corrosive tendencies towards cuprous and other metals, from lacquer and deposit forming tendencies, and from sensitivity to light.
We have found that by the addition of minor amounts of hydroxy-substituted diaryl thioethers to the esters referred to above, their oxidation resistance at high temperatures can be greatly improved, and that by the further addition of a basic aliphatic, alicyclic or heterocyclic amine, having a boiling point of at least 140' C., a still further improvement can be obtained.
More specifically, this invention consists in a lubricating composition comprising a neutral ester or mixture of esters derived from aliphatic or cycloaliphatic dicarboxylic acids having from four to ten carbon atoms in the -molecule, and branched-chain aliphatic or alkyl-substituted cycloaliphatic alcohols having at least four carbon atoms in the molecule or from mixtures of such alcohols with glycols, and a minor proportion ofa hydroxy-substituted diaryl thioether.
The term neutral ester used throughout the specification and claims is tobe understood as referring to esters having an acidity not exceeding 1 mg. KOH per gm.
The preferred esters have the general formula COORi wherein R is'an aliphatic or cycloaliphatic hydrocarbon radical having from 2 to 8 carbon atoms, and R and R are the same or different and are branched-chain alkyl or alkyl-substituted cycloalkyl radicals having at least 4 carbon atoms. Examples of the radical R are CH: CH, (CI-i (where n is an integer from 2 to 8) and /CE2 -CH CH.CHs-
While esters having the above general formula are preferred, it is also Within the scope of the invention to employ esters obtained by esterifying the dicarboxylic acids with a mixture of an alcohol and a glycol to give complex esters having the general formula R OOC.R-COOR OC-RCOOR wherein R, R and R are as defined above and OH Ra is a glycol or polyglycol having not more than about 12 carbon atoms.
Other types of complex esters which may be employed are prepared by esterifying a dicarboxylic acid (1 mol) with a glycol (2 mols) and a monocarboxylic acid (2 mols) or with 1 mol each of a glycol, a monocarboxylic acid and a monohydric alcohol.
Esters may be employed derived from succinic, maleic,
pyrotartaric, glutaric, adipic, pimelic, suberic, azelaic, sebacic and pinic acids, specific esters being:
Di(l-methyl-4-ethyl octyl) glutarate Di(2-ethyl hexyl) adipate Di(3-methyl butyl) azelate Di(2-ethyl hexyl) azelate Di(2-ethyl hexyl) sebacate Di(3 :5 5-trimethylhexyl) sebacate Di(2-ethyl hexyl) maleate Di (methyl cyclohexyl) adipate 2-ethyl hexyl l-methyl heptyl sebacate Di-(Z-ethyl hexyl) pinate Whereas the majority of esters falling within the foregoing class possess both a high viscosity index and low pour-point, certain of them e g. di(1:3-dimethyl butyl) adipate, di(3-methyl butyl) sebacate have relatively high freezing points (above 0 F.), and therefore would not normally be suitable for the purposes of this invention, except in admixture with other esters of lower freezing point.
It will be understood that different esters may be selected according to the conditions under which the lubricant is to be used. Thus for use at very high temperatures it will be preferred to employ the esters of high molecular Weight and particularly the higher branchedchain di-esters of azelaic and sebacic acid.
The complex esters which may be employed are preferably prepared by esterifying 2 mols. of the dicarboxylic acid, 2 mols. of the branched-chain aliphatic or alkylsubstituted cycloaliphatic alcohol, and not more than 1 mol. of glycol. Examples of glycols which may be used are ethylene, propylene and hexylene glycols and the polyglycols, e. g., diethylene, triethylene, and tetraethylene glycol. I
When a monocarboxylic acid is used in preparing a complex ester this should be a straight or branched-chain aliphatic acid having from 2-10 carbon atoms inclusive.
Specific examples of' suitable complex esters which may be employed in accordance with the present invention are:
Ester prepared from ethylene glycol (1 mol), sebacic acid (2 mols) and 2-ethyl hexanol (2 mols) Ester prepared from triethylene glycol (1 mol), adipic acid (1 mol), n-caproic acid (1 mol) and 2-ethyl hexanol (lrnol).
While either the simple diesters of dicarboxylic acids or the complex esters may be employed in accordance with the present invention, these materials have certain limitations. Thus the simple esters have rather too low viscosities to be suitable as such for lubricating the existing types of aircraft gas turbines which normally require a lubricant having a minimum viscosity of 7.5 centistokes at 210 F., whereas the complex esters in general have insufliciently low pour-points which should desirably be of the order of F. or below.
Accordingly, in a preferred form of the present inven tion the dicarboxylic acid diesters of. the type described are thickened to the desired degree by the addition of polymers of esters of acrylic or alkyl-substituted acrylic acids, e. g. methacrylic acid. Compositions of this type can be produced having sufliciently high viscosities combined with very low pour-points.
The polymers are employed in proportions of from 1% to 15%, preferably from 5% to 10%, by weight on the weight of the final composition.
Examples of polymers which may be employed are the polymerised n-hexyl, 3:5:5-trimethyl hexyl and lauryl esters of methacrylic acid, and various commercially available materials sold under the trade name Acryloid. It is preferred to use polymers which are not only freely soluble in the diester lubricants but also miscible with mineral oil.
The hydroxy-substituted diaryl thioethers to be employed in accordance with the present invention have the general formula pp'-Dihydroxy diphenyl thioether Di 3 -methyl-4-hydroxyphenyl) thioether Di(4-methyl-3-tertiary butyl-Z-hydroxyphenyl) thioether Thioether prepared from tertiary butyl catechol Di 3-methoxy-4-hydroxyphenyl) thioether Thioether prepared from o-phenyl phenol These compounds can be prepared by well known methods such as by the action of sulphur dichloride on the desired phenol in an inert solvent such as benzene or carbon tetrachloride or, in the case of the last compound, by the action of sulphur dichloride on o-phenyl phenol in the presence of a metal catalyst such as copper powder or iron filings. Their use in mineral lubricating oils has been known for some considerable time, but although possessing antioxidant properties to some degree they have not found wide application in internal combustion engine oils and have been considered inferior to the metal dithiophosphates and other metal-containing additives. It is important that compounds for use in conjunction with the diesters of the present invention should be substantially free from the corresponding diand poly-sulphides and from free sulphur.
In view of the fact that these thioethers have had such limited usefulness as antioxidants in mineral oils, it is not a little surprising to find them so eifective as antioxidants in diester type lubricants. Moreover, whereas thioethers derived from alkylated phenols, e. g., tertiary butyl phenols and cresols (which themselves have antioxidant properties) have apparently always been preferred for use as antioxidants for mineral oils, we have found that for the purposes of the present invention the best resultsare obtained by the use of thioethers derived from phenols which are unsubstituted or substituted only by short alkyl radicals such as methyl groups and preferably by not more than one methyl group, although the use of more highly alkylated phenols is not excluded. This preferred class of phenol thioethers have good solubility in the esters of the present invention, but their solubility in most mineral oils is so limited that their use as antioxidants in that connection would hardly be considered.
In addition to the simple thioethers, examples of which have been quoted, it is possible to use polymeric compounds such as those obtained by the action of more than one (but less than 2) mols. of sulphur dichloride, on 2 mols. of a phenol having at least two free orthoor para-positions in the nucleus.
It will be understood that the compounds selected for use must have adequate solubility in the esters in which they are to be dissolved. Thioethers in which the radicals Ar in the above general formula consist .of condensed aryl nuclei, e. g., naphthyl groups, have inadequate solubility unless compensating nuclear alkyl substituents or ether groups are present. Similarly, compounds in which x, y or z are more than 1 tend to lack solubility and must be compensated in the same way. Generally it is preferred to employ compounds in which the radicals Ar are phenyl radicals and x and z are 1, n being zero.
While blends containing the hydroxy-substituted diaryl thioethers described exhibit good stability towards oxidation at high temperatures, there may be some tendency for the additives to break down with consequent 5 loss of sulphur which is potentially corrosive, especially to cuprous metals. As already indicated we have found that by the inclusion of certain amines the corrosion of cuprous metals can be reduced, increased stability towards oxidation being at the same time imparted to the blend. Although amines boiling below' C. may also be effective in this respect, they would rapidly be lost from the fluid at high temperatures, and therefore it has been found desirable to employ amines having a boiling point of at least 140 C. and preferably exceeding 200 C. Examples of suitable amines which may be used are n-octylamine and higher primary aliphatic amines, dibutylamine, and'higher secondary aliphatic amines, cycloaliphatic amines such as dicyclohexylamine, and heterocyclic amines such as the lupetidines and higher homologues of piperidine. Tertiary amines having basic properties may also be employed, e. g., di-n-octylmethylamine and 2:6-lutidine.
Generally these amines will be employed in relatively small amounts, e. g., from 0.01 to 1.0 percent by weight on the weight of the final composition, and preferably from 0.05 to 0.5 percent by weight on the weight of the final composition.
The preferred lubricants of this invention, which are designed for the satisfactory lubrication of jet engines of the propeller-turbine type, include a hydroxy-substituted diaryl thioether and an amine of the type described.
Other additives may be included if desired, e. g., rust inhibitors such as very small amounts of metal petroleum sulphonates, or other known compounds capable of inhibiting rust formation in presence of water and extreme pressure agents.
It is also Within the scope of the invention to include lubricants in which a certain amount of mineral oil is added to the composition.
The amount added and type of mineral oil will depend upon the pour-point required for the particular application in mind, but in any case the amount of mineral oil present should not exceed 50% by weight on the weight of the composition.
Where extremely low pour-points of the order of 80 F. are required, the presence of mineral oil may be inadmissible.
Specific compositions which may be employed in accordance with the present invention are exemplified in the tables of test results which follow.
To determine the oxidation stability of the compositions of this invention at elevated temperatures, a modification of the well-known British Air Ministry oxidation test was employed. This test was carried out precisely as described in tandard Methods for Testing Petroleum and its Products, Institute of Petroleum, 1949, Method I. P. 48/44, with the exception that various temperatures were employed C, C., or 200 C.) and that there was present a copper catalyst consisting of a piece of polished copper foil 2 inches x 1% inches rolled into a cylinder as described'in I. P. Method 56/46, this being replaced by a fresh catalyst'half way through the test, i. c. after 6 hours in the case of tests at l60 C. and 180 C. and after every 3 hours in the case of tests at 200 C. Additionally, in tests at 200 C. only, there were present strips of polished copper foil 6 inches x /2 inch suspended in the vapour phase above the oil, the lower portion of the strips being folded into three segments approximately 1 inch long, so that the overall length of the strip above the oil was about 3 inches and the lower end of the strip was 3 /2 inches above the surface of the oil.
After air blowing, the percentage increase in viscosity and acidity rise were determined. Also, in the case of tests at 200 C., the vapour-phase copper strips were examined for signs of attack by volatile acids, as evidenced by the presence of a green colour.
The insuing tables illustrate the efiectiveness of the compositions of the present invention.
Table 1.--Tests at 160 C.
Viscosity at 100 F. (cs.) Percent, Acidity Test N o. Ester or Ester Additives Viscosity (mgs.
blend Increase KOHI Before After gram) Test Test 1 D1 (2. ethyl None 12.56 18. 89 50.4 9.0 hexyl) sebaeate.
2 r1n 0.05% pp '-d1hydroxy- 12.54 12.73 1.5 0. 22
diphenyl thloether. 3 D1(2.ethy1hexy1) None 7. 37 14. 07 90.9 5.6
' adipate. 4 0.5% thioether prepared 7. 17 7. 86 9. 6 0. 28
from o-phenyl phenol.
N. B. The acidities of the samples of esters employed, before oxidation, were: 20 Mgs. KOI-I per gram Di(2-ethyl hexyl) sebacate 0.22 Di(2-ethyl hexyl) adipate 0.22
Table lI.--Te'sts at 180 C.
Viscosity at 100 F. (cs.) Percent Acidity Test No. Ester or Ester Blend Additives Viscosity (mgs.
Change KOHper Before After gram) Test Test 5 Di(3:5:5-trimethyl hexyl) None 18. 16 26. 41 +45. 4 .10. 0
sebacate.
0.5% 2:6 di-t-butyl-et- 19.16- 23.12 +202 7.8
methyl phenol. 0.25% pp-dihydroxy- 19.33 20.72 +7.2 0.45
diphenyl thioether. 0.25% pp'-dihydroxy- 19.35 19.71 +1.2 0.17
diphenyl thioether +01% dicyclohexylamme. 90% D1(2'ethy1 hexyl) 9 maleate. None 31.49 53. 83 +7L0 4.5
10% Aeryloid 710 10 --d0 1% thioether prepared 29.53 85.08 +18.8 1.95
7 D1( 11 1 1 from t-butyl cateehol. 50 0 met y eye 0.57 p '-dihydroxyd1- 11 3 8 gih enylt oether +01% 10.53 20.17 +3.4 0.50
hexyl Sebacate -n-octyl methylamme. 44% Di(2-ethy1 hexyl) so f l i 's 5 t 1m th 1 1 r e y 12 Sebacate None 35. 36 33. 84 4.3 7.3
6915 tPolynorlyl methacrya e. 13 d0 1% Polymeric thioether 36.77 38.10 +3.4 L68 prepared from p-oetyl phenol. 14 240th? hexyl capryl suc- None 7.26 9. 54 +31.6 8.7
01110. e. 15 do 0.5%,1 1:3 xylen-A-ol-thio- 7.38 7. 92 +7.3 2.0
e er. 97% D1(2-ethy1 butyl) 16 azelate. None 11.83 13.76 +1.6.3 6.2
8% Aarylold 710 17 d0 0.5% p 'dihydroxydl- 12.04 12. 47 +3.6 1.12
phenyl 1: leather. 47%b Dti(2-ethyl hexyl) se aca e 2.07 p 'dlhydroxydi- 1s 47% Dims-5 methyl fien l t oether. 40.11 40.44 +0.7 0.45
mm Sebacate- 0 01710 etldine 67ftPo1yn0ny1 methacry- D N. B. The acidities of the samples of esters employed, before oxidation, were:
Mgs. KOH per gm.
Di(2-ethy1 hexyl) maleate 0.28 Di(methyl cyciohexyl) adipate 0.14 2-ethyl hexyl capryl succinate 0.11
Di(2-ethyl butyl) azelate 0.11
The polymeric thioether used in test No. 13 was prepared from 1.2 mols. p-octyl (uwy' -tetramethyl butyl) phenol and 1 mol. sulphur dichloride. I 7
The Z-ethyl hexyl capryl siiecinate used in tests 14 'and 15 was a mixed ester prepared from succinic acid (1mo1.), capry1 alcohol (l-methyl heptanol) (111191.), and 2ethy1,hexa11ol (1 mol). I.
a 10 I) Acryloid 710 was a commercially available mineral The initial acidity of the diesters Was an important oil concentrate of a mixture of polymethacrylate esters. factor in their oxidation stability, and it was generally The polynonyl methacrylaic used Was a comparatively desirable to employ esters having an initial acidity not low molecular Weight polymer of 3:5:5-t1imethyl hexyl exceeding 0.3 mg. KOl-l per gram.
methacrylate.
Table III.Tests at 200 C.
Attack of Percent Acidity vapour Test N o. Ester or Ester Blend Additives Viscosity (mgs. phase cop- Change KOH per per strips gram) observed after-- 4gggig-ethytl hexyllsellilacatg 5 i :5:5 rimet y exy T 19 sgbacatei None 10.0 .5 3 hou.s.
6% Polynonvl rnethacrylate do 1 1 1% pg-dihydroxy-diphenyl thi- +10. 4 0. 78 Absent.
e er. 1% 1:3-Xylen-2-ol thioether +8. 4. 1 D0. 7 D 1% 1:3-xylen-4o1 thioether +15.-4 10. 6 9 hours.
0 477 Di(3:5:5trimethyl hexyl) 0.57 pp dihydroxy-diphenyl s bacate. th ioether. 5 68 Absent" 6% Polynonyl methacrylate..- 24 do 1% Thioether prepared from +6.9 1.90 Do.
guaiacol. 25 do 1% Di(3-methyl4-hydroxyphen- +8.6 1. 78. D0.
yl) thioether +01% Dicyclohexylamine +0.05% Calcium petroleum sulphonate. 1% Di(5-methyl-2-hydroxyphen- 26 do yl) thioether. +4.4 1.12 Do.
7 0.1% Dicyclohexylamine 90% Di(2-ethyl hexy1)sebacate 27 4.5% Polylauryl methacrylate None -23.5 4.5 3 hours.
5.5% Mineral 011A 28 do 2% 1:3xyle11-2-ol thioether +108 5.0 Qhours. 29 do 2% 1:3 xylen-2-ol thioether+l% +1. 2 l. 68 Do,
Oleylamine.
Mineral oil A was a solvent refined mineral oil of viscosity about seconds Redwood at 140 F.
The oleylamine used in test 29 was a commercially available material containing approximately unsaturated G15 amines, 10% saturated C amines, and 10% lower amines (C and 01 about 88% of the amines being primary.
Table I V.A ll tests were carried out for 22 hours at Cadmium-plated steel test-piece with copper Copper test-piece with steel catalyst catalyst Test Ester or Ester Blend Additives Colour of- Acidity N0. Wt. after Vt.
change (mgs. change Colour of Acidity 5 KOH/ (mgs.) specimen afterspeeimen Catalyst gram) 3Q Di(3:5:5 trimethyl hexyl) None -252.5 Corroded Light Pea- 10.1 +1.2 Peacock... 9.6
sebacate. cock. 31 do 0.5% Dl(3-methyl-4-hy- +0.6 Light yellow" Light 0, 50 +3.1 Brown 0. 50
droxyphenyl) thioether. brown. 0. 5% Di(3-methyl-4-hy- Brown, 32 do droxyphenyl) thioether. Nil. do cock p o, 17 +3,o do on 0.2% Tri-n-decylaminet? i fftt 'tt oxyp eny 10c er. 33 do 7? Di n octylmethyla -22 mm 0.5% Di(3-methyl-4-hy- 34 do droxyphenyl) thioether. +0.5 .do Brown 0.11 +2.8 -do 0.11
0.1% Di-n-octylaminc 0.5% Dl(3-methyl-4-l1y- 35 -do droxyphenyl) thioether. +0.5 -do Peacock"-.. o, 11 +14 tl0- 0.11
0. 1% 2:6 Lutidine 47% Di(2-ethyl hexyl) ir y i i s 5 t in: 111 1 0057 o 11 t 1 i2: rey acumperoeum 3s Sebacam sulphonate. Light reY Bright 16.0 1.4 Peacock..- 11.5
6% tPolynonyl methacry- 0.051% Ctalcium petrosulp ona e. Dun Dun 37 --do l.07 pp-D1hydroxyd1- +0.2 Grey 0.28 +1.0 0.34
plienyl thioether. Copper Copper 0.2% Dicyclohexylamine-. 0.05;? Calcium petrosul- B1 k p ona e. as 38 "d0 5% P46111217 1 Clean Black 0- Patchy nol disulphide. 40% D1(3:5:5 trimethyl v hexyl) adipate. 1% D1(3-methyl-4- hydrox Dark 0 28 39 40% Di(Alpha11ol 79) adiyphenyl) thioether 2.6 Bufi Patches Brown 0.28 3.4 smock pate. +0.2%n-Dodecylainine. P 20% Mineral oil B 47% Di(2-etl1yl hexyl) seb- D k Patchy Bufiat l Dark pea- 40 47% "methyl 0.5% Phenothiazine -54.s corroded 0.22 +0.2 cock 0.17 heiryl) sebaeate. appearance black brown 6% Polynonyl methacryj patches.
late.
1 In test No. 36 a jelly-like deposit had formed on the catalyst and elsewhere in the beaker. In test No. 40 the oil became very dark.
In the foregoing tables, tests 1, 3, 5, 9, 12, 14, l6, l9
and 27 indicate the fairly rapid oxidation undergone by various uninhibited esters and blends with polymethacrylate type thickening agents, While test No. 6 illustrates the comparative ineflectiveness at high temperatures of an additive typical of those heretofore proposed. It was noteworthy that when severe oxidation took place blends containing polymers often showed a decrease in viscosity due to degradation of the polymeric thickening agent.(tests 12, 19 and 27).
The efiectiveness of a variety of hydroxy-substituted aromatic thioethers is amply demonstrated by the foregoing tests, and the additional benefit from the inclusion of an amine of the type described can be seen by comparing tests 7 and 8, and tests 28 and 29.
A general survey of the test results indicates the specially effective inhibition of oxidation achieved by the use of thioethers derived from phenol and the cresols, as in tests 2, 7, 8, 11, 17, 18, 20, 23, 25 and 26, other thioethers-even those derived from the xylenols' (tests 15, 21, 22 and 28) being distinctly less effective.
Some further tests were carried out using the procedure described in Ministry of Supply Material Specification No. D. Eng. R. D. 2487 (Issue No. 2, dated January 1,
1954), paragraph 7.4. This test was a combined oxidation and corrosion test designed to measure the tendency of an oil to develop corrosive oxidation products at.
' blackening of the copper specimen and catalyst due to the liberation of active sulphur, while test 40 demonstrated that phenothiazine, hitherto regarded as the most effective high-temperature antioxidant for synthetic diester-type lubricants (see Journal of Industrial and Engineering Chemistry, December 1950, pages 2479-2489) not only produced an undesirable amount of tarnishing of the copper specimen and catalyst, but attacked the cadmiumplated steel specimen very severely.
We claim: 7
1. A lubricating composition comprising a major proportion of at least one ester selected from the group consisting of di(2-ethyl hexyl) azelate, di(2-ethyl hexyl) sebacate, di(3:5:5-trimethylhexyl) azelate and di(3:5;5- trimethyl hexyl) sebacate and from 0.05% to 2.0% of pp'-dihydroxydiphenyl thioether.
2. A lubricating composition comprising a major proportion of at least one ester selected from the group consisting of di-(2-ethy1 hexyl) azelate, di(2-ethyl hexyl) Tests 30 and 36 are illustrative of the very high acid- 1 tion under the conditions. of this test, resulted in severe sebacate, di(3:5:5-trimethyl hexyl) azelate and di(3:5:5- trirnethyl hexyl) sebacate, from 5% to 10% of polynonyl methacrylate and from 0.05% to 2.0% of pp'-dihydroxy diphenyl thioether.
3. A lubricating composition comprising a major proportion of at least one ester selected from the group consisting of di(2-ethyl hexyl) azelate, di(2-ethyl hexyl) sebacate, di(3:5:5-trimethyl hexyl) azelate and di(3:5:5-
trimethyl hexyl) sebacate, from 5% to 10% of polynonyl methacrylate, from 0.05% to 2.0% of pp'-dihydroxy diphenyl thioether and from 0.05% to 0.5% of dicyclohexylamine.
References Cited in the file of this patent UNITED STATES PATENTS 7 2,139,766 Mikeska et a1 Dec. 13, 1938 2,209,463 Leiber et a1. July 30, 1940 2,229,858 McConnell Ian. 28, 1941 2,234,096 Teter Mar. 4, 1941 2,375,007 Larsen et a1. May 1, 1945 2,481,372 von Fuchs Sept. 6, 1949 2,559,521 Smith et al. July 3,1951 2,575,195 Smith et al. Nov. 13, 1951 OTHER REFERENCES Polymeric Additives for Synthetic Ester Lubricants, article by Glavis, I. & E. 'Chem., December 1950, pages 2441-2446. F 1 1

Claims (1)

1. A LUBRICATING COMPOSITION COMPRISING A MAJOR PROPORTION OF AT LEAST ONE ESTER SELECTED FROM THE GROUP CONSISTING OF DI(2-ETHYL HEXYL) AXELATE, DI(2-ETHYL HEXYL) SEBACATE, DI(3:5.5-TRIMETHYLHEXYL) AZELATE AND DI(3:5:5TRIMETHYL HEXYL) SEBACATE AND FROM 0.05% TO 2.0% OF PP - DIHYDROXYDIPHENYL THIOETHER.
US456063A 1953-09-17 1954-09-14 Lubricating compositions Expired - Lifetime US2836565A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB25753/53A GB757219A (en) 1953-09-17 1953-09-17 Improvements in or relating to lubricating compositions
GB2411/54A GB757241A (en) 1953-09-17 1954-01-26 Improvements in or relating to lubricating compositions

Publications (1)

Publication Number Publication Date
US2836565A true US2836565A (en) 1958-05-27

Family

ID=26237506

Family Applications (2)

Application Number Title Priority Date Filing Date
US456063A Expired - Lifetime US2836565A (en) 1953-09-17 1954-09-14 Lubricating compositions
US483824A Expired - Lifetime US2820766A (en) 1953-09-17 1955-01-24 Lubricating compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US483824A Expired - Lifetime US2820766A (en) 1953-09-17 1955-01-24 Lubricating compositions

Country Status (2)

Country Link
US (2) US2836565A (en)
GB (1) GB757241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115287A (en) * 1976-04-22 1978-09-19 Exxon Research And Engineering Company Lubricating compositions

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2999740A (en) * 1956-11-27 1961-09-12 Tidewater Oil Company Surface ignition suppression
LU35910A1 (en) * 1957-04-05
US2983678A (en) * 1958-12-31 1961-05-09 Gulf Research Development Co Synthetic oil containing a rare earth metal diester phosphate
DE1217382B (en) * 1960-04-11 1966-05-26 Ethyl Corporation, New York, N. Y. (V. St. A.) Stabilization of motor fuels, lubricating oils or greases based on hydrocarbons or polymeric hydrocarbons
US3245979A (en) * 1961-01-30 1966-04-12 Sinclair Refining Co Phosphorus phenol condensation compounds
US3239464A (en) * 1961-09-05 1966-03-08 Sinclair Research Inc Extreme pressure lubricant
GB959545A (en) * 1963-02-21 1964-06-03 Shell Res Ltd Improvements in or relating to lubricating oil compositions
US4044033A (en) * 1975-04-14 1977-08-23 Milliken Research Corporation High temperature lubricant
US4517105A (en) * 1983-03-07 1985-05-14 Aluminum Company Of America Metalworking lubricant composition containing a novel substituted malonic acid diester

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2139766A (en) * 1933-12-27 1938-12-13 Standard Oil Dev Co Mineral oil stabilizing agent and composition containing same
US2209463A (en) * 1937-12-04 1940-07-30 Standard Oil Dev Co Wax composition
US2229858A (en) * 1938-10-22 1941-01-28 Standard Oil Co Lubricant manufacture
US2234096A (en) * 1939-01-28 1941-03-04 Sinclair Refining Co Lubricating oil
US2375007A (en) * 1943-04-15 1945-05-01 Shell Dev Antifoaming composition
US2481372A (en) * 1946-09-27 1949-09-06 Shell Dev Rust protective lubricants
US2559521A (en) * 1948-11-27 1951-07-03 Standard Oil Dev Co Synthetic lubricant
US2575195A (en) * 1948-10-01 1951-11-13 Standard Oil Dev Co Dibasic acid esters and method for producing them

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE415008A (en) * 1935-04-15
GB574445A (en) * 1941-03-25 1946-01-07 Elliott Alfred Evans Improvements in or relating to lubricating compositions
US2499984A (en) * 1948-12-16 1950-03-07 Rohm & Haas Oily complex esters
US2639266A (en) * 1951-04-07 1953-05-19 Texas Co Lubricating grease comprising a complex ester base and sodium myristate
US2760934A (en) * 1953-05-28 1956-08-28 Exxon Research Engineering Co Synthetic lubricant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2139766A (en) * 1933-12-27 1938-12-13 Standard Oil Dev Co Mineral oil stabilizing agent and composition containing same
US2209463A (en) * 1937-12-04 1940-07-30 Standard Oil Dev Co Wax composition
US2229858A (en) * 1938-10-22 1941-01-28 Standard Oil Co Lubricant manufacture
US2234096A (en) * 1939-01-28 1941-03-04 Sinclair Refining Co Lubricating oil
US2375007A (en) * 1943-04-15 1945-05-01 Shell Dev Antifoaming composition
US2481372A (en) * 1946-09-27 1949-09-06 Shell Dev Rust protective lubricants
US2575195A (en) * 1948-10-01 1951-11-13 Standard Oil Dev Co Dibasic acid esters and method for producing them
US2559521A (en) * 1948-11-27 1951-07-03 Standard Oil Dev Co Synthetic lubricant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115287A (en) * 1976-04-22 1978-09-19 Exxon Research And Engineering Company Lubricating compositions

Also Published As

Publication number Publication date
US2820766A (en) 1958-01-21
GB757241A (en) 1956-09-19

Similar Documents

Publication Publication Date Title
US3224971A (en) Borate esters and lubricant compositions containing said esters
US3720612A (en) Synthetic ester lubricating oil compositions
US3218256A (en) Lubricating compositions
US3290307A (en) Nu-substituted melamines
US3941708A (en) Hydraulic fluid antioxidant system
US2795552A (en) Lubricant compositions
US3652411A (en) Polyglycol base lubricant
US3869394A (en) Lubricant composition and method
US3476685A (en) Synthetic lubricating composition
US2836565A (en) Lubricating compositions
US2911367A (en) Mineral lubricating oil composition
US3790481A (en) Synthetic lubricants for aero gas turbines
US3697427A (en) Lubricants having improved anti-wear and anti-corrosion properties
US2944973A (en) Di-ester fluids with improved water tolerance
US2971912A (en) Lubricating oil compositions
US2971915A (en) Lubricating oil compositions
US3134737A (en) Novel titanium compound and lubricating composition containing said compound
US3799876A (en) Corrosion inhibiting lubrication method
US4096078A (en) Synthetic aircraft turbine oil
US3728260A (en) Additive for lubricating composition
US2316903A (en) Addition agent for lubricants
US2346153A (en) Compounded oil
US3779919A (en) Synthetic aircraft turbine oil
GB1601506A (en) Antioxidant compositions for use with lubricating oils
US2539503A (en) Lubricating compositions