US2832977A - Electrostatic cleaning device - Google Patents

Electrostatic cleaning device Download PDF

Info

Publication number
US2832977A
US2832977A US269958A US26995852A US2832977A US 2832977 A US2832977 A US 2832977A US 269958 A US269958 A US 269958A US 26995852 A US26995852 A US 26995852A US 2832977 A US2832977 A US 2832977A
Authority
US
United States
Prior art keywords
brush
plate
xerographic
cleaning
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US269958A
Inventor
Lewis E Walkup
Jr Herbert E Carlton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US269958A priority Critical patent/US2832977A/en
Application granted granted Critical
Publication of US2832977A publication Critical patent/US2832977A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/0005Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge for removing solid developer or debris from the electrographic recording medium
    • G03G21/0035Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge for removing solid developer or debris from the electrographic recording medium using a brush; Details of cleaning brushes, e.g. fibre density
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2221/00Processes not provided for by group G03G2215/00, e.g. cleaning or residual charge elimination
    • G03G2221/0005Cleaning of residual toner

Definitions

  • This invention relates in general to apparatus for the removal of electrostatically adhering powder particles from an insulating surface and, in particular to apparatus for cleaning a xerographic or electrophotographic plate.
  • an electrostatic latent image In the art of xerography, it is usual to form an electrostatic latent image and to develop this image with an electrostatically attractable material which generally is a thermoplastic pigmented resin.
  • This developed image is conveniently transferred to its ultimate base material by an electrostatic transfer step in which a substantial proportion of the image is caused to adhere electrostatically to a transfer material to which it may be later permanently secured, for example by fusing. In this transfer step, a large amount of the resin material is transferred to the transfer base but a significant proportion may remain electrostatically secured to the original image bearing member.
  • the problem which is solved according to the present invention is the removal of this residual material from the xerographic plate and the problem is complicated by the fact that both the xerographic plate surface and the developer powder are relatively speaking, electric insulators.
  • Carlson U. S. 2,357,809 there is shown a cleaning device for Xerographic surfaces on which a simple brush mechanism removes the powder from the plate. With this device, however, it was found that fusible powder particles were not removed sufficiently cleanly and rapidly for rapidly repeated automatic operation, but instead became smeared or redeposited on the plate. In fact, after operation through several cleaning cycles, Carlsons cleaning brush itself might contain enough of the developer powder to become a powder agitator providing available material for redeposition on the plate.
  • the cleaning brush of Carlson can be a friction charging unit for charging the plate, thus attracting back again some of the powder being removed. It has also been proposed in Copley Patent No. 2,484,782 to remove this residual image by flowing a granular material across the surface of the xerographic plate.
  • a cleaning process is better for a manual process than for a mechanized one, first, because this process requires addir tional equipment for dispensing and returning a separate material which must be kept isolated from the developer material and second, because the granular cleaning materials must be replaced after a few hundred cleaning cycles.
  • Figure l is a diagrammatic view of a cleaning mechanism according to one embodiment of this invention.
  • Figure 2 is a diagrammatic representation of cleaning mechanism according to another embodiment of the invention.
  • Figure 3 is a side elevation in section of the cleaning apparatus according to a further embodiment of the invention.
  • Figure 4 is a front elevation in section of the mechanism shown in Figure 3.
  • the mechanism'shown in Figure 1 is a simple cleaning device according to one embodiment of the invention.
  • This comprises a support member or bed plate 10 on which is positioned a surface to be cleaned, such as, for example, a xerographic plate 11.
  • a surface to be cleaned such as, for example, a xerographic plate 11.
  • Above and bearing on the surface of this plate is a rotatable cylindrical member or brush having hair, fibres, or the like 13 on its outer surface, the brush optionally being retractable into and out of contact with the plate.
  • a hood arrangement 14 at least partially surrounds the portion and preferably terminates a short distance above the plate.
  • a vacuum or other air flow line 15 leads from the hood to an externally positioned vacuum source (not shown).
  • a source of ions such as a corona discharge electrode 16 is mounted adjacent to the portion and optionally positioned to direct a flow of ions either onto the surface of the plate being cleaned or onto the fibres of the brush, or optionally both.
  • Drive means 1 and 2 are operable to cause the brush and the plate to undergo relative motion, for example, driving the plate in the direction shown by arrow 17, and to rotate the brush in the direction shown by arrows 18.
  • Drive means 1 is composed of a motor 3 and a belt 4 which connects motor 3 to brush 12.
  • Drive means 2 is composed of a motor 5, a belt 6, a rack 7, and pinion 8. The motor 5 drives pinion 8 through belt 6 and rotation of pinion 8 while meshed with rack 7 causes movement of the plate.
  • axerographic member or like surface having an electrostatically adhering residual powder layer is placed on bed plate 10 and brush 12, if retractable, is brought into light contact therewith.
  • Drive means 1 and 2 then is activated to rotate the brush and to cause relative movement between the axis of the brush and the surface of the plate.
  • one or both of the corona electrodes 16 will be energized to discharge ions either on the surface of the plate or ontothe fibres of the brush.
  • the vacuum is operated to withdraw air from the brush area, thus drawing separated powder particles away from the brush.
  • the powder particles are characterized by possess-' ing a positive electric charge following an electrostatic transfer step, and according to these conditions, it has been found desirable to neutralize this charge on the powder to a large degree.
  • This can conveniently be accomplished by operating the corona discharge electrode at a high voltage alternating potential, for example 60 cycle A. C. of about 6,000 to 10,000 peak volts. It has also been found that somewhat better results have been achieved whenthis voltage isbiased at a slightly negative potential, such that the'positive currentis-to2-5 microamps and the negative current is about 80 to 100 microamps for an electrode extending across about a 24 inch width and moving at a speed" of 4 inches per second.
  • a relatively high direct voltage such as a voltage of 6,000 to' 83000 volts negative.
  • FIG. 2 there is shown another embodiment of the invention wherein the mechanism is employed to clean a residualpowder layer from the surface of the cylinder.
  • a supporting cylinder 20 supports and moves an insulating surface 21 which may be in any desired form such as a layer on the cylinder surface or a separate member removably attached to at least one segment of the cylinder.
  • the cylinder is adapted to move the active surface through several stations or positions around its circumference such as, for example, a chargingstation 22, an exposure station 23, a developing station 24 and a transfer station 25 whereby an electrophotographic image is formed, developed and transferred to a transfer member 26.
  • the plate is then carried into the cleaning station generally designated 27- where residual powder is removed therefrom in accordance with the presentinvention.
  • The. cleaning, station. comprises. a rotating cylindrical brush 30v having fibre members 31 around the surfacethereof and. bearing-against the surface 21 to be cleaned.
  • a drive member such as for. example, motor 32 operates through belt 33 to rotate the cylinder at a desired speed
  • a hood 35 surrounds the brush and contains biased high voltage A. C. source to deliver 20 to 25 micro-amps positive corona current and 80 to 100 mircoamps negative current per 24 inch width.
  • the operation of the mechanism is similar to that of the device in Figure 1.
  • brush30 is rotated, vacuum source 36 is set into operation' and, optionally a pre-charging unit 37 is energized;
  • the plate 21 is thereby carried over the charging unit 37 where the charged powder particles are substantially neutralized, a'ndthe' plate is then carried to the position where these particles are removed by the fibres and then'withdrawn by the vacuum.
  • FIG. 3 and 4 A specific structure which may be employed with either the embodiment of Figure l or the embodiment of Figure 2 is shown in Figures 3 and 4.
  • This device comprises essentially a frame or carriage 40 which may be suitably mounted as part of an entire electrophotographic machine.
  • a plate support mcmber or bed plate 41 is positioned closely adjacent thereto and adapted to support a surface to be cleaned, such as for example a xerographic pi e having on one surface thereof a photoconductive insulating layer 44.
  • Mounted within theframe 4% is a hood assembly and support 46 which carries cylindrical member 47 carrying brush and rotatable 7 on an axie 48.
  • the axle 48 preferably extends through the sides of 46 and may if desired have a bearing mounting at the point where it meets each side wall.
  • the entire hood assembly is movable to bring the brush into and out of contact with layer 44 and for this reason the axle may extend through a slit" 49 in the supporting frame member to permit the necessary motion therebetween.
  • a pulley 50'or drive member' is mounted on the axle whereby it may be driven by a separately mounted power source such as an electric motor.
  • a vacuum line 52 leads to the inner hood assembly 46 whereby vacuum may be supplied to the fibres of the brush.
  • an ion source 53 may be mounted within the hood assembly by insulating mounts 54. This member 53 may be a corona discharge electrode spaced somewhat from the fibres in order to prevent mechanical damage to the electrode.
  • a corona discharge electrode 56 comprising a plurality of corona wires 57 mounted on insulating.
  • corona-discharge wires 57 or optionally member 53 are conductively connected to a high voltage source to supply a high voltage such as described in connection with- Figures 1 and 2.
  • the fibre or brush material has certain desirable characteristics which improve its operation in order to permit complete removal of residual ing surface which usually is selenium, and at thesame" time it should be sufficiently stitt' so that the brush itself does not become matted upon repeated use. Likewise it is necessary either that the brush material not deposit any oil or liquid on the surface being cleaned or else that any material thus deposited be non-injurious to the xerographic process. Other properties of the brush which lead to improved efiiciency of operation appear to be a proper position in the tribo-electric series, proper humidity characteristics and relatively low electrical conductivity. In addition it is desirable that the brush itself be relatively wear-resistant to obviate frequent replacement.
  • Among-the materials which have been satisfactorily used for the cleaning brush are various types of furs such as for example, beaver fur, gray fox fur, domestic rabbit fur, New Zealand sheared and'dyed rabbit fur and the In addition other fibre-like materials may be used including for example synthetic fibre materials such as nylon or the like.
  • the cleaning brush is to give the raw fur or other material a thorough washing, preferably with usual dry cleaning solvents, in order to remove greases and the like.
  • the brush material may, if desired, be treated with small amounts of oils such as hydrocarbons oils, waxes and the like including silicone oils and other natural oily materials. These materials such as oils and the like may be added to the fibre in an amount to control the conductivity of the brush, either to make the brush conductive or to make it non-conductive, as desired.
  • a fur may be treated with a small quantity of an electrically conductive oil to improve its conductivity and thus assist in neutralization of residual electric charge on the powder particles.
  • Xerographic apparatus to clean a residual Xerographic image comprising particulate material remaining after transfer of the developed image from the surface of the photoconductive insulating layer of a xerographic plate, said apparatus comprising support means for a xerographic plate, a cylindrical brush rotatable in contact with the image bearing surface of the plate, means for rapidly rotating the brush, means to cause relative motion between the axis of said cylindrical brush and the image bearing surface, a first corona discharge electrode positioned and disposed to apply electrostatic charge to the brush, a second corona discharge electrode positioned and disposed to apply electrostatic charge to the image bearing surface ahead of the brush in its direction of motion along the surface to be cleaned, and means for withdrawing from the vicinity of the brush an air stream 6 containing therein suspended particulate material removed from the image bearing surface.
  • Xerographic apparatus to clean a residual Xerographic image comprising particulate material remaining after transfer of the developed image from the surface of the photoconductive insulating layer of a xerographic plate, said apparatus comprising support means for a xerographic plate, a cylindrical brush rotatable in contact with the image bearing surface of the plate, means for rapidly rotating the brush, means to cause relative motion between the axis of said cylindrical brush and the image bearing surface, a corona discharge electrode positioned and disposed to apply electrostatic charge to the brush, and means for withdrawing from the vicinity of the brush an air stream containing therein suspended particulate material removed from the image bearing surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cleaning In Electrography (AREA)

Description

y 1958 L. E. WALKUP ETAL ELECTROSTATIC CLEANING DEVICE Filed Feb. 5, 1952 H-V- SUPPLY PIC-1.3
FIG.4
INVENTORS u= w\$ E. WALKUP HERBERT E.CAF2L.TON JR. BY g Sf ATTORNEY United States Patent ELECTROSTATIC CLEANING DEVICE Lewis E. Walknp and Herbert E. Carlton, Jr., Columbus, Ohio, assignors, by mesne assignments, to The Haloid Company, Rochester, N. Y., a corporation of New York Application February 5, 1952, Serial No. 269,958
2 Claims. (Cl. 151.5)
This invention relates in general to apparatus for the removal of electrostatically adhering powder particles from an insulating surface and, in particular to apparatus for cleaning a xerographic or electrophotographic plate.
In the art of xerography, it is usual to form an electrostatic latent image and to develop this image with an electrostatically attractable material which generally is a thermoplastic pigmented resin. This developed image is conveniently transferred to its ultimate base material by an electrostatic transfer step in which a substantial proportion of the image is caused to adhere electrostatically to a transfer material to which it may be later permanently secured, for example by fusing. In this transfer step, a large amount of the resin material is transferred to the transfer base but a significant proportion may remain electrostatically secured to the original image bearing member.
The problem which is solved according to the present invention is the removal of this residual material from the xerographic plate and the problem is complicated by the fact that both the xerographic plate surface and the developer powder are relatively speaking, electric insulators. In Carlson U. S. 2,357,809, there is shown a cleaning device for Xerographic surfaces on which a simple brush mechanism removes the powder from the plate. With this device, however, it was found that fusible powder particles were not removed sufficiently cleanly and rapidly for rapidly repeated automatic operation, but instead became smeared or redeposited on the plate. In fact, after operation through several cleaning cycles, Carlsons cleaning brush itself might contain enough of the developer powder to become a powder agitator providing available material for redeposition on the plate. In addition the cleaning brush of Carlson can be a friction charging unit for charging the plate, thus attracting back again some of the powder being removed. it has also been proposed in Copley Patent No. 2,484,782 to remove this residual image by flowing a granular material across the surface of the xerographic plate. However, such a cleaning process is better for a manual process than for a mechanized one, first, because this process requires addir tional equipment for dispensing and returning a separate material which must be kept isolated from the developer material and second, because the granular cleaning materials must be replaced after a few hundred cleaning cycles. Since mechanization opens up the possibility of rapid operation for thousands of xerographich copying cycles, a need exists for a method and apparatus operat ing to clean the xerographic plate, cleanly and repeatedly, without the need for equipment and materials not suited for high speed automatic operation.
it is, therefore, an object of this invention to provide apparatus for removal of residual powder material electrostatically adhering to an insulating surface.
More specifically, it is an object of this invention to provide apparatus for the removal of residual powder image from a xerographic plate.
It is a further object of the invention to provide ap- ICC paratus for the cleaning of xerographic plates wherein the electrostatic adhesion of the powder particles is electrically overcome and the particles are cleanly removed by means of a rapidly rotating brush.
It is a further object of the invention to provide a xerographic cleaning apparatus, comprising a charging means, a rapidly rotating brush, and air flow means to carry the powder particles from the brush and the plate to be cleaned.
Additional objects of the invention will in part be obvious and will in part become apparent from the specification and from the drawings in which:
Figure l is a diagrammatic view of a cleaning mechanism according to one embodiment of this invention;
Figure 2 is a diagrammatic representation of cleaning mechanism according to another embodiment of the invention;
Figure 3 is a side elevation in section of the cleaning apparatus according to a further embodiment of the invention;
Figure 4 is a front elevation in section of the mechanism shown in Figure 3.
The mechanism'shown in Figure 1 is a simple cleaning device according to one embodiment of the invention. This comprises a support member or bed plate 10 on which is positioned a surface to be cleaned, such as, for example, a xerographic plate 11. Above and bearing on the surface of this plate is a rotatable cylindrical member or brush having hair, fibres, or the like 13 on its outer surface, the brush optionally being retractable into and out of contact with the plate. A hood arrangement 14 at least partially surrounds the portion and preferably terminates a short distance above the plate. A vacuum or other air flow line 15 leads from the hood to an externally positioned vacuum source (not shown). According to the preferred mechanism, a source of ions such as a corona discharge electrode 16 is mounted adjacent to the portion and optionally positioned to direct a flow of ions either onto the surface of the plate being cleaned or onto the fibres of the brush, or optionally both. Drive means 1 and 2 are operable to cause the brush and the plate to undergo relative motion, for example, driving the plate in the direction shown by arrow 17, and to rotate the brush in the direction shown by arrows 18. Drive means 1 is composed of a motor 3 and a belt 4 which connects motor 3 to brush 12. Drive means 2 is composed of a motor 5, a belt 6, a rack 7, and pinion 8. The motor 5 drives pinion 8 through belt 6 and rotation of pinion 8 while meshed with rack 7 causes movement of the plate.
In use and operation according to Figure 1, axerographic member or like surface having an electrostatically adhering residual powder layer is placed on bed plate 10 and brush 12, if retractable, is brought into light contact therewith. Drive means 1 and 2 then is activated to rotate the brush and to cause relative movement between the axis of the brush and the surface of the plate. Preferably, one or both of the corona electrodes 16 will be energized to discharge ions either on the surface of the plate or ontothe fibres of the brush. Simultaneously, the vacuum is operated to withdraw air from the brush area, thus drawing separated powder particles away from the brush.
In the course of normal operation to clean Xerographic plates, the powder particles are characterized by possess-' ing a positive electric charge following an electrostatic transfer step, and according to these conditions, it has been found desirable to neutralize this charge on the powder to a large degree. This can conveniently be accomplished by operating the corona discharge electrode at a high voltage alternating potential, for example 60 cycle A. C. of about 6,000 to 10,000 peak volts. It has also been found that somewhat better results have been achieved whenthis voltage isbiased at a slightly negative potential, such that the'positive currentis-to2-5 microamps and the negative current is about 80 to 100 microamps for an electrode extending across about a 24 inch width and moving at a speed" of 4 inches per second. When the corona discharge electrode is directed tbwar'd the rotating brushrather than toward the plate being cleaned, similar results can be achieved'with' a relatively high direct voltage such as a voltage of 6,000 to' 83000 volts negative.
When working with the powder materials conventionally used in the xerographic process, it has been found that a relatively high brush speed is necessary in order to avoid smearing the powder'material' on. the. surface of the plate during its removal. The brush speed is variable within limits depending on the nature of the powder material. being removed, since factors such as thickness, smear, fusibility may alter the speed requirements. However; with the present commercial xerographic developer a peripheral brush speed of' at least about 20 feetper second is required and aconvenient speed is achieved with a brush rotation of 1700 R. PI M. using a brush of four or five inches in diameter. With this brush speed, a rate of travel of about 4 inches per second for the brush moving across the surface of the member being cleaned can easily be achieved with excellent cleaning of' the surface at this linear rate.
In Figure 2 there is shown another embodiment of the invention wherein the mechanism is employed to clean a residualpowder layer from the surface of the cylinder. According to this embodiment a supporting cylinder 20 supports and moves an insulating surface 21 which may be in any desired form such as a layer on the cylinder surface or a separate member removably attached to at least one segment of the cylinder. Where this mechanism is employed in conjunction with a xerographic process the cylinder is adapted to move the active surface through several stations or positions around its circumference such as, for example, a chargingstation 22, an exposure station 23, a developing station 24 and a transfer station 25 whereby an electrophotographic image is formed, developed and transferred to a transfer member 26. The plate is then carried into the cleaning station generally designated 27- where residual powder is removed therefrom in accordance with the presentinvention.
The. cleaning, station. comprises. a rotating cylindrical brush 30v having fibre members 31 around the surfacethereof and. bearing-against the surface 21 to be cleaned. A drive member such as for. example, motor 32 operates through belt 33 to rotate the cylinder at a desired speed,
which may, as in the case of the device in Figure 1, be-
a speed of at least about 20 to 25 linear feetper second.
Preferably a hood 35 surrounds the brush and contains biased high voltage A. C. source to deliver 20 to 25 micro-amps positive corona current and 80 to 100 mircoamps negative current per 24 inch width.
The operation of the mechanism is similar to that of the device in Figure 1. When it is desired to remove an electrostatic'ally adherent powder particle. from the insulatingsurface; brush30 is rotated, vacuum source 36 is set into operation' and, optionally a pre-charging unit 37 is energized; The plate 21 is thereby carried over the charging unit 37 where the charged powder particles are substantially neutralized, a'ndthe' plate is then carried to the position where these particles are removed by the fibres and then'withdrawn by the vacuum. The insulatlike.
4 ing surface if, for example, a xerographic plate, is then ready for re-usein the xerographic process.
A specific structure which may be employed with either the embodiment of Figure l or the embodiment of Figure 2 is shown in Figures 3 and 4. This device comprises essentially a frame or carriage 40 which may be suitably mounted as part of an entire electrophotographic machine. A plate support mcmber or bed plate 41 is positioned closely adjacent thereto and adapted to support a surface to be cleaned, such as for example a xerographic pi e having on one surface thereof a photoconductive insulating layer 44. Mounted within theframe 4% is a hood assembly and support 46 which carries cylindrical member 47 carrying brush and rotatable 7 on an axie 48. The axle 48 preferably extends through the sides of 46 and may if desired have a bearing mounting at the point where it meets each side wall. Preferably the entire hood assembly is movable to bring the brush into and out of contact with layer 44 and for this reason the axle may extend through a slit" 49 in the supporting frame member to permit the necessary motion therebetween. A pulley 50'or drive member'is mounted on the axle whereby it may be driven by a separately mounted power source such as an electric motor.
A vacuum line 52 leads to the inner hood assembly 46 whereby vacuum may be supplied to the fibres of the brush. Optionally an ion source 53 may be mounted Within the hood assembly by insulating mounts 54. This member 53 may be a corona discharge electrode spaced somewhat from the fibres in order to prevent mechanical damage to the electrode.
Preferably mounted near the leading edge of the hood assembly is a corona discharge electrode 56 comprising a plurality of corona wires 57 mounted on insulating.
supports '58 and closely adjacent to a conductive ground plate 59 which is electrically grounded. The corona-discharge wires 57 or optionally member 53 are conductively connected to a high voltage source to supply a high voltage such as described in connection with- Figures 1 and 2.
It has been found that the fibre or brush material has certain desirable characteristics which improve its operation in order to permit complete removal of residual ing surface which usually is selenium, and at thesame" time it should be sufficiently stitt' so that the brush itself does not become matted upon repeated use. Likewise it is necessary either that the brush material not deposit any oil or liquid on the surface being cleaned or else that any material thus deposited be non-injurious to the xerographic process. Other properties of the brush which lead to improved efiiciency of operation appear to be a proper position in the tribo-electric series, proper humidity characteristics and relatively low electrical conductivity. In addition it is desirable that the brush itself be relatively wear-resistant to obviate frequent replacement.
Among-the materials which have been satisfactorily used for the cleaning brush are various types of furs such as for example, beaver fur, gray fox fur, domestic rabbit fur, New Zealand sheared and'dyed rabbit fur and the In addition other fibre-like materials may be used including for example synthetic fibre materials such as nylon or the like.
The usual procedure in preparing a material for us: as the cleaning brush is to give the raw fur or other material a thorough washing, preferably with usual dry cleaning solvents, in order to remove greases and the like. On the other hand it frequently is desirable to have small quantities of liquids which are compatible with the xerographic process. Thus the brush material may, if desired, be treated with small amounts of oils such as hydrocarbons oils, waxes and the like including silicone oils and other natural oily materials. These materials such as oils and the like may be added to the fibre in an amount to control the conductivity of the brush, either to make the brush conductive or to make it non-conductive, as desired. Thus, for example, a fur may be treated with a small quantity of an electrically conductive oil to improve its conductivity and thus assist in neutralization of residual electric charge on the powder particles.
What is claimed is:
l. Xerographic apparatus to clean a residual Xerographic image comprising particulate material remaining after transfer of the developed image from the surface of the photoconductive insulating layer of a xerographic plate, said apparatus comprising support means for a xerographic plate, a cylindrical brush rotatable in contact with the image bearing surface of the plate, means for rapidly rotating the brush, means to cause relative motion between the axis of said cylindrical brush and the image bearing surface, a first corona discharge electrode positioned and disposed to apply electrostatic charge to the brush, a second corona discharge electrode positioned and disposed to apply electrostatic charge to the image bearing surface ahead of the brush in its direction of motion along the surface to be cleaned, and means for withdrawing from the vicinity of the brush an air stream 6 containing therein suspended particulate material removed from the image bearing surface.
2. Xerographic apparatus to clean a residual Xerographic image comprising particulate material remaining after transfer of the developed image from the surface of the photoconductive insulating layer of a xerographic plate, said apparatus comprising support means for a xerographic plate, a cylindrical brush rotatable in contact with the image bearing surface of the plate, means for rapidly rotating the brush, means to cause relative motion between the axis of said cylindrical brush and the image bearing surface, a corona discharge electrode positioned and disposed to apply electrostatic charge to the brush, and means for withdrawing from the vicinity of the brush an air stream containing therein suspended particulate material removed from the image bearing surface.
Referenees Cited in the file of this patent UNITED STATES PATENTS 1,089,453 Wood Mar. 10, 1914 1,160,892 Henderson Nov. 16, 1915 2,357,809 Carlson Sept. 12, 1944 2,358,334 Knowlton Sept. 19, 1944 2,576,047 Schafiert Nov. 20, 1951 FOREIGN PATENTS 650,025 Great Britain Feb. 14, 1951
US269958A 1952-02-05 1952-02-05 Electrostatic cleaning device Expired - Lifetime US2832977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US269958A US2832977A (en) 1952-02-05 1952-02-05 Electrostatic cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US269958A US2832977A (en) 1952-02-05 1952-02-05 Electrostatic cleaning device

Publications (1)

Publication Number Publication Date
US2832977A true US2832977A (en) 1958-05-06

Family

ID=23029315

Family Applications (1)

Application Number Title Priority Date Filing Date
US269958A Expired - Lifetime US2832977A (en) 1952-02-05 1952-02-05 Electrostatic cleaning device

Country Status (1)

Country Link
US (1) US2832977A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956301A (en) * 1957-07-12 1960-10-18 Oxy Dry Sprayer Corp Web cleaning apparatus
US3074086A (en) * 1959-02-04 1963-01-22 Tribune Company Apparatus for removing dust from paper webs
US3096532A (en) * 1960-05-05 1963-07-09 Stokes F J Corp Tablet duster
US3099856A (en) * 1961-12-28 1963-08-06 Xerox Corp Web cleaner apparatus
US3112692A (en) * 1960-05-05 1963-12-03 Metal Box Co Ltd Decorating plastic containers
US3146100A (en) * 1960-01-26 1964-08-25 Bohn Business Machines Inc Electronic photocopying apparatus and method
US3186838A (en) * 1960-12-27 1965-06-01 Xerox Corp Xerographic plate cleaning method utilizing the relative movement of a cleaning web
US3239863A (en) * 1963-08-19 1966-03-15 Thomas A Gardner Pressure gradient web cleaning apparatus
US3245153A (en) * 1963-04-08 1966-04-12 Kimberly Clark Co Papermaking machine
US3395042A (en) * 1966-03-18 1968-07-30 William C. Herbert Jr. Paper-cleaning apparatus
US3404418A (en) * 1967-02-27 1968-10-08 Xerox Corp Sheet transport apparatus
US3448687A (en) * 1965-05-06 1969-06-10 Monsanto Co Ink delivery method for electrostatic printing
US3477450A (en) * 1966-12-30 1969-11-11 Xerox Corp Brush reclaiming
DE1922210A1 (en) * 1968-05-01 1969-11-13 Eastman Kodak Co Device for cleaning the surface of a photoconductor
DE1926528A1 (en) * 1968-05-24 1969-12-04 Rank Xerox Ltd Device for removing particles from a surface
US3488896A (en) * 1966-04-05 1970-01-13 Katsuo Makino Process of pumicing a surface
US3510903A (en) * 1968-05-01 1970-05-12 Eastman Kodak Co Endless cleaning web
US3523319A (en) * 1968-05-01 1970-08-11 Eastman Kodak Co Endless cleaning web
US3634077A (en) * 1968-08-26 1972-01-11 Xerox Corp Method and apparatus for removing a residual image in an electrostatic copying system
US3635704A (en) * 1968-02-01 1972-01-18 Frank M Palermitl Imaging system
US3646866A (en) * 1967-10-16 1972-03-07 Addressograph Multigraph Photoelectrostatic copier having a single station for simultaneously applying toner particles and cleaning the photoconductive medium
US3655373A (en) * 1968-08-26 1972-04-11 Xerox Corp Cleaning method for electrostatic copying machines
US3659526A (en) * 1969-12-08 1972-05-02 Itt Magnetic and vacuum cleaning device for printer
US3660863A (en) * 1969-07-03 1972-05-09 Xerox Corp Cleaning apparatus
US3689117A (en) * 1970-07-17 1972-09-05 Minnesota Mining & Mfg Method for making a neutralizing device
US3692402A (en) * 1971-04-26 1972-09-19 Xerox Corp Materials for fibrous development and cleaning member
US3722018A (en) * 1971-11-08 1973-03-27 Xerox Corp Cleaning apparatus
JPS4828260U (en) * 1971-08-06 1973-04-06
US3965524A (en) * 1973-02-24 1976-06-29 Minolta Camera Kabushiki Kaisha Residual toner removing apparatus
US4198061A (en) * 1978-03-06 1980-04-15 Dunn Robert E Electrostatic-vacuum record cleaning apparatus
US4230406A (en) * 1979-03-26 1980-10-28 Xerox Corporation Cleaning system for an electrostatic copier
US4278342A (en) * 1979-09-04 1981-07-14 International Business Machines Corporation Xerographic charging
US4281431A (en) * 1978-07-05 1981-08-04 Saint-Gobain Industries Sheet cleaning
US4568174A (en) * 1984-02-27 1986-02-04 Xerox Corporation Photoreceptor descumming device
US5236512A (en) * 1991-08-14 1993-08-17 Thiokol Corporation Method and apparatus for cleaning surfaces with plasma
US5678134A (en) * 1995-03-31 1997-10-14 Olympus Optical Co., Ltd. Cleaning device for an image forming apparatus
US20030140942A1 (en) * 2000-03-08 2003-07-31 Raimo Rajala Method and apparatus for treating a moving surface
US6754466B1 (en) 2003-01-08 2004-06-22 Xerox Corporation Toner removal apparatus for copier or printer
US20050069358A1 (en) * 2003-09-26 2005-03-31 Xerox Corporation Rotating flicker bar for cleaning a rotating cleaner roll and for transmitting power to the cleaner roll
US20050069339A1 (en) * 2003-09-26 2005-03-31 Xerox Corporation Back of the belt cleaner in an imaging system
US20070218815A1 (en) * 2006-03-14 2007-09-20 Voith Patent Gmbh Machine for producing web material, in particular paper or paperboard, and method for treating a surface of a transport belt in a machine for producing web material
US20090060577A1 (en) * 2006-03-14 2009-03-05 Hitoshi Yagi Plate, and pattern forming device and pattern forming method using the same plate
USD981986S1 (en) * 2021-05-24 2023-03-28 Guangdong Xizhongxi Technology Co., Ltd. Combined headband and headphones

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1089453A (en) * 1913-06-27 1914-03-10 Autoplate Company Of America Web-treating device for printing-presses.
US1160892A (en) * 1913-11-01 1915-11-16 Miehle Printing Press & Mfg Anti-offset device for printing-presses.
US2357809A (en) * 1940-11-16 1944-09-12 Chester F Carlson Electrophotographic apparatus
US2358334A (en) * 1942-06-02 1944-09-19 United Shoe Machinery Corp Machine for treating sheet material
GB650025A (en) * 1945-10-11 1951-02-14 Quaker Oats Co Improvements in or relating to methods of cleaning coal
US2576047A (en) * 1948-10-21 1951-11-20 Battelle Development Corp Method and apparatus for printing electrically

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1089453A (en) * 1913-06-27 1914-03-10 Autoplate Company Of America Web-treating device for printing-presses.
US1160892A (en) * 1913-11-01 1915-11-16 Miehle Printing Press & Mfg Anti-offset device for printing-presses.
US2357809A (en) * 1940-11-16 1944-09-12 Chester F Carlson Electrophotographic apparatus
US2358334A (en) * 1942-06-02 1944-09-19 United Shoe Machinery Corp Machine for treating sheet material
GB650025A (en) * 1945-10-11 1951-02-14 Quaker Oats Co Improvements in or relating to methods of cleaning coal
US2576047A (en) * 1948-10-21 1951-11-20 Battelle Development Corp Method and apparatus for printing electrically

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956301A (en) * 1957-07-12 1960-10-18 Oxy Dry Sprayer Corp Web cleaning apparatus
US3074086A (en) * 1959-02-04 1963-01-22 Tribune Company Apparatus for removing dust from paper webs
US3146100A (en) * 1960-01-26 1964-08-25 Bohn Business Machines Inc Electronic photocopying apparatus and method
US3096532A (en) * 1960-05-05 1963-07-09 Stokes F J Corp Tablet duster
US3112692A (en) * 1960-05-05 1963-12-03 Metal Box Co Ltd Decorating plastic containers
US3186838A (en) * 1960-12-27 1965-06-01 Xerox Corp Xerographic plate cleaning method utilizing the relative movement of a cleaning web
US3099856A (en) * 1961-12-28 1963-08-06 Xerox Corp Web cleaner apparatus
US3245153A (en) * 1963-04-08 1966-04-12 Kimberly Clark Co Papermaking machine
US3239863A (en) * 1963-08-19 1966-03-15 Thomas A Gardner Pressure gradient web cleaning apparatus
US3448687A (en) * 1965-05-06 1969-06-10 Monsanto Co Ink delivery method for electrostatic printing
US3395042A (en) * 1966-03-18 1968-07-30 William C. Herbert Jr. Paper-cleaning apparatus
US3488896A (en) * 1966-04-05 1970-01-13 Katsuo Makino Process of pumicing a surface
US3477450A (en) * 1966-12-30 1969-11-11 Xerox Corp Brush reclaiming
US3404418A (en) * 1967-02-27 1968-10-08 Xerox Corp Sheet transport apparatus
US3646866A (en) * 1967-10-16 1972-03-07 Addressograph Multigraph Photoelectrostatic copier having a single station for simultaneously applying toner particles and cleaning the photoconductive medium
US3635704A (en) * 1968-02-01 1972-01-18 Frank M Palermitl Imaging system
DE1922210A1 (en) * 1968-05-01 1969-11-13 Eastman Kodak Co Device for cleaning the surface of a photoconductor
US3510903A (en) * 1968-05-01 1970-05-12 Eastman Kodak Co Endless cleaning web
US3523319A (en) * 1968-05-01 1970-08-11 Eastman Kodak Co Endless cleaning web
DE1926528A1 (en) * 1968-05-24 1969-12-04 Rank Xerox Ltd Device for removing particles from a surface
US3634077A (en) * 1968-08-26 1972-01-11 Xerox Corp Method and apparatus for removing a residual image in an electrostatic copying system
US3655373A (en) * 1968-08-26 1972-04-11 Xerox Corp Cleaning method for electrostatic copying machines
US3660863A (en) * 1969-07-03 1972-05-09 Xerox Corp Cleaning apparatus
US3659526A (en) * 1969-12-08 1972-05-02 Itt Magnetic and vacuum cleaning device for printer
US3689117A (en) * 1970-07-17 1972-09-05 Minnesota Mining & Mfg Method for making a neutralizing device
US3692402A (en) * 1971-04-26 1972-09-19 Xerox Corp Materials for fibrous development and cleaning member
JPS4828260U (en) * 1971-08-06 1973-04-06
JPS5126515Y2 (en) * 1971-08-06 1976-07-06
US3722018A (en) * 1971-11-08 1973-03-27 Xerox Corp Cleaning apparatus
US3965524A (en) * 1973-02-24 1976-06-29 Minolta Camera Kabushiki Kaisha Residual toner removing apparatus
US4198061A (en) * 1978-03-06 1980-04-15 Dunn Robert E Electrostatic-vacuum record cleaning apparatus
US4281431A (en) * 1978-07-05 1981-08-04 Saint-Gobain Industries Sheet cleaning
US4230406A (en) * 1979-03-26 1980-10-28 Xerox Corporation Cleaning system for an electrostatic copier
US4278342A (en) * 1979-09-04 1981-07-14 International Business Machines Corporation Xerographic charging
US4568174A (en) * 1984-02-27 1986-02-04 Xerox Corporation Photoreceptor descumming device
US5236512A (en) * 1991-08-14 1993-08-17 Thiokol Corporation Method and apparatus for cleaning surfaces with plasma
US5678134A (en) * 1995-03-31 1997-10-14 Olympus Optical Co., Ltd. Cleaning device for an image forming apparatus
US20030140942A1 (en) * 2000-03-08 2003-07-31 Raimo Rajala Method and apparatus for treating a moving surface
US6754466B1 (en) 2003-01-08 2004-06-22 Xerox Corporation Toner removal apparatus for copier or printer
US20040131404A1 (en) * 2003-01-08 2004-07-08 Xerox Corporation Toner removal apparatus for copier or printer
US20050069358A1 (en) * 2003-09-26 2005-03-31 Xerox Corporation Rotating flicker bar for cleaning a rotating cleaner roll and for transmitting power to the cleaner roll
US20050069339A1 (en) * 2003-09-26 2005-03-31 Xerox Corporation Back of the belt cleaner in an imaging system
US6961534B2 (en) 2003-09-26 2005-11-01 Xerox Corporation Rotating flicker bar for cleaning a rotating cleaner roll and for transmitting power to the cleaner roll
US7162177B2 (en) 2003-09-26 2007-01-09 Xerox Corporation Back of the belt cleaner in an imaging system
US20070218815A1 (en) * 2006-03-14 2007-09-20 Voith Patent Gmbh Machine for producing web material, in particular paper or paperboard, and method for treating a surface of a transport belt in a machine for producing web material
US20090060577A1 (en) * 2006-03-14 2009-03-05 Hitoshi Yagi Plate, and pattern forming device and pattern forming method using the same plate
USD981986S1 (en) * 2021-05-24 2023-03-28 Guangdong Xizhongxi Technology Co., Ltd. Combined headband and headphones

Similar Documents

Publication Publication Date Title
US2832977A (en) Electrostatic cleaning device
US2752271A (en) Electrostatic cleaning of xerographic plates
US3780391A (en) Apparatus for cleaning a residual image from a photosensitive member
US4469435A (en) Combination charging/cleaning arrangement for copier
US3552850A (en) Lubricated blade cleaning of imaging photoconductive members
US3634077A (en) Method and apparatus for removing a residual image in an electrostatic copying system
US4252433A (en) Method and apparatus for removing a residual image in an electrostatic copying system
US2576047A (en) Method and apparatus for printing electrically
US3884572A (en) Cleaning apparatus
US2751616A (en) Brush cleaning device
US4515467A (en) Magnet brush cleaning apparatus for electrophotographic copying machine
US3722018A (en) Cleaning apparatus
US4402103A (en) Cleaning unit for copying machine
US4097140A (en) Method and apparatus for cleaning toner in electrophotographic copying machines
US3615813A (en) Electrophotographic layer cleaning process and apparatus
CA1215103A (en) Toner removal apparatus
US5819138A (en) Electrophotographic apparatus having a device for removing paper dust from the photoreceptor
CA1205124A (en) Toner containment method and apparatus
US3917397A (en) Mechanism for removing residual toner from electrostatic copier drum
US4110034A (en) Drum cleaning apparatus for electrostatic copying machine
US4123154A (en) Combined corona generator and imaging surface cleaner
US4502780A (en) Photoconductor cleaning apparatus
EP0085519B1 (en) Method of preventing toner from scattering in an electrostatic copying machine
US4339195A (en) Electrophotocopier roller assembly
US3357403A (en) Powder cloud development apparatus