US2780290A - Surface controlled subsurface tubing pressure shut-off valve - Google Patents
Surface controlled subsurface tubing pressure shut-off valve Download PDFInfo
- Publication number
- US2780290A US2780290A US458230A US45823054A US2780290A US 2780290 A US2780290 A US 2780290A US 458230 A US458230 A US 458230A US 45823054 A US45823054 A US 45823054A US 2780290 A US2780290 A US 2780290A
- Authority
- US
- United States
- Prior art keywords
- valve
- tubing
- housing
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000006854 communication Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/10—Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/16—Control means therefor being outside the borehole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/05—Flapper valves
Definitions
- This invention relates to means for controlling flow from a producing well and, more particularly, to a surface-controlled shut-off valve.
- permanent well completion refers to the technique wherein the tubing and well head are installed and remain installed during the life of the well.
- a tubing-to-casing packer is set above all producing horizons of multiple sands in oil or gas wells and all completion and workover operations. are conducted through the tubing.
- the tubing string and other subsurface equipment are placed whilejthe drilling rig is on location, but the permanent completion technique permits the removal of the rig prior to such operations as cement squeeze, acidizing, perforating, testing, and the like.
- These operations can be performed later with wire line units and other subsurface equipment devised for this purpose without the use of the conventional workover rig. In such re-completions or wo'rkovers, it is necessary to lower several hundred and perhaps a thousand feet of small diameter pipe through the tubing.
- an object of'this invention to provide apparatus which may be applied to conventional tubing strings which will eliminate *the necessity of having to load the well with fluid and of having to snub the extension string of tubing into the well.
- Another object of the invention is to provide a shut-oft means for use in wells which require occasional or emergency closure of the tubing at some point below the surface of the ground.
- Another object of the invention is to provide a pressurecontrol valve which can be operated from the surface.
- An additional object of the invention is to provide a flowcontrol apparatus which is particularly adapted for use in conjunction with the workover of completed wells.
- the valve is inserted in the tubing string at a suflicient depth to permit the in- 2,780,296 Patented Feb. 5, 1957 f we sertion or removal of the small diameter tubing or extension under atmospheric pressure when my valve is closed thereby limiting the pressure of the formation to that portion of the tubing below the valve.
- the opening and closing of the valve is accomplished by the application of hydraulic pressure to a small piston of approximately 0.375 inch in diameter through a small parallel string of pipe or tubing attached to the rig tubing and extending through the well head.
- Normal operation of the valve comprises applying pressure to the hydraulic cylinder by way of the small parallel string and thereby placing the flapper or plug of the valve in the closed position after which tubing pressure is released above it.
- the differential pressure on the plug which tends to hold it in the closed position, can be equalized by applying pressure from the casing or from an outside source. This is not a disability to my system since even when a well is equipped with a packer, the casing and tubing pressures are equalized through a control port near the packer which is opened during the rework operations.
- I may automatically actuate the subsurface tubing valve in order to obtain an automatic shut-off of the tubing valve in the event of an emergency.
- Figure 1 is a schematic view of a section of well casing and tubing employing my subsurface shut-off valve
- FIG 2 is an' enlarged section of the shut-off valve shown in Figure 1 with the valve closed;
- Figure 3 is a section taken along the line 33 in Figure 2 but with the valve open;
- Figure 4 is a plan view taken along the line 4-4 in Figure 2;
- Figure 5 is a schematic illustration of a controller system for automatically actuating the subsurface tubing valve.
- a well bore 10 is provided with a casing 11 and tubing 12.
- a packer 13 isolates the annular space between the tubing 12 and the casing 11 in a conventional manner.
- My shut-off valve 14 is placed on the tubing 12 at the required depth.
- the usual well head equipment is provided which may, for example, include a casing head 15 and a plate or cap 16, which is bolted to a flange upon the casing head 15 in the usual manner, provided with a central boss 17 and a sealing gasket 18 such as an O-ring.
- Bolts 19 secure the flanges 20 and 21 of the casing head 15 and casing cap 16 in a fluid-tight manner.
- the upper end of the flow line or tubing 12 discharges above the cap 16 into a master valve housing 22, and the valve therein (not shown) may be used to control the flow through the upper end of the tubing 12.
- the casing head 15 may be equipped with lateral ports and valves (not shown) so that fluid may be introduced into or allowed to flow from the casing 11 above the packer 13.
- a hydraulic line 24 passes through the cap 16 into the valve cylinder 25.
- the cylinder 25 is threaded at its upper end into the pocket 26.
- a plunger 27 provided with a plurality of O-rings 28.
- the plunger 27 is integral with an actuating rod 29 which is threaded at its lower end to a pivoted linkage 30.
- the spring 33 has sufiicient strength to raise the plunger or piston 27 against the fluid head in the hydraulic line 24 extending to the surface.
- the linkage 30 is pivoted by pin 34 to flapper arm 35.
- the flapper arm in turn is pivotally mounted by shaft 36 extending through the walls of the pocket 26 and jour naled in bosses 37 and 38.
- the flapper 39 is provided with a bevelled seating surface 40 which is adapted to engage the valve seat 41 at the inlet to the cylinder chamber42 in thehousing 23.
- At either end of the housing 23 I provide tubing threads 511344 for so caused to rotate about the shaft 36 bringing the flapper valve 39 onto its seat 40.
- valved line 24 in Figures 1 to 3 communicates with valved line 24 in Figures 1 to 3 and pressure is applied to the hydraulic cylinder 45 by means of a gas from supply reservoir 45a.
- valves 46, 47 and 48 By manipulation of valves 46, 47 and 48, the pressuring of cylinder 45 can be controlled manually.
- I provide in gas line 49 a regulator valve 50 which is responsive to a number of pressure-actuated elements forming part of automatic controller 51.
- a Bourdon tube 52 which may be applied to a flow line, controls linkage 53, a temperature bulb 54 which is exposed to the ambient temperature actuates the bellows 55, and a wind-responsive vane 56 acts through linkage 57 to open valves 58-58a, 59, or 60 to bleed gas from the housing 61 so as to contract the valve-actuating bellows 62 and thereby control the regulator valve 50 through linkage 63 which in turn controls the flow of pressurizing gas to the cylinder 45a and ultimately the pressure of the hydraulic fluid in line 24 and on plunger 27 in cylinder 25.
- the controller gas is fed into the housing 61 via line 64 having pressure regulator 65 and, if desired, a pressure gauge 66.
- shut-off valve 14 is automatically re-set when the pressure on the cylinder 45 is released, the spring 33 serving to retract the plunger "27, pivot the flapper arm 35 and open the flapper valve 39, as shown in Figure 3.
- the controller 51 described above will throughvalve 5t) automatically actuate the subsurface tubing valve 14 in the event of a flow line break, fire, or if winds of-hurricane velocity become prevalent.
- Other arrangements are contemplated whereby othercontrols can be used to automatically close the tubing valve 14.
- the tubing shut-off valve 14 can be remotely controlled with microwave transmitters and receivers. Such would be useful in the event of violent wave action.
- a wave-responsive device can be added to the controller 51. In any event, I have provided a number of means responsive to ambient and climatic conditions for automatically controlling the subsurface valve 14 under emergency conditions.
- a control valve for use on subsurface tubing and controllable from the surface exterior of said tubing which comprises in combination an elongated housing, tubing threads at both ends of said housing for connecting said housing between spaced lengths of tubing, a flow channel extending substantially the entire length of said housing, the cross-sectional flow area of said channel being approximately equivalent to that of said tubing, a tubular pocket disposed laterally of said flow channel and fixed to the exterior of said housing, an enlargement in said housing below said flow channel providing a com munication port between said channel and said tubular pocket, a flapper closure means pivotally mounted within said enlargement and movable across the lower end of said flow channel, longitudinally extending rod means movablewithin said pocket, a linkage connecting the lower end of said rod means with said pivoted closure means, a plunger means at the upper end of saidrod means, a sleeve type cylinder threaded into the upper end of said pocket and accommodating said plu'nger means, spring means
- a control valve for use on subsurface tubing and controllable from the surface exterior of said tubing without the aid of mechanical link'ages which comprises 'in combination an'elongated housing, tubing threads at both ends of said housing for connecting said housing between adjacent lengths of subsurface tubing, a flow channel extending over a substantial length of said housing, the cross-sectional flow area of said channel being approximately equivalent to that of said tubing, a port at the lower end of said channel comprising a valve seat, a tubular pocket disposed laterally of said flow channel and substantially coextensive with the length of said housing, an enlargement in said housing below said flow channel providing a valvechamber below the lower end of said flow channel andcommunicating with said tubular pocket, a threaded closure for the upper end of said tubular pocket, pivoted flapper closure means mounted within said valve chamber and movable across the valve seat on the lower end of said flow channel, longitudinally extending r'od 'rneans movable within said pocket and terminating therewithin,
- a control valve for use on subsurface well tubing and controllable from the surface by means exterior of said tubing which comprises in combination an elongated housing, tubing threads at both ends of said housing for connecting said housing between spaced lengths of tubing, a single flow channel extending the entire length of said housing, the cross-sectional flow area of said channel being approximately equal to that of said tubing, a generally tubular pocket disposed laterally of said flow channel and fixed to the exterior of said housing, said pocket extending below the flow channel in said housing, an enlargement in said housing below said flow channel providing communication between the lower end of said channel and the lower end of said tubular pocket, a flapper closure means pivotally mounted within said enlargement and movable across the lower end of said flow channel to prevent all flow through said tubing, longitudinally extending rod means movable within said pocket, a linkage operable within said enlargement and connecting the lower end of said rod means with said pivoted closure means, a sleeve-type cylinder threaded into the upper end of said pocket
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Pipe Accessories (AREA)
Description
P. J. SURFACE CONTROLLED SUBSURFACE TUBING PRESSURE SHUT-OFF VALVE Filed Sept. 24, 1954 NATHO Feb. 5, 1957 2 Sheets-Sheet 1 INVENTOR. 4 Paul J. Vat/r0 Arroklvz Feb. 5, 1957 v P. J. NATHO 2,780,290
SURFACE CONTROLLED SUBSURF'ACE TUBING PRESSURE SHUT-OFF VALVE Flled Sept. 24, 1954 2 Sheets-Sheet 2 Pressur/ng 60s HYDRAUL 10 0x1. l/VDEI? To Valve Control Line Fig. 5 24a 7 'INVENTOR.
. Paul J. Nat/)0 BY 5M0. 9AM
ATTORNEY United States Patent SURFACE CONTROLLED SUBSURFACE TUBING PRESSURE SHUT-OFF VALVE Application September 24, 1954, Serial No. 458,230
4 Claims. (Cl. 166-72) This invention relates to means for controlling flow from a producing well and, more particularly, to a surface-controlled shut-off valve.
During the past several years permanent type well completions have been adopted by many in oil or gas well completions. The term permanent well completion refers to the technique wherein the tubing and well head are installed and remain installed during the life of the well. A tubing-to-casing packer is set above all producing horizons of multiple sands in oil or gas wells and all completion and workover operations. are conducted through the tubing. Hence, the tubing string and other subsurface equipment are placed whilejthe drilling rig is on location, but the permanent completion technique permits the removal of the rig prior to such operations as cement squeeze, acidizing, perforating, testing, and the like. These operations can be performed later with wire line units and other subsurface equipment devised for this purpose without the use of the conventional workover rig. In such re-completions or wo'rkovers, it is necessary to lower several hundred and perhaps a thousand feet of small diameter pipe through the tubing.
Since it is'desirable to conduct these operations without loading the well with mud or other fluid, the insertion of the small diameter pipe, called an extension, is accomplished under atmospheric pressure after an expendable plug has been inserted in the bottom of the tubing. In prior operations, this plug is later removed by building up the tubing pressure and expelling it. Thus, once removed it cannot be replaced and, therefore, it would be impossible to withdraw the extension from the tubing except by first loading the well with fluid. Further, it is necessary to dispose of the expendable plug which is in the well below the bottom of the tubing string. Hence, heretofore, it has not been possible to take the full advantage of the permanent well completion technique since the shut-off means has beenexpendable and not replaceable.
It is, therefore, an object of'this invention to provide apparatus which may be applied to conventional tubing strings which will eliminate *the necessity of having to load the well with fluid and of having to snub the extension string of tubing into the well. Another object of the invention is to provide a shut-oft means for use in wells which require occasional or emergency closure of the tubing at some point below the surface of the ground. Another object of the invention is to provide a pressurecontrol valve which can be operated from the surface.
An additional object of the invention is to provide a flowcontrol apparatus which is particularly adapted for use in conjunction with the workover of completed wells. These and other objects of my invention will become apparent as the description thereof proceeds.
In general, I attain the objects of my invention by equipping a conventional tubing string with a surfacecontrolled valve which can be used to remove the pressure within the string of tubing. The valve is inserted in the tubing string at a suflicient depth to permit the in- 2,780,296 Patented Feb. 5, 1957 f we sertion or removal of the small diameter tubing or extension under atmospheric pressure when my valve is closed thereby limiting the pressure of the formation to that portion of the tubing below the valve. The opening and closing of the valve is accomplished by the application of hydraulic pressure to a small piston of approximately 0.375 inch in diameter through a small parallel string of pipe or tubing attached to the rig tubing and extending through the well head.
Normal operation of the valve comprises applying pressure to the hydraulic cylinder by way of the small parallel string and thereby placing the flapper or plug of the valve in the closed position after which tubing pressure is released above it. When it is desired to open the valve, the differential pressure on the plug, which tends to hold it in the closed position, can be equalized by applying pressure from the casing or from an outside source. This is not a disability to my system since even when a well is equipped with a packer, the casing and tubing pressures are equalized through a control port near the packer which is opened during the rework operations.
By using several control mechanisms connected to a surface pilot valve for actuating the hydraulic mechanism, I may automatically actuate the subsurface tubing valve in order to obtain an automatic shut-off of the tubing valve in the event of an emergency.
Further details and advantages of my invention will be described by reference to the accompanying drawings wherein:
Figure 1 is a schematic view of a section of well casing and tubing employing my subsurface shut-off valve;
Figure 2 is an' enlarged section of the shut-off valve shown in Figure 1 with the valve closed;
Figure 3 is a section taken along the line 33 in Figure 2 but with the valve open;
Figure 4 is a plan view taken along the line 4-4 in Figure 2; and
Figure 5 is a schematic illustration of a controller system for automatically actuating the subsurface tubing valve.
Referring to Figure 1, a well bore 10 is provided with a casing 11 and tubing 12. A packer 13 isolates the annular space between the tubing 12 and the casing 11 in a conventional manner. My shut-off valve 14 is placed on the tubing 12 at the required depth. The usual well head equipment is provided which may, for example, include a casing head 15 and a plate or cap 16, which is bolted to a flange upon the casing head 15 in the usual manner, provided with a central boss 17 and a sealing gasket 18 such as an O-ring. Bolts 19 secure the flanges 20 and 21 of the casing head 15 and casing cap 16 in a fluid-tight manner. The upper end of the flow line or tubing 12 discharges above the cap 16 into a master valve housing 22, and the valve therein (not shown) may be used to control the flow through the upper end of the tubing 12. The casing head 15 may be equipped with lateral ports and valves (not shown) so that fluid may be introduced into or allowed to flow from the casing 11 above the packer 13.
A hydraulic line 24 passes through the cap 16 into the valve cylinder 25. The cylinder 25 is threaded at its upper end into the pocket 26. Within the cylinder 25 is a plunger 27 provided with a plurality of O-rings 28. The plunger 27 is integral with an actuating rod 29 which is threaded at its lower end to a pivoted linkage 30. Shoulder 31 within the pocket 26 and annular shoulder 32 on the rod 29 act as stops for a spring 33. The spring 33 has sufiicient strength to raise the plunger or piston 27 against the fluid head in the hydraulic line 24 extending to the surface.
The linkage 30 is pivoted by pin 34 to flapper arm 35.
The flapper arm in turn is pivotally mounted by shaft 36 extending through the walls of the pocket 26 and jour naled in bosses 37 and 38. The flapper 39 is provided with a bevelled seating surface 40 which is adapted to engage the valve seat 41 at the inlet to the cylinder chamber42 in thehousing 23. At either end of the housing 23 I provide tubing threads 511344 for so caused to rotate about the shaft 36 bringing the flapper valve 39 onto its seat 40. The hydraulic pressure on line 24 retains'the shut-off valve 14 in this closed position, but it will be understood that the pressure differential on opposite sides of the flapper valve 39 also tends to retain 'the shut-01f valve 14 in a closed position until pressure is applied in the tubing 12 above the valve 14 for equalizing the pressure across the flapper 39.
Referring to Figure 5, the hydraulic line 24a communicates with valved line 24 in Figures 1 to 3 and pressure is applied to the hydraulic cylinder 45 by means of a gas from supply reservoir 45a. By manipulation of valves 46, 47 and 48, the pressuring of cylinder 45 can be controlled manually.
If automatic operation is desired, I provide in gas line 49 a regulator valve 50 which is responsive to a number of pressure-actuated elements forming part of automatic controller 51. Within the automatic controller 51 I have illustrated a Bourdon tube 52, which may be applied to a flow line, controls linkage 53, a temperature bulb 54 which is exposed to the ambient temperature actuates the bellows 55, and a wind-responsive vane 56 acts through linkage 57 to open valves 58-58a, 59, or 60 to bleed gas from the housing 61 so as to contract the valve-actuating bellows 62 and thereby control the regulator valve 50 through linkage 63 which in turn controls the flow of pressurizing gas to the cylinder 45a and ultimately the pressure of the hydraulic fluid in line 24 and on plunger 27 in cylinder 25. The controller gas is fed into the housing 61 via line 64 having pressure regulator 65 and, if desired, a pressure gauge 66.
The various valves 58, 58a, 59 and 60 associated with the pressure, temperature and wind-responsive elements 52, 54 and'56 are opened against their associated springs so as to bleed out controller gas from the housing 61 thereby permitting thepressure bellows 62 'to retract and through linkage 63 open the regulator valve 50. This effects the automatic closing of the flapper 39 in shutoff valve'14 as described above. It will be understood that the shut-off valve 14 is automatically re-set when the pressure on the cylinder 45 is released, the spring 33 serving to retract the plunger "27, pivot the flapper arm 35 and open the flapper valve 39, as shown in Figure 3.
The controller 51 described above will throughvalve 5t) automatically actuate the subsurface tubing valve 14 in the event of a flow line break, fire, or if winds of-hurricane velocity become prevalent. Other arrangements are contemplated whereby othercontrols can be used to automatically close the tubing valve 14. For. instance, where an elf-shore well is located'on a platform in'the tide lands, the tubing shut-off valve 14 can be remotely controlled with microwave transmitters and receivers. Such would be useful in the event of violent wave action. It is also contemplated that a wave-responsive device can be added to the controller 51. In any event, I have provided a number of means responsive to ambient and climatic conditions for automatically controlling the subsurface valve 14 under emergency conditions.
By the use of the tubing valve which has been described, it is possible to handle the tubing in the usual manner in seating and flowing the well, but if occasion arises where 4 it is desired to shut off the flow for any reason that can be done conveniently andsafely and as many times as necessary during the life of 'the well. I
Although I have described my invention with particular reference to a preferred embodiment of the invention, it should be understood that this is by way of illustration only. Other modifications and techniques will become apparent to those skilled in the art and can be made without departing from the spirit and scope of the invention.
What I claim is: v H I 1. A control valve for use on subsurface tubing and controllable from the surface exterior of said tubing which comprises in combination an elongated housing, tubing threads at both ends of said housing for connecting said housing between spaced lengths of tubing, a flow channel extending substantially the entire length of said housing, the cross-sectional flow area of said channel being approximately equivalent to that of said tubing, a tubular pocket disposed laterally of said flow channel and fixed to the exterior of said housing, an enlargement in said housing below said flow channel providing a com munication port between said channel and said tubular pocket, a flapper closure means pivotally mounted within said enlargement and movable across the lower end of said flow channel, longitudinally extending rod means movablewithin said pocket, a linkage connecting the lower end of said rod means with said pivoted closure means, a plunger means at the upper end of saidrod means, a sleeve type cylinder threaded into the upper end of said pocket and accommodating said plu'nger means, spring means below said cylinder and within said pocket, an annular shoulder intermediate the ends of said pocket providing a stop 'for said spring means, said spring means normally raising said plunger means in said sleeve and urging said closure to-an open position through said linkage, remotely controlled hydraulic controller means in fluid connection with said cylinder in said pocket, whereby application of hydraulic pressure to' said plunger means compresses said spring and seats said closure in a shutoff position at the lower end of said flow channel, the said remote controller being automatically actuated in response to changes in temperature, pressure and wind velocity 'at the well head.
2. A control valve for use on subsurface tubing and controllable from the surface exterior of said tubing without the aid of mechanical link'ageswhich comprises 'in combination an'elongated housing, tubing threads at both ends of said housing for connecting said housing between adjacent lengths of subsurface tubing, a flow channel extending over a substantial length of said housing, the cross-sectional flow area of said channel being approximately equivalent to that of said tubing, a port at the lower end of said channel comprising a valve seat, a tubular pocket disposed laterally of said flow channel and substantially coextensive with the length of said housing, an enlargement in said housing below said flow channel providing a valvechamber below the lower end of said flow channel andcommunicating with said tubular pocket, a threaded closure for the upper end of said tubular pocket, pivoted flapper closure means mounted within said valve chamber and movable across the valve seat on the lower end of said flow channel, longitudinally extending r'od 'rneans movable within said pocket and terminating therewithin, a linkage connecting the lower end of said rod means with said pivoted flapper closure means, a plunger'means comprising the upper end of said rod means, a sleeve type cylinder within the upper end ofsaid pocket within which said plunger'mea'ns operates, said cylinder comprising an integral extension of said closure at the upper end of said housing, spring means below said cylinder within said pocket, an annular shoulder on the rod means subjacent to said plunger niean's forsaid'spring means, said spring means normally raising said plunger means in said sleeve and urging said flapper closure means to an open position through said linkage, hydraulic line means connected to said cylinder and passing through said closure at the upper end of said pocket, remote control means for actuating said plunger through said hydraulic line means, and means responsive to environmental conditions at the surface for automatically actuating the said remote control means in response to changes in environmental conditions, whereby hydraulic pressure is applied to said plunger means to compress said spring and seat said valve closure in a. shut-oh position at the lower end of said flow channel.
3. A control valve for use on subsurface well tubing and controllable from the surface by means exterior of said tubing which comprises in combination an elongated housing, tubing threads at both ends of said housing for connecting said housing between spaced lengths of tubing, a single flow channel extending the entire length of said housing, the cross-sectional flow area of said channel being approximately equal to that of said tubing, a generally tubular pocket disposed laterally of said flow channel and fixed to the exterior of said housing, said pocket extending below the flow channel in said housing, an enlargement in said housing below said flow channel providing communication between the lower end of said channel and the lower end of said tubular pocket, a flapper closure means pivotally mounted within said enlargement and movable across the lower end of said flow channel to prevent all flow through said tubing, longitudinally extending rod means movable within said pocket, a linkage operable within said enlargement and connecting the lower end of said rod means with said pivoted closure means, a sleeve-type cylinder threaded into the upper end of said pocket, a plunger means at the upper end of said rod means operating within said cylinder, spring means below said cylinder and within said pocket, an annular shoulder intermediate the ends of said pocket providing a stop for said spring means, said spring means normally raiseing said plunger means in said sleeve and urging said flapper closure to an open position through said linkage, hydraulic operator means at the surface, a conduit between the operator means and said cylinder within said pocket, whereby hydraulic pressure may be applied to said plunger means through said conduit to compress said spring and remotely seat said flapper closure in a shut-off position at the lower end of said flow channel, and means for automatically actuating the hydraulic operator means.
4. The apparatus of claim 3 wherein said hydraulic operator means is responsive to environmental changes at the well head.
References Cited in the file of this patent UNITED STATES PATENTS 1,255,147 Fletcher Feb. 5, 1918 1,932,118 Oechsle Oct. 24, 1933 2,104,660 Long et al. Jan. 4, 1938 2,351,322 Crake June 13, 1944
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US458230A US2780290A (en) | 1954-09-24 | 1954-09-24 | Surface controlled subsurface tubing pressure shut-off valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US458230A US2780290A (en) | 1954-09-24 | 1954-09-24 | Surface controlled subsurface tubing pressure shut-off valve |
Publications (1)
Publication Number | Publication Date |
---|---|
US2780290A true US2780290A (en) | 1957-02-05 |
Family
ID=23819904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US458230A Expired - Lifetime US2780290A (en) | 1954-09-24 | 1954-09-24 | Surface controlled subsurface tubing pressure shut-off valve |
Country Status (1)
Country | Link |
---|---|
US (1) | US2780290A (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2963089A (en) * | 1955-03-07 | 1960-12-06 | Otis Eng Co | Flow control apparatus |
US2998070A (en) * | 1958-11-17 | 1961-08-29 | Otis Eng Co | Tamper proof manifold |
US3007524A (en) * | 1961-11-07 | 1961-11-07 | Jersey Prod Res Co | Subsurface valve |
US3011554A (en) * | 1956-01-23 | 1961-12-05 | Schlumberger Well Surv Corp | Apparatus for investigating earth formations |
US3016955A (en) * | 1957-07-01 | 1962-01-16 | Page Oil Tools Inc | Fluid pressure actuated well shut-off valve |
US3035642A (en) * | 1957-08-09 | 1962-05-22 | Page Oil Tools Inc | Apparatus for controlling the flow of production fluid from a well |
US3035641A (en) * | 1957-11-15 | 1962-05-22 | Page Oil Tools Inc | Down tubing self-closing flow control valve |
US3040811A (en) * | 1959-04-23 | 1962-06-26 | Jersey Prod Res Co | Subsurface safety valve |
US3065793A (en) * | 1957-07-01 | 1962-11-27 | Page Oil Tools Inc | Apparatus for shutting off wells |
US3157233A (en) * | 1956-06-20 | 1964-11-17 | Otis Eng Co | Apparatus for controlling flow within a well |
US3216501A (en) * | 1961-05-26 | 1965-11-09 | Jr John S Page | Retrievable safety valve |
US3252476A (en) * | 1963-04-12 | 1966-05-24 | Jr John S Page | Fluid pressure responsive valve and control means therefor |
US3777813A (en) * | 1972-04-24 | 1973-12-11 | Amoco Prod Co | Check valve for hydraulic control system |
US3958633A (en) * | 1975-05-29 | 1976-05-25 | Standard Oil Company (Indiana) | Flapper-type subsurface safety valve |
US4216830A (en) * | 1978-11-02 | 1980-08-12 | Otis Engineering Corporation | Flapper valve |
US4287954A (en) * | 1979-08-20 | 1981-09-08 | Hydril Company | Subsurface safety valve |
US4325431A (en) * | 1980-07-10 | 1982-04-20 | Ava International Corporation | Flow controlling apparatus |
US4503913A (en) * | 1983-07-18 | 1985-03-12 | Baker Oil Tools, Inc. | Subsurface well safety valve |
US4945993A (en) * | 1988-05-06 | 1990-08-07 | Otis Engineering Corporation | Surface controlled subsurface safety valve |
US5159981A (en) * | 1991-06-20 | 1992-11-03 | Otis Engineering Corporation | Flapper valve |
US5199494A (en) * | 1991-07-05 | 1993-04-06 | Otis Engineering Corporation | Safety valve, sealing ring and seal assembly |
US5259457A (en) * | 1991-07-05 | 1993-11-09 | Halliburton Co. | Safety valve, sealing ring and seal assembly |
US5293943A (en) * | 1991-07-05 | 1994-03-15 | Halliburton Company | Safety valve, sealing ring and seal assembly |
US5318127A (en) * | 1992-08-03 | 1994-06-07 | Halliburton Company | Surface controlled annulus safety system for well bores |
US6053251A (en) * | 1997-05-15 | 2000-04-25 | Halliburton Energy Services, Inc. | Reduced travel operating mechanism for downhole tools |
WO2003048517A1 (en) * | 2001-11-30 | 2003-06-12 | Baker Hughes Incorporated | Closure mechanism with integrated actuator for subsurface valves |
US20050039922A1 (en) * | 2003-08-18 | 2005-02-24 | Vick James D. | Safety valve having extension spring closure mechanism |
WO2006060377A1 (en) * | 2004-12-03 | 2006-06-08 | Halliburton Energy Services, Inc. | Safety valve with extension springs |
US20070246218A1 (en) * | 2006-04-21 | 2007-10-25 | Vick James D Jr | Safety valve having mono spring closure mechanism |
US20080149344A1 (en) * | 2006-12-20 | 2008-06-26 | Bane Darren E | Method of using charged chamber pressure transmitter for subsurface safety valves |
WO2012102620A2 (en) | 2011-01-25 | 2012-08-02 | Ts Innovation As | Check valve |
US20130068476A1 (en) * | 2010-03-11 | 2013-03-21 | Jeffrey Edwards | Well barrier |
WO2016183480A1 (en) * | 2015-05-14 | 2016-11-17 | Saudi Arabian Oil Company | Downhole cross flow prevention during well and power shutdown |
US20170130563A1 (en) * | 2013-10-24 | 2017-05-11 | Safety Design USA Inc. | Overtensioning fastening tool |
US11215027B2 (en) * | 2018-07-30 | 2022-01-04 | Halliburton Energy Services, Inc. | Safety valve with a sleeved piston receptacle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1255147A (en) * | 1917-10-20 | 1918-02-05 | Roy L Fletcher | Casing-head. |
US1932118A (en) * | 1930-04-11 | 1933-10-24 | Worthington Pump & Mach Corp | Speed regulating device |
US2104660A (en) * | 1937-05-10 | 1938-01-04 | Alfred B Long | Oil and gas well protective |
US2351322A (en) * | 1942-01-13 | 1944-06-13 | Shell Dev | Bottom hole regulator |
-
1954
- 1954-09-24 US US458230A patent/US2780290A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1255147A (en) * | 1917-10-20 | 1918-02-05 | Roy L Fletcher | Casing-head. |
US1932118A (en) * | 1930-04-11 | 1933-10-24 | Worthington Pump & Mach Corp | Speed regulating device |
US2104660A (en) * | 1937-05-10 | 1938-01-04 | Alfred B Long | Oil and gas well protective |
US2351322A (en) * | 1942-01-13 | 1944-06-13 | Shell Dev | Bottom hole regulator |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2963089A (en) * | 1955-03-07 | 1960-12-06 | Otis Eng Co | Flow control apparatus |
US3011554A (en) * | 1956-01-23 | 1961-12-05 | Schlumberger Well Surv Corp | Apparatus for investigating earth formations |
US3157233A (en) * | 1956-06-20 | 1964-11-17 | Otis Eng Co | Apparatus for controlling flow within a well |
US3016955A (en) * | 1957-07-01 | 1962-01-16 | Page Oil Tools Inc | Fluid pressure actuated well shut-off valve |
US3065793A (en) * | 1957-07-01 | 1962-11-27 | Page Oil Tools Inc | Apparatus for shutting off wells |
US3035642A (en) * | 1957-08-09 | 1962-05-22 | Page Oil Tools Inc | Apparatus for controlling the flow of production fluid from a well |
US3035641A (en) * | 1957-11-15 | 1962-05-22 | Page Oil Tools Inc | Down tubing self-closing flow control valve |
US2998070A (en) * | 1958-11-17 | 1961-08-29 | Otis Eng Co | Tamper proof manifold |
US3040811A (en) * | 1959-04-23 | 1962-06-26 | Jersey Prod Res Co | Subsurface safety valve |
US3216501A (en) * | 1961-05-26 | 1965-11-09 | Jr John S Page | Retrievable safety valve |
US3007524A (en) * | 1961-11-07 | 1961-11-07 | Jersey Prod Res Co | Subsurface valve |
US3252476A (en) * | 1963-04-12 | 1966-05-24 | Jr John S Page | Fluid pressure responsive valve and control means therefor |
US3777813A (en) * | 1972-04-24 | 1973-12-11 | Amoco Prod Co | Check valve for hydraulic control system |
US3958633A (en) * | 1975-05-29 | 1976-05-25 | Standard Oil Company (Indiana) | Flapper-type subsurface safety valve |
US4216830A (en) * | 1978-11-02 | 1980-08-12 | Otis Engineering Corporation | Flapper valve |
US4287954A (en) * | 1979-08-20 | 1981-09-08 | Hydril Company | Subsurface safety valve |
US4325431A (en) * | 1980-07-10 | 1982-04-20 | Ava International Corporation | Flow controlling apparatus |
US4503913A (en) * | 1983-07-18 | 1985-03-12 | Baker Oil Tools, Inc. | Subsurface well safety valve |
US4945993A (en) * | 1988-05-06 | 1990-08-07 | Otis Engineering Corporation | Surface controlled subsurface safety valve |
US5159981A (en) * | 1991-06-20 | 1992-11-03 | Otis Engineering Corporation | Flapper valve |
US5199494A (en) * | 1991-07-05 | 1993-04-06 | Otis Engineering Corporation | Safety valve, sealing ring and seal assembly |
US5259457A (en) * | 1991-07-05 | 1993-11-09 | Halliburton Co. | Safety valve, sealing ring and seal assembly |
US5293943A (en) * | 1991-07-05 | 1994-03-15 | Halliburton Company | Safety valve, sealing ring and seal assembly |
US5318127A (en) * | 1992-08-03 | 1994-06-07 | Halliburton Company | Surface controlled annulus safety system for well bores |
US6053251A (en) * | 1997-05-15 | 2000-04-25 | Halliburton Energy Services, Inc. | Reduced travel operating mechanism for downhole tools |
GB2400125A (en) * | 2001-11-30 | 2004-10-06 | Baker Hughes Inc | Closure mechanism with integrated actuator for subsurface valves |
WO2003048517A1 (en) * | 2001-11-30 | 2003-06-12 | Baker Hughes Incorporated | Closure mechanism with integrated actuator for subsurface valves |
US6957703B2 (en) | 2001-11-30 | 2005-10-25 | Baker Hughes Incorporated | Closure mechanism with integrated actuator for subsurface valves |
GB2400125B (en) * | 2001-11-30 | 2006-02-22 | Baker Hughes Inc | Closure mechanism with integrated actuator for subsurface valves |
US20050039922A1 (en) * | 2003-08-18 | 2005-02-24 | Vick James D. | Safety valve having extension spring closure mechanism |
FR2864198A1 (en) * | 2003-08-18 | 2005-06-24 | Halliburton Energy Serv Inc | SAFETY VALVE HAVING A CLOSURE MECHANISM USING AN EXTENSION WORKING SPRING |
US7021386B2 (en) * | 2003-08-18 | 2006-04-04 | Halliburton Energy Services, Inc. | Safety valve having extension spring closure mechanism |
GB2437190B (en) * | 2004-12-03 | 2009-12-23 | Halliburton Energy Serv Inc | Safety valve with extension springs |
US7597149B2 (en) | 2004-12-03 | 2009-10-06 | Halliburton Energy Services, Inc. | Safety valve with extension springs |
GB2437190A (en) * | 2004-12-03 | 2007-10-17 | Halliburton Energy Serv Inc | Safety valve with extension springs |
US20060118307A1 (en) * | 2004-12-03 | 2006-06-08 | Williamson Jimmie R Jr | Safety valve with extension springs |
WO2006060377A1 (en) * | 2004-12-03 | 2006-06-08 | Halliburton Energy Services, Inc. | Safety valve with extension springs |
US8342247B2 (en) | 2006-04-21 | 2013-01-01 | Halliburton Energy Services, Inc. | Safety valve having mono spring closure mechanism |
US20070246218A1 (en) * | 2006-04-21 | 2007-10-25 | Vick James D Jr | Safety valve having mono spring closure mechanism |
US7665518B2 (en) * | 2006-12-20 | 2010-02-23 | Baker Hughes Incorporated | Method of using a charged chamber pressure transmitter for subsurface safety valves |
US20100108312A1 (en) * | 2006-12-20 | 2010-05-06 | Baker Hughes Incorporated | Method of Using a Charged Chamber Pressure Transmitter for Subterranean Tools |
US7938179B2 (en) | 2006-12-20 | 2011-05-10 | Baker Hughes Incorporated | Method of using a charged chamber pressure transmitter for subterranean tools |
US20080149344A1 (en) * | 2006-12-20 | 2008-06-26 | Bane Darren E | Method of using charged chamber pressure transmitter for subsurface safety valves |
US20130068476A1 (en) * | 2010-03-11 | 2013-03-21 | Jeffrey Edwards | Well barrier |
US9297233B2 (en) * | 2010-03-11 | 2016-03-29 | Enovate Systems Limited | Well barrier |
US10024139B2 (en) | 2010-03-11 | 2018-07-17 | Enovate Systems Limited | Well barrier |
WO2012102620A2 (en) | 2011-01-25 | 2012-08-02 | Ts Innovation As | Check valve |
NO333665B1 (en) * | 2011-01-25 | 2013-08-05 | Ts Innovation As | Check valve |
US8689893B2 (en) | 2011-01-25 | 2014-04-08 | Ts Innovation As | Check valve |
US20170130563A1 (en) * | 2013-10-24 | 2017-05-11 | Safety Design USA Inc. | Overtensioning fastening tool |
US10472932B2 (en) * | 2013-10-24 | 2019-11-12 | Safety Design Usa, Inc. | Overtensioning fastening tool |
WO2016183480A1 (en) * | 2015-05-14 | 2016-11-17 | Saudi Arabian Oil Company | Downhole cross flow prevention during well and power shutdown |
US11215027B2 (en) * | 2018-07-30 | 2022-01-04 | Halliburton Energy Services, Inc. | Safety valve with a sleeved piston receptacle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2780290A (en) | Surface controlled subsurface tubing pressure shut-off valve | |
US6250383B1 (en) | Lubricator for underbalanced drilling | |
AU623426B2 (en) | Valve control system | |
US5649597A (en) | Differential pressure test/bypass valve and method for using the same | |
NO338694B1 (en) | Downhole safety valve assembly including sensing means | |
US2785755A (en) | Storm choke for oil wells | |
US2169559A (en) | Formation tester | |
US5297629A (en) | Drill stem testing with tubing conveyed perforation | |
US3814181A (en) | Ambient pressure responsive safety valve | |
GB1598863A (en) | Well tubing tester valve apparatus | |
US20090090501A1 (en) | Remotely controllable wellbore valve system | |
US4452304A (en) | Remotely operated packer and anchor apparatus for changing a geothermal wellhead valve | |
NZ203386A (en) | Wellbore testing-string valve controlled by wellbore annulus pressure change:detent on valve actuator | |
US4454913A (en) | Safety valve system with retrievable equalizing feature | |
US3441084A (en) | Well cross-over apparatus and tools and method of operating a well installation | |
US4082147A (en) | Method and apparatus for a surface control system for: subsurface safety valves | |
US5259456A (en) | Drill stem test tools | |
US3826309A (en) | Well safety valve | |
AU625460B2 (en) | Lost-motion valve actuator mechanism | |
US4842074A (en) | Gas storage well safety system and method | |
US4281715A (en) | Bypass valve | |
US3630640A (en) | Method and apparatus for gas-lift operations in oil wells | |
US3556212A (en) | Downhole disaster valve with dump unit | |
US3065793A (en) | Apparatus for shutting off wells | |
GB2140485A (en) | Apparatus for completing a well |