US2767350A - Gaseous counting tube - Google Patents

Gaseous counting tube Download PDF

Info

Publication number
US2767350A
US2767350A US433754A US43375454A US2767350A US 2767350 A US2767350 A US 2767350A US 433754 A US433754 A US 433754A US 43375454 A US43375454 A US 43375454A US 2767350 A US2767350 A US 2767350A
Authority
US
United States
Prior art keywords
count
electrodes
electrode
counting
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US433754A
Inventor
Albert V Bazarian
John F Grimm
Gusman Leo
Marvin N Silver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gera Corp
Original Assignee
Gera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gera Corp filed Critical Gera Corp
Priority to US433754A priority Critical patent/US2767350A/en
Application granted granted Critical
Publication of US2767350A publication Critical patent/US2767350A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K29/00Pulse counters comprising multi-stable elements, e.g. for ternary scale, for decimal scale; Analogous frequency dividers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2893/00Discharge tubes and lamps
    • H01J2893/007Sequential discharge tubes

Definitions

  • FIG. 5 GASEOUS COUNT-ING TUBE Filed 'June 1, 1954 FIG. 5
  • This invention relates to a gaseous counting tube which is operated by electrical pulses. It has particular reference to a gaseous counting tube which employs cylindrical cathodes and a gaseous discharge which is confined to the inside surface of the cylindrical components.
  • gaseous counting tubes have been developed, some of which use at least two transfer electrodes between each counting electrode and other types which rely on a specific shape of an electrode structure to transfer an electric discharge in the right direction when a pulse is received.
  • the counting tubes which employ more than one transfer electrode require considerable external circuitry for their successful operation and the tubes which employ shaped electrodes require precise counting pulses which must be adjusted to narrow limits of voltage and time duration in order to count successfully.
  • the present tube employs a single transfer electrode between each counting electrode and requires no additional vacuum tubes nor amplifying circuits when operated as a decade counter system.
  • a single negative pulse applied to the input terminals produces a count, and an output pulse is available to operate as a carry pulse for application to the counting tube in the next higher denominational order.
  • One of the objects of this invention is to provide an improved gaseous counting tube which avoids one or more of the disadvantages and limitations of prior art arrangements.
  • Another object of the invention is to improve the reliability of counting tubes so that a count will be registered when a counting pulse is received even though the supply voltages may vary over a wide range of values.
  • Another object of the invention is to increase the current carrying capacity of the counting electrodes so that external current indicating devices may be operated directly from the tube without recourse to intermediate circuits.
  • Another object of the invention is to provide circuit means for connecting two counting tubes in a consecutive counting arrangement.
  • Another object of the invention is to provide an operating circuit for the counting tube which may be adjusted to suit the requirements of variable characteristics.
  • the invention comprises a single wire anode symmetrically positioned within an envelope which is filled with ionizable gas at a reduced pressure.
  • a plurality of counting electrodes are positioned in closely fitting cavities in an insulating block.
  • a plurality of transfer electrodes are positioned between each counting electrode for transferring the discharge from one count electrode to another when a counting pulse is received.
  • Each counting elec trode is connected to lead-in conductors for application of voltages and counting pulses external of the envelope.
  • Fig. l is a sectional view of a development of the electrodes encased in the insulating block.
  • Fig. 2 is a cross sectional drawing of a counting tube having five count electrodes and shows a top View of the electrode system.
  • Fig. 3 is a side view of the counting tube, with some parts in section, and shows the insulator block and the anode.
  • Fig. 4 is a cross sectional view of a portion of the insulator block and is taken along line 44 of Fig. 2.
  • Fig. 5 is a schematic diagram of connections showing the external circuitry employed with the tube for counting and resetting.
  • Fig. 6 is a schematic diagram of connections showing one form of coupling circuit which may be used to transfer a carry pulse from one tube to another.
  • Fig. 7 is a schematic diagram of connections showing an alternate form of coupling circuit.
  • Fig. 8 is a schematic diagram of connections showing the external circuitry employed when two or more tubes are arranged for consecutive counting.
  • Fig. 9 is a graph showing the pulse shapes and pulse timing during a counting operation.
  • the counting tube comprises an envelope 10 having a plurality of contact pins 11 secured in the base.
  • an insulating block 12 having a generally cylindrical form, is employed to support the cathodes in cavities within the block and also supports an anode 13 which is adjacent to the top surface of the block and is spaced at equal distances to all the cathodes.
  • the tube shown in Fig. 2 contains five counting cathodes 14 and five transfer cathodes 15, there being no difierence between the count cathodes and the transfer cathodes except in their external connections.
  • Each cathode is supported within a circular cavity in the block with its top edge flush with the top surface of the insulating block.
  • the cathodes are positioned within an annular groove 16 but this construction is not necessary for counting.
  • On the inside of each cathode a wire probe 17 is conductively secured to the cathode surface, one end of which extends through the bottom of the block 12 where it is secured to eyelet 18 set in a mica insulating sheet 20.
  • the lower eXtrem- is conductively secured to the cathode surface, one end of which extends through the bottom of the block 12 where it is secured to eyelet 18 set in a mica insulating sheet 20.
  • the ionized gas molecules extend between the inside surface of the cylinder and the anode and the ionized region extends suificiently to one side to include the end of the adjoining probe 17.
  • Fig. 5 shows the operating circuit in schematic form, each transfer electrode 15 being connected to a common conductor 21.
  • the count electrodes 14 are each connected to a resistor 22 which is shunted by a capacitor 23.
  • the other ends of these circuit units are connected to a common conductor 24.
  • the anode 13 is connected in series with an anode resistor 25, an. operating switch 26, and a source of potential 27.
  • the negative end of battery 27 is connected to a common ground conductor 23 as is also conductor 24-.
  • the input circuit which reing tubes since the transfer electrodes in each tube require the same operating voltage.
  • the count pulse terminals are connected in the same manner as the tube shown in Fig. and the reset circuit which includes diode 35A is the same as that previously described.
  • the output of the first tube is connected by conductor 52 through a blocking capacitor to a vacuum tube amplifier 53, having the usual connections for pulse amplification including an anode resistor 54 and an output coupling capacitor 55.
  • the amplified, and inverted, pulse from the amplifier stage is applied to the first count cathode 14-4 in the second tube, isolated from the other count electrodes by a diode 35B connected in a manner similar to diode 35A in the first tube.
  • the voltage values indicated in Fig. 9 are by way of example only and represent the values used in a test made with tubes having a gas pressure of 30 cm. of mercury.
  • a gaseous discharge device for sequentially transferring a glow discharge from one electrode to another in response to a single applied electrical pulse comprising; a plurality of count electrodes, each of which may comprise a terminal for a glow discharge; a plurality of transfer electrodes, each of which is positioned intermediate a pair of count electrodes; each of said count and transfer electrodes comprising a hollow cylinder which is partially enclosed in a block of insulating material; and a transfer probe for each of said electrodes, said probes comprising an elongated conductor with one end afiixed to said electrodes and the other end extending therefrom to an open end of one other preselected electrode to establish a preferential path for transferring the discharge.
  • a gaseous discharge device for sequentially transferring a glow discharge from one electrode to another in response to a single applied electrical pulse comprising; a plurality of count electrodes, each of which may comprise a terminal for a glow discharge; a plurality of extending therefrom to an open end of one other pre-" selected electrode to establish a preferential path for transferring the discharge; and a common electrode which is equally spaced from the other electrodes to comprise a common terminal for the glow discharge.
  • a gaseous discharge device for sequentially transferring a glow discharge from one count electrode to another count electrode in response to a single applied electrical pulse comprising; a plurality of count electrodes, each of which may comprise a stable terminal for a glow discharge to designate a count value; a plurality of transfer electrodes, each of which is positioned intermediate a pair of count electrodes; each of said count and transfer electrodes comprising a hollow cylinder which is enclosed in a common block of insulating material with the cylinder ends mounted flush with a surface of the block; a transfer probe for each of said electrodes, said probes comprising an elongated conductor with one end afiixed to the inside of the electrodes and the other end eX- tending therefrom to an open end of one other preselected electrode to establish a preferential path for transferring the discharge; and a common electrode which is equally spaced from the other electrodes to comprise a common terminal for the glow discharge.
  • a gaseous discharge device for sequentially transferring a glow discharge from one count electrode to another count electrode in response to a single applied electrical pulse comprising; a plurality of count electrodes positioned in alternate array with a plurality of transfer electrodes; each of said count and transfer electrodes comprising a hollow cylinder open at one end and set flush in an insulating block; a transfer probe for each of said electrodes, said probes each comprising an elongated conductor having one end afiixed to the inside of the electrode and the other end extending therefrom to the 'open end of the adjacent electrode; and a common electrode connected through a common impedance to a source of potential, said common electrode equally spaced from the other electrodes to comprise a common terminal for the glow discharge.
  • a gaseous discharge device for sequentially transferring a glow discharge from One count electrode to another count electrode in response to a single applied electrical pulse comprising; a plurality of count electrodes positioned in alternate array with the same number of transfer electrodes; means for electrically connecting all the transfer electrodes to a common conductor which is connected to a circuit which receives an electrical counting pulse, each of said count and transfer electrodes comprising a hollow cylinder open at one end and set flush in an insulating block; a transfer probe for each of said electrodes, said probes each comprising an elongated conductor having one end aflixed to the electrode and the other end extending therefrom to the open end of the adjacent electrode; and a common electrode connected through a common impedance to a source of potential, said common electrode equally spaced from the other electrodes to comprise a common terminal for the glow discharge.
  • a gaseous discharge device for sequentially transferring a glow discharge from one count electrode to another count electrode in response to a single applied electrical pulse comprising; a plurality of count electrodes positioned in alternate array with the same number of transfer electrodes, said electrodes arranged in a row equally spaced from an adjacent electrode; means for connecting all the transfer electrodes to a common conductor, each of said count and transfer electrodes comequallyspaced from the other electrodes to comprise a common terminal for the glow discharge.
  • a gaseous discharge device for sequentially transferring a glow discharge from one count electrode to anothcr count electrode in response to a single applied elec-' trical pulse comprising; an envelope filled with gas .at a reduced pressure; a plurality of count electrodes and transfer electrodes mounted within the envelope in alternate array; means for.
  • each of said count and transfer electrodes comprising a hollow cylinder open at one end and set flush in a channel in an insulating block; a transfer probe for each of said electrodes, said probes each comprising an elongated'conductor having one end connected to a portion of the electrode and the other end extending therefrom to'the open end' of the next adjacent electrode; and a common electrode connected through a common impedance to a source of potential, said common electrode equally spaced from the other electrodes to comprise a common terminal for the glow discharge.
  • a gaseous discharge device for sequentially trans ferring a glow discharge-from one 'count'electrode to another count electrode when a single electrical pulse 7 is applied to the'device comprising; an envelope filled Witll gas at a reduced pressure; a plurality ofcountelectrodes and transfer electrodes mounted within the en-; 7
  • each'of said count and transfer electrodes comprising a hollow cylinder which is par 'tially enclosed'in a block of insulating material; and a 15 transfer probe for each of said electrodes, said probes comprising an elongated conductor with one end con-- nected to the electrode andthe other end extending therefrom to an open end of one other preselected electrode to establish a preferential path for transferring the dis- 7 charge.

Landscapes

  • Measurement Of Radiation (AREA)

Description

16,1956 Ajv. BAZARIAN ETAL 2,767,350
GASEOUS COUNTING TUBE 3 Sheets-Sheet- 1 Filed June 1, 1954 FIG.
MARVIN N. SILVER JOHN F. GRIMM INVENTORS ATTORNEY Oct. 16, 1956 A. BAZARIAN ET AL 7,
GASEOUS COUNT-ING TUBE Filed 'June 1, 1954 FIG. 5
3 Sheets-Sheet 2 RESET l I 0 Q MM [36 v v 1L O U 32 34 I 26 INPUT 5 COUPLING OUTPUT 27 PULSE i CIRCUIT PULSE 2 Q I; i0
tEO GUSMAN ALBERT V. BAZARIAN MARVIN N. SILVER JOHN F. GRIMM INVENTORS ATTORNEY United States Patent GASEOUS '(ZOUNTING TUBE Albert V. Bazarian, Summit, and John F. Grimm, East Orange, N. 3., and Leo Gasman and Marvin N. Silver, New York, N. Y., assignors, by mesne assignments, to Gera Corporation, New York, N. Y., a corporation of New Jersey Application June 1, 19'5'4, Serial No. 433,754
8 Claims. (Cl. 315-169) This invention relates to a gaseous counting tube which is operated by electrical pulses. It has particular reference to a gaseous counting tube which employs cylindrical cathodes and a gaseous discharge which is confined to the inside surface of the cylindrical components.
Many types of gaseous counting tubes have been developed, some of which use at least two transfer electrodes between each counting electrode and other types which rely on a specific shape of an electrode structure to transfer an electric discharge in the right direction when a pulse is received. The counting tubes which employ more than one transfer electrode require considerable external circuitry for their successful operation and the tubes which employ shaped electrodes require precise counting pulses which must be adjusted to narrow limits of voltage and time duration in order to count successfully.
The present tube employs a single transfer electrode between each counting electrode and requires no additional vacuum tubes nor amplifying circuits when operated as a decade counter system. A single negative pulse applied to the input terminals produces a count, and an output pulse is available to operate as a carry pulse for application to the counting tube in the next higher denominational order.
One of the objects of this invention is to provide an improved gaseous counting tube which avoids one or more of the disadvantages and limitations of prior art arrangements.
Another object of the invention is to improve the reliability of counting tubes so that a count will be registered when a counting pulse is received even though the supply voltages may vary over a wide range of values.
Another object of the invention is to increase the current carrying capacity of the counting electrodes so that external current indicating devices may be operated directly from the tube without recourse to intermediate circuits.
Another object of the invention is to provide circuit means for connecting two counting tubes in a consecutive counting arrangement.
Another object of the invention is to provide an operating circuit for the counting tube which may be adjusted to suit the requirements of variable characteristics.
The invention comprises a single wire anode symmetrically positioned within an envelope which is filled with ionizable gas at a reduced pressure. A plurality of counting electrodes are positioned in closely fitting cavities in an insulating block. A plurality of transfer electrodes are positioned between each counting electrode for transferring the discharge from one count electrode to another when a counting pulse is received. Each counting elec trode is connected to lead-in conductors for application of voltages and counting pulses external of the envelope.
For a better understanding of the present invention,
together with other and further objects thereof, reference is'made to the following description taken in connection with the accompanying drawings.
ice
Fig. l is a sectional view of a development of the electrodes encased in the insulating block.
Fig. 2 is a cross sectional drawing of a counting tube having five count electrodes and shows a top View of the electrode system.
Fig. 3 is a side view of the counting tube, with some parts in section, and shows the insulator block and the anode.
Fig. 4 is a cross sectional view of a portion of the insulator block and is taken along line 44 of Fig. 2.
Fig. 5 is a schematic diagram of connections showing the external circuitry employed with the tube for counting and resetting.
Fig. 6 is a schematic diagram of connections showing one form of coupling circuit which may be used to transfer a carry pulse from one tube to another.
Fig. 7 is a schematic diagram of connections showing an alternate form of coupling circuit.
Fig. 8 is a schematic diagram of connections showing the external circuitry employed when two or more tubes are arranged for consecutive counting.
Fig. 9 is a graph showing the pulse shapes and pulse timing during a counting operation.
Referring now to Figs. 1, 2, 3, and 4, the counting tube comprises an envelope 10 having a plurality of contact pins 11 secured in the base. Within the envelope an insulating block 12, having a generally cylindrical form, is employed to support the cathodes in cavities within the block and also supports an anode 13 which is adjacent to the top surface of the block and is spaced at equal distances to all the cathodes.
The tube shown in Fig. 2 contains five counting cathodes 14 and five transfer cathodes 15, there being no difierence between the count cathodes and the transfer cathodes except in their external connections. Each cathode is supported within a circular cavity in the block with its top edge flush with the top surface of the insulating block. For convenience in manufacture the cathodes are positioned within an annular groove 16 but this construction is not necessary for counting. On the inside of each cathode a wire probe 17 is conductively secured to the cathode surface, one end of which extends through the bottom of the block 12 where it is secured to eyelet 18 set in a mica insulating sheet 20. The lower eXtrem-.
anode 13 and one of the count electrodes 14 a glow ap-- V pears on the inside of the cathode cylinder but is not visible elsewhere. However, the ionized gas molecules extend between the inside surface of the cylinder and the anode and the ionized region extends suificiently to one side to include the end of the adjoining probe 17.
Fig. 5 shows the operating circuit in schematic form, each transfer electrode 15 being connected to a common conductor 21. The count electrodes 14 are each connected to a resistor 22 which is shunted by a capacitor 23. The other ends of these circuit units are connected to a common conductor 24. The anode 13 is connected in series with an anode resistor 25, an. operating switch 26, and a source of potential 27. The negative end of battery 27 is connected to a common ground conductor 23 as is also conductor 24-. The input circuit which reing tubes since the transfer electrodes in each tube require the same operating voltage. The count pulse terminals are connected in the same manner as the tube shown in Fig. and the reset circuit which includes diode 35A is the same as that previously described.
The output of the first tube is connected by conductor 52 through a blocking capacitor to a vacuum tube amplifier 53, having the usual connections for pulse amplification including an anode resistor 54 and an output coupling capacitor 55. The amplified, and inverted, pulse from the amplifier stage is applied to the first count cathode 14-4 in the second tube, isolated from the other count electrodes by a diode 35B connected in a manner similar to diode 35A in the first tube.
When this circuit is operated to count, the switches 26 and 47 are both closed and both priming electrodes 48 will light at once and then a count cathode somewhere in the array will be lighted. The position of this cathode is indeterminate and to return the discharge to the zero cathode a negative pulse is applied to the reset terminals, causing an increase of potential drop between the anode 13 in the first tube and the zero count electrode 14-0, and transferring the discharge to that electrode.
if, now, counting pulses are applied to the input terminals 56 the same transfer action takes place as previously described and the discharge is stepped along-until it is transferred to the count cathode 4 in the first tube. When this happens a positive pulse is sent over conductor 52 to amplifier tube 53 and a strong negative pulse is thereby applied through capacitor 55 to cathode 4 in the second tube. This negative pulse is applied only to the 4 cathode because of diode 35B and the discharge on the 4 cathode in the first tube is transferred to the 4 cathode in the second tube. This latter transfer occurs immediately following the application of the count pulse which caused the transfer from the 3 cathode to the four cathode.
Subsequent pulses applied to terminals 56 cause the discharge to be moved from one count cathode to another as previously described. When the discharge is moved to the 8 cathode a carry operation may be effected over conductor 57 as described in connection with Fig. 5, or the same kind of transfer may be eifected as described between tubes 45 and 46.
The voltage values indicated in Fig. 9 are by way of example only and represent the values used in a test made with tubes having a gas pressure of 30 cm. of mercury.
While there have been described and illustrated specific embodiments of the invention, it will be obvious that various changes and modifications may be made therein without departing from the field of the invention which should be limited only by the scope of the appended claims.
We claim:
1. A gaseous discharge device for sequentially transferring a glow discharge from one electrode to another in response to a single applied electrical pulse comprising; a plurality of count electrodes, each of which may comprise a terminal for a glow discharge; a plurality of transfer electrodes, each of which is positioned intermediate a pair of count electrodes; each of said count and transfer electrodes comprising a hollow cylinder which is partially enclosed in a block of insulating material; and a transfer probe for each of said electrodes, said probes comprising an elongated conductor with one end afiixed to said electrodes and the other end extending therefrom to an open end of one other preselected electrode to establish a preferential path for transferring the discharge.
2. A gaseous discharge device for sequentially transferring a glow discharge from one electrode to another in response to a single applied electrical pulse comprising; a plurality of count electrodes, each of which may comprise a terminal for a glow discharge; a plurality of extending therefrom to an open end of one other pre-" selected electrode to establish a preferential path for transferring the discharge; and a common electrode which is equally spaced from the other electrodes to comprise a common terminal for the glow discharge.
3. A gaseous discharge device for sequentially transferring a glow discharge from one count electrode to another count electrode in response to a single applied electrical pulse comprising; a plurality of count electrodes, each of which may comprise a stable terminal for a glow discharge to designate a count value; a plurality of transfer electrodes, each of which is positioned intermediate a pair of count electrodes; each of said count and transfer electrodes comprising a hollow cylinder which is enclosed in a common block of insulating material with the cylinder ends mounted flush with a surface of the block; a transfer probe for each of said electrodes, said probes comprising an elongated conductor with one end afiixed to the inside of the electrodes and the other end eX- tending therefrom to an open end of one other preselected electrode to establish a preferential path for transferring the discharge; and a common electrode which is equally spaced from the other electrodes to comprise a common terminal for the glow discharge.
4. A gaseous discharge device for sequentially transferring a glow discharge from one count electrode to another count electrode in response to a single applied electrical pulse comprising; a plurality of count electrodes positioned in alternate array with a plurality of transfer electrodes; each of said count and transfer electrodes comprising a hollow cylinder open at one end and set flush in an insulating block; a transfer probe for each of said electrodes, said probes each comprising an elongated conductor having one end afiixed to the inside of the electrode and the other end extending therefrom to the 'open end of the adjacent electrode; and a common electrode connected through a common impedance to a source of potential, said common electrode equally spaced from the other electrodes to comprise a common terminal for the glow discharge.
5. A gaseous discharge device for sequentially transferring a glow discharge from One count electrode to another count electrode in response to a single applied electrical pulse comprising; a plurality of count electrodes positioned in alternate array with the same number of transfer electrodes; means for electrically connecting all the transfer electrodes to a common conductor which is connected to a circuit which receives an electrical counting pulse, each of said count and transfer electrodes comprising a hollow cylinder open at one end and set flush in an insulating block; a transfer probe for each of said electrodes, said probes each comprising an elongated conductor having one end aflixed to the electrode and the other end extending therefrom to the open end of the adjacent electrode; and a common electrode connected through a common impedance to a source of potential, said common electrode equally spaced from the other electrodes to comprise a common terminal for the glow discharge.
6. A gaseous discharge device for sequentially transferring a glow discharge from one count electrode to another count electrode in response to a single applied electrical pulse comprising; a plurality of count electrodes positioned in alternate array with the same number of transfer electrodes, said electrodes arranged in a row equally spaced from an adjacent electrode; means for connecting all the transfer electrodes to a common conductor, each of said count and transfer electrodes comequallyspaced from the other electrodes to comprise a common terminal for the glow discharge.
' 7. A gaseous discharge device for sequentially transferring a glow discharge from one count electrode to anothcr count electrode in response to a single applied elec-' trical pulse comprising; an envelope filled with gas .at a reduced pressure; a plurality of count electrodes and transfer electrodes mounted within the envelope in alternate array; means for. connecting all the transfer electrodes to g a common lead-in conductor for external connection to .a' source :of potential; each of said count and transfer electrodes comprising a hollow cylinder open at one end and set flush in a channel in an insulating block; a transfer probe for each of said electrodes, said probes each comprising an elongated'conductor having one end connected to a portion of the electrode and the other end extending therefrom to'the open end' of the next adjacent electrode; and a common electrode connected through a common impedance to a source of potential, said common electrode equally spaced from the other electrodes to comprise a common terminal for the glow discharge.
8. A gaseous discharge device for sequentially trans ferring a glow discharge-from one 'count'electrode to another count electrode when a single electrical pulse 7 is applied to the'device comprising; an envelope filled Witll gas at a reduced pressure; a plurality ofcountelectrodes and transfer electrodes mounted within the en-; 7
velope in alternate array; means for connecting all the transfer electrodes to a common lead-in conductor for external connection-to a source-of potential; means for conf nesting each of 'the count electrodes to a lead-in conductor for external connection to a source of potential in series with an impedance; each'of said count and transfer electrodes comprising a hollow cylinder which is par 'tially enclosed'in a block of insulating material; and a 15 transfer probe for each of said electrodes, said probes comprising an elongated conductor with one end con-- nected to the electrode andthe other end extending therefrom to an open end of one other preselected electrode to establish a preferential path for transferring the dis- 7 charge.
References Cited in the file of this patent UNITED STATES PATENTS Steinberg Dec. 9, 1952 2,627,053 Townsend Jan. 27, 1953' 2,682,015 Townsend June 22, 1954
US433754A 1954-06-01 1954-06-01 Gaseous counting tube Expired - Lifetime US2767350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US433754A US2767350A (en) 1954-06-01 1954-06-01 Gaseous counting tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US433754A US2767350A (en) 1954-06-01 1954-06-01 Gaseous counting tube

Publications (1)

Publication Number Publication Date
US2767350A true US2767350A (en) 1956-10-16

Family

ID=23721415

Family Applications (1)

Application Number Title Priority Date Filing Date
US433754A Expired - Lifetime US2767350A (en) 1954-06-01 1954-06-01 Gaseous counting tube

Country Status (1)

Country Link
US (1) US2767350A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2876385A (en) * 1955-12-28 1959-03-03 Burroughs Corp Matrix glow tube indicator
US2958807A (en) * 1953-03-12 1960-11-01 Ibm Multi-cathode glow transfer tube
DE1105990B (en) * 1957-06-20 1961-05-04 Werk Signal Sicherungstech Veb Multi-cathode glow tube for counting and storing electrical impulses and for direct visual display of the number of stored impulses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2621313A (en) * 1950-10-26 1952-12-09 Ibm Glow transfer storage device
US2627053A (en) * 1951-11-01 1953-01-27 Bell Telephone Labor Inc Cold cathode gaseous discharge devices and circuits therefor
US2682015A (en) * 1953-01-22 1954-06-22 Bell Telephone Labor Inc Gaseous discharge stepping device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2621313A (en) * 1950-10-26 1952-12-09 Ibm Glow transfer storage device
US2627053A (en) * 1951-11-01 1953-01-27 Bell Telephone Labor Inc Cold cathode gaseous discharge devices and circuits therefor
US2682015A (en) * 1953-01-22 1954-06-22 Bell Telephone Labor Inc Gaseous discharge stepping device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958807A (en) * 1953-03-12 1960-11-01 Ibm Multi-cathode glow transfer tube
US2876385A (en) * 1955-12-28 1959-03-03 Burroughs Corp Matrix glow tube indicator
DE1105990B (en) * 1957-06-20 1961-05-04 Werk Signal Sicherungstech Veb Multi-cathode glow tube for counting and storing electrical impulses and for direct visual display of the number of stored impulses

Similar Documents

Publication Publication Date Title
GB1219446A (en) Gaseous glow indicator tube
GB838078A (en) Thermometer type voltage indicator tube
US2373175A (en) Electron discharge apparatus
US2239407A (en) Electron beam tube
US2767350A (en) Gaseous counting tube
US2575372A (en) Cold cathode gaseous discharge device
US2441006A (en) Electronic locking circuit
US3806760A (en) Electron tube
US2937301A (en) Electric-discharge device and cathode
US2978607A (en) Electrostatic writing tube
US3801863A (en) Self-regulated drive apparatus for display systems
US2687496A (en) Gaseous discharge register
US2797357A (en) Feedback arrangements for beam switching tubes
GB840288A (en) Improvements in or relating to electric circuits including electron discharge devices having at least one secondary emissive electrode
US2991388A (en) Display devices employing glow discharge tubes
US2405095A (en) Electronic device and control means therefor
US2785338A (en) Wave amplifier electron discharge device
US2785355A (en) Multicathode gaseous discharge devices
US2857552A (en) Beam tube switching circuits
US3141983A (en) Flashtube socket assembly
US2607021A (en) Gas filled discharge device
US2416355A (en) Impulse generator circuits
US2898500A (en) Indicator tube of the glow lamp type
US2556704A (en) Counting circuit
US2958807A (en) Multi-cathode glow transfer tube