US2766207A - Hydrocarbon oil products - Google Patents

Hydrocarbon oil products Download PDF

Info

Publication number
US2766207A
US2766207A US329112A US32911252A US2766207A US 2766207 A US2766207 A US 2766207A US 329112 A US329112 A US 329112A US 32911252 A US32911252 A US 32911252A US 2766207 A US2766207 A US 2766207A
Authority
US
United States
Prior art keywords
product
oils
oil
products
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US329112A
Inventor
Mcdermott John Patrick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US329112A priority Critical patent/US2766207A/en
Application granted granted Critical
Publication of US2766207A publication Critical patent/US2766207A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • C10M137/105Thio derivatives not containing metal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/16Esters of thiophosphoric acids or thiophosphorous acids
    • C07F9/165Esters of thiophosphoric acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • C10L1/2633Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond)
    • C10L1/2658Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond) amine salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/042Carbon; Graphite; Carbon black halogenated, i.e. graphite fluoride
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/18Natural waxes, e.g. ceresin, ozocerite, bees wax, carnauba; Degras
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/20Natural rubber; Natural resins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/146Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings having carboxyl groups bound to carbon atoms of six-membeered aromatic rings having a hydrocarbon substituent of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/082Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/04Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
    • C10M2211/044Acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • C10M2223/121Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy of alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/04Oxidation, e.g. ozonisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • the present invention relates to the improvement of hydrocarbon products derived from petroleum sources and more particularly to the preparation of improved mineral lubricating oil compositions by the incorporation therein of a class of. additives which impart improved properties to such hydrocarbon compositions.
  • a new class of compounds has been discovered which when added to refined lubricating oils and other petroleum hydrocarbon products in small proportions substantially reduces the tendency of such oils to corrode the metal surfaces, particularly the surfaces of copper-lead and cadmium-silver bearings which are employed in internal combustion engines, and they are likewise effective in inhibiting oxidation of petroleum hydrocarbon products generally.
  • the products of the present invention are also usefulas detergent additives for internal combustion engine lubricants. Since the products contain no metal, they are particularly useful as ashless detergents in service where ash-forming constituents lead'to harmful'etfects inengines operating under severe conditions, such as in the case of aviation engines.
  • the compounds of the present invention may be described as nitrogen base salts of alkyl phenol sulfide dithiophosphoric acids having the following general formula:
  • R represents at least one alkylradical, preferably having in the range of about 4 to 20 carbon atoms
  • T represents a nitrogen base radical
  • x repice form a phenol sulfide, then reacting the phenol sulfide with a sulfide of phosphorus such as phosphorus pentasulfide, and finally converting the resulting dithiophosphoric acid derivative to a salt by neutralizing the same with a nitrogen base such as ammonia or an amine.
  • the additives of the present invention may be prepared in a light solvent and isolated, or, if they are to be employed as lubricating oil additives, they may be made directly in a lubrication oil medium to form a concentrate containing in the range of 20 to 60% of active ingredient.
  • the alkylated phenols are conveniently prepared by reacting simple phenols with olefinic hydrocarbons such as propylene, butylene, isobutylene, amylenes, diisobutylene, triisobu'tylene, etc., or olefin-containing mixtures obtained in petroleum refining processes as refinery gases.- The reaction of these materials is promoted by means of a catalyst, such as sulfuric acid.
  • a catalyst such as sulfuric acid.
  • the sulfurized phenols employed in accordance with the present invention are prepared by reacting the pheml with a sulfur halide.
  • a sulfur halide For example, sulfur monochloride (S2Cl2), is conveniently reacted in proportion of about /2 mol per mol of phenol and preferably in a solvent such as dichlorethane to produce an alkyl phenol disulfide.
  • SClz sulfur dichloride
  • thealkyl phenols are given thi'oether linkage substituents.
  • the sulfide of phosphorus employed in the preparation of substituted thiophosphoric acid is preferably phosphorus pentasulfide (P2S5).
  • the nitrogen bases which may be employed in the preparation of the salts of the present invention include ammonia and the organic bases. Among the latter, the most useful are the primary and secondary aliphatic amines, but other organic basic materials may be used, such as text-aliphatic amines, aromatic amines, monocyclohexyland dicycloh'exyl amines.- Specific examples of such amines include methylamine, ethylamine, isopropylamine, diisopropylamine, diethylamine, aniline, ethylaniline, benzylamine, ethylnaphthylamine, p-phenylenediamine and theheterocyclic amines, such as pyridine and piperidine.
  • the quaternary ammonium hydroxides may also be employed.
  • Compounds having a guanidine structure such as guanidine, triphenyl guanidine, and the like, may likewise be employed.
  • the quantity of the additives of the present invention which is most advantageously blended in mineral lubricating oils or other petroleum hydrocarbon products is generally from about 0.1% to 2% by weight when the addi- EXAMPLE I.PREPARATION OF n-BUTYLAMINE TERT.-OCTYLPHENOL SULFIDE DITHIOPHOS- PHATE Product
  • A.Sulfurized tert.-ctylphenol A 4-necked 3 liter flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel was charged with 1.5 liters of ethylene dichloride and 412 g. (2 mol) of tert.-octylphenol (prepared by reacting phenol with diisobutylene in the presence of a catalyst).
  • Product B -Sulfurized terL-octylpheliol dithiophosphoric acid 379 g. (0.8 mol) of sulfurized terL-octylphenol (Product A) was placed in a 3-necked 2 liter flask equipped with a stirrer, thermometer, and reflux condenser. The viscous material was fluidized by heating to about 70 C., after which 88.8 g. (0.4 mol) of P285 was added. The mixture was heated at 160 C. for 2 hours with rapid stirring, after which it was dissolved in 1 liter of ethylene dichloride and filtered to remove a small amount of unreacted P285. A 15 ml. portion of the solution was poured into an evaporating dish and placed on the steam bath to remove the solvent. A dark sticky solid was obtained which analyzed 4.7% P (phosphorus) and 17.7% S.
  • Product C consists chiefly of compounds having-the approximate average formula:
  • the structure ofProduct C arises from the fact that the reaction of a phenol and sulfur halide'is known to form a phenol sulfide containing one-or more sulfur atoms interconnecting benzene nuclei. Subsequent reaction with phosphorus pentasulfide forms the dithiophosphate having an available'sulfhydryl group which in turn reacts with the amine. Evidence of reaction'of the amine and thiophosphate is further shown inthat a temperature rise of 16 C. occurred when the amine was added. Drastic hydrolysis of product C resultedin substantially no reduction of the sulfur content of the'compound. This is characteristic of the sulfur bridge between aromatic nuclei, such bridges not beingrsusceptible to hydrolysis even under severe conditions.
  • Product G on the other handyappears to be chiefly a polysulfi-de derivative of diaryldithiophosphoric: acid .in which the hydrogen of the sulfhydryl groups of two molecules :of-the. dithiophosphoric acid, formed by reacting phenol and-P285, is removedyand the two resultingradicals are joined by'oneor more atoms -.of sulfur when reacted with sulfur'halide. Nowacid groupsare available for further reaction. Thisagrees with experimental data. There was no evidence of reaction between the polysultide and the amine since substantiallyno temperature increase occurred when the'two materials were :mixed together. The amine appeared to be present.
  • EXAMPLE 4 -COMPARISON OF LUBRICANT AD- DITIVE' PROPERTIES OF PRODUCTSC AND G Phorone detergency test Blends containing 1% by weight each of products C and G in a paraflinic-type mineral lubricating oil of SAE-3O grade and a sample of the unblended base oil were submitted to adetergencyrtest designed to measure the effectiveness of theadditives for preventing harmful engine deposits in internal combustion engines. The test is conducted as follows: 100 g. of testoil 'are weighed into a clean, 300 cc. tall-form, open glass beaker provided with a stirrer. The beaker is placed in an oil bath maintained at a-temperature of 275 'F.
  • the test was conducted as follows: 500 cc. of the oil was placed in a glass oxidation tube (13 inches long and 2% inches in diameter) fitted at the bottom with a /1 inch air inlet tube perforated to facilitate air distribution.
  • the oxidation tube was then immersed in a heating bath so that the oil temperature was maintained at 325 F during the test.
  • Two quarter sections of automotive bearings of copper-lead alloy of known weight having a total area of 25 sq. cm. were attached to opposite sides of a stainless steel rod which was then immersed in the test'oil and rotated at 600 R. P. M., thus providing sufiicient agitation of the sample during the test.
  • Air was then blown through the oil at therate of 2 cu. ft. per hour. At the end of each 4-hour period the hearings were removed, washed with naphtha and weighed to determine the amount of loss by corrosion.
  • the bearings were then repolished (to increase-the'severity of the test) ,reweighed, and then subjected to the test for additional 4-hour periods in likemanner.
  • the results are given in Table II as corrosion life, which indicates the number of hours 'required for the bearings to lose 100 mg. in weight, determined by interpolation of the data obtained in the various periods.
  • EXAMPLE 5 PREPARATION OF ISOPROPYL- AMINE SALT OF TERT.-OCTYL PHENOL SUL- FIDE TI-HOPHOSPHATE sulfide so prepared (containing 1.5 gram atoms of sulfur per mol), and 716 g. of a refined light lubricating oil of approximately SAE10 grade was heated in a 4 liter beaker until a homogeneous solution was obtained (90 C.). 111 g. of P285 was added and the reaction temperature was increased to 140 C. and maintained at this point for 4 hours, followed by filtration to remove a small amount of insoluble material. The filtrate was placed in a 4 liter beaker, and a solution of 118 g.
  • a lubricant blend containing the product of this example was submitted to a bearing corrosion test conducted by the conditions described in Example IV.
  • the base stock employed was an SAE grade paraflinic-type mineral lubricating oil having a bearing corrosion life of 10 hours.
  • This base oil containing 0.25% by weight of the isopropyl amine salt of tert.-octyl phenol sulfide thiophosphate had a bearing corrosion life of 33 hours.
  • the products of the present invention may be employed not only in ordinary hydrocarbon lubricating oils but also in the heavy duty type of lubricating oils which have been compounded with such detergent type additives as metal soaps, metal petroleum sulfonates, metal phenates, metal alco'holates, metal alkyl phenol sulfides, metal organo phosphates, thiophosphates, phosphites and thiophosphites, metal salicylates, metal xanthates and thioxanthates, metal thiocarbamates, amines and amine derivatives, reaction products of metal phenates and sulfur, re action products of metal phenates and phosphorus sulfides, metal phenol sulfonates, and the like.
  • detergent type additives as metal soaps, metal petroleum sulfonates, metal phenates, metal alco'holates, metal alkyl phenol sulfides, metal organo phosphates, thiophosphates,
  • the additives of the present invention may be used in lubrieating oils containing such other addition agents as bariurn tert.-octylphenol sulfide, calcium tert.-amylphenol sulfide, nickel oleate, barium stearate, calcium phenyl stearate, zinc diisopropyl salicylate, aluminum naphthenate, calcium cetyl phosphate, barium di-tert.-amylphenol sulfide, calcium petroleum sulfonate, zinc methyl cyclohexyl thiophosphate, calcium dichlorostearate, etc.
  • Other types of additives such as phenols and phenol sulfides may be employed.
  • the lubricating oil base stocks used in the compositions of this invention may be straight mineral lubricating oils or distillates derived from paraflinic, naphthenic, asphaltic or mixed base crudes, or, if desired, various blended oils may be employed as well as residuals, particularly those from which asphaltic constituents have been carefully removed.
  • the oils may be refined by conventional methods using acid, alkali and/or clay or other agents such as aluminum chloride, or they may be extracted oils produced, for example, by solvent extraction with solvents of the type of phenol, sulfur dioxide, furfural, dichlorod-iethyl ether, nitrobenzene, crotonaldehyde, etc.
  • Hydrogenated oils or white oils may be employed as well as synthetic oils prepared, for example, by the polymerization of olefins or by the reaction of oxides of carbon with hydrogen or by the hydrogenation of coal or its products.
  • cracking coil tar fractions and coal tar or shale oil distillates may also be used.
  • animal, vegetable or fish oils or their hydrogenated or voltolized products may be employed in admixture with mineral oils.
  • the base stock chosen should normally be that oil which without the new additive present gives the optimum performance in the service contemplated.
  • one advantage of the additives is that their use also makes feasible the employment of less satisfactory mineral oils or other oils, no strict rule can be laid down for the choice of the base stock.
  • Certain essentials must of course be observed.
  • the oils must possess the viscosity and volatility characteristics known to be required for the service contemplated.
  • the oil must be a satisfactory solvent for the additive, although in some cases auxiliary solvent agents may be used; 7
  • the lubricating oils, however they may have been produced, may vary considerably in viscosity and other properties depending upon the particular use for which they are desired, but they usually range from about 40 to 150 sec- 0nd Saybolt viscosity at 210 F.
  • oils of higher viscosity index are often preferred, for example, up to 75 to 100, or even higher, viscosity index.
  • agents may also be used such as dyes, pour depressors, heat thickened fatty oils,.sulfurized fatty oils, organo-metallic compounds, metallic or other soaps, sludge dispersers, antioxidants, thickeners, viscosity index improvers, oiliness agents, resins, rubber, olefin polymers, voltolized fats, voltolized oils, and/or voltolized waxes and colloidal solids such as graphite or zinc oxide, etc.
  • Solvents and assisting agents such as esters, ketones, alcohols, aldehydes, halogenated or nitrated compounds, and the like may also be employed.
  • Assisting agents which are particularly desirable as plasticizers and def oamers are the higher alcohols having eight or more carbon atoms and preferably 12 to 20 carbon atoms.
  • the alcohols may be saturated straight and branched chain aliphatic alcohols such as octyl alcohol (CBHI'IOH), lauryl alcohol (C12H25OH), cetyl alcohol (CrsHzaOH), stearyl alcohol, sometimes referred to as octadecyl alcohol (C18H3'IOH), heptadecyl alcohol (C17H35OH), and the like, the corresponding olefinic alcohols such as oleyl alcohol; cyclic alcohols such as naphthenic alcohols; and aryl substituted alkyl alcohols,'for
  • phenyl octyl alcohol, or octadecyl benzyl alcohol or mixtures of these various alcohols which may be pure or substantially pure synthetic alcohols.
  • One may also use mixed naturally occurring alcohols such as those found in wool fat (which is known to contain a substantial percentage of alcohols having about 16 to 18 carbon atoms) and in sperm oil (which contains a high percentage of cetyl alcohol); and although it is preferable to isolate the alcohols from those materials, for some purposes, the wool fat, sperm oil or other natural products rich in alcohols may be used per se.
  • Products prepared synthetically by chemical processes may also be used, such as .alcohols prepared by the oxidation of petroleum hydrocarbons, e. g. paraflin wax, petrolatum, etc.
  • the additives of the present invention may also be used in extreme pressure lubricants, engine flushing oils, industrial oils, general machinery oils, process oils, rust preventive compositions and greases.
  • the additives of the present invention may be employed as antioxidant or stabilizing agents not only in mineral lubricating oils, but also in petroleum hydrocarbon products generally, where improved resistance to oxidation is desired.
  • the products may be added to motor oils, diesel fuels, kerosene, waxes, hydrocarbon polymers, etc. and other mineral oils.
  • a lubricating oil composition comprising a major proportion of a mineral lubricating oil and a minor, oxi dation inhibiting amount of a product obtained by react- 10 ing about 2 moles of an alkyl phenol sulfide having the formula:
  • R is an alkyl group having in the range of about 4 to 20 carbon atoms and x represents an integer of about 1 to 3, with about 1 mole of P285 at a temperature of about to C. for about 2 to 4 hours, and thereafter reacting the resulting alkyl phenol sulfide-P285 reaction product with about 2 moles of a primary aliphatic amine, selected from the group consisting of n-butylamine and isopropylamine.
  • a lubricating oil composition comprising a major proportion of a mineral lubricating oil and about 0.1 to 2.0% by weight, based on the total composition, of a prodnot obtained by reacting about 2 moles of tert. octyl phenol sulfide with about 1 mole of P285 at a temperature of about 140 to 160 C. for about 2 to 4 hours, and thereafter reacting the resultant tert. octyl phenol sulfide-P285 reaction with about 2 moles of a primary aliphatic amine selected from the group consisting of n-butylarnine and isopropylamine.

Description

United States atent O HYDROCARBON OIL PRODUCTS John Patrick McDermott, Springfield, N. 1., assignor to Esso Research and Engineering Company, a corporation of Delaware No Drawing. Application December 31, 1952, Serial No. 329,112
2 Claims. (Cl. 252-325) The present invention relates to the improvement of hydrocarbon products derived from petroleum sources and more particularly to the preparation of improved mineral lubricating oil compositions by the incorporation therein of a class of. additives which impart improved properties to such hydrocarbon compositions.
This application is a continuation-in-part of U. S. patent application Serial No. 776,870, filed September 29, 1947,, now abandoned.
In the development of petroleum lubricating oils the trend has been to use more and more eflicient refining methods in order to reduce the tendency of the oils to formv carbon and deposits of solid matter or sludge. While such highly refined oils possess many advantages, their resistance to oxidation particularly under conditions. of. severe service is generally decreased and they are more prone; to form soluble acidic oxidation products which are corrosive. They are generally less effective than the untreated oils in protecting the metal surfaces which they contact against rusting and corrosion due to oxygen and moisture. They also often deposit thickfilms of varnish on hot metal surfaces, such as the pistons of internal combustion engines.
In accordance with the present invention a new class of compoundshas been discovered which when added to refined lubricating oils and other petroleum hydrocarbon products in small proportions substantially reduces the tendency of such oils to corrode the metal surfaces, particularly the surfaces of copper-lead and cadmium-silver bearings which are employed in internal combustion engines, and they are likewise effective in inhibiting oxidation of petroleum hydrocarbon products generally. The products of the present invention are also usefulas detergent additives for internal combustion engine lubricants. Since the products contain no metal, they are particularly useful as ashless detergents in service where ash-forming constituents lead'to harmful'etfects inengines operating under severe conditions, such as in the case of aviation engines.
The compounds of the present invention may be described as nitrogen base salts of alkyl phenol sulfide dithiophosphoric acids having the following general formula:
In this formula R represents at least one alkylradical, preferably having in the range of about 4 to 20 carbon atoms, T represents a nitrogen base radical, and x repice form a phenol sulfide, then reacting the phenol sulfide with a sulfide of phosphorus such as phosphorus pentasulfide, and finally converting the resulting dithiophosphoric acid derivative to a salt by neutralizing the same with a nitrogen base such as ammonia or an amine. The additives of the present invention may be prepared in a light solvent and isolated, or, if they are to be employed as lubricating oil additives, they may be made directly in a lubrication oil medium to form a concentrate containing in the range of 20 to 60% of active ingredient.
Examples of phenols which may be sulfurized and then converted into acids of phosphorus and then new tralized include the simple phenols which are preferably alkylated to provide sufficient oilsolubility in the final product. The alkylated phenols are conveniently prepared by reacting simple phenols with olefinic hydrocarbons such as propylene, butylene, isobutylene, amylenes, diisobutylene, triisobu'tylene, etc., or olefin-containing mixtures obtained in petroleum refining processes as refinery gases.- The reaction of these materials is promoted by means ofa catalyst, such as sulfuric acid. By these means bothmonoalkyland polyalkyl phenols may be prepared and employed in accordance with the present invention. Another class of phenols which may be likewise employed for the purpose of this invention consists of what is known as petroleum phenols, which are obtained by extraction of various petroleum hydrocarbon stocks, chiefly from cracking and heating processes, with caustic soda and acidification of the alkaline extract witha mineral acid, followed by distillation if desired. These petroleum phenols are considered to contain alkyl or cycloalkyl sidechains. Specific phenols which are particularly useful in preparing the salts of the present invention are tert.-amyl phenol, isohexyl phenol, tert.-octyl phenol, di-tert.-amyl phenol, and the like. Phenols containing wax chains or side chains containing cycloaliphaticring structures may also be employed.
The sulfurized phenols employed in accordance With the present invention are prepared by reacting the pheml with a sulfur halide. For example, sulfur monochloride (S2Cl2), is conveniently reacted in proportion of about /2 mol per mol of phenol and preferably in a solvent such as dichlorethane to produce an alkyl phenol disulfide. Using substantially the same procedure but substituting sulfur dichloride (SClz) for the monochloride, thealkyl phenols are given thi'oether linkage substituents. The sulfide of phosphorus employed in the preparation of substituted thiophosphoric acid is preferably phosphorus pentasulfide (P2S5)..
The nitrogen bases which may be employed in the preparation of the salts of the present invention include ammonia and the organic bases. Among the latter, the most useful are the primary and secondary aliphatic amines, but other organic basic materials may be used, such as text-aliphatic amines, aromatic amines, monocyclohexyland dicycloh'exyl amines.- Specific examples of such amines include methylamine, ethylamine, isopropylamine, diisopropylamine, diethylamine, aniline, ethylaniline, benzylamine, ethylnaphthylamine, p-phenylenediamine and theheterocyclic amines, such as pyridine and piperidine. The quaternary ammonium hydroxides may also be employed. Compounds having a guanidine structure, such as guanidine, triphenyl guanidine, and the like, may likewise be employed.
In choosing the reactants for the preparation of a salt in accordance'with the present invention, which is to be employed as an additive'for a mineral oil, consideration should be given'to the oil solubility of the final product. It phenols containing short side chains are employed, it is advisable to employ for the neutralizing reaction an amine containing a'long aliphatic group for the purpose of providing oil solubility. If the solubility is provided in long chains in the phenols, a satisfactory product may be prepared by using ammonia or amines containing only short chains.
The quantity of the additives of the present invention which is most advantageously blended in mineral lubricating oils or other petroleum hydrocarbon products is generally from about 0.1% to 2% by weight when the addi- EXAMPLE I.PREPARATION OF n-BUTYLAMINE TERT.-OCTYLPHENOL SULFIDE DITHIOPHOS- PHATE Product A.Sulfurized tert.-ctylphenol A 4-necked 3 liter flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel was charged with 1.5 liters of ethylene dichloride and 412 g. (2 mol) of tert.-octylphenol (prepared by reacting phenol with diisobutylene in the presence of a catalyst). After the phenol had dissolved, 135 g. (1 mol) of sulfur monochloride was added dropwise from thedropping funnel over a period of 1% hrs. during which time the reaction temperature rose from 25 C. to 38 C., with copious evolution of hydrogen chloride. The reaction solution was stirred under reflux (86 C.) for 18 hours. The solvent was then removed from the product by nitrogen blowing on the steam bath, yielding a straw-colored viscous liquid which analyzed 13.0% S (sulfur).
Product B.-Sulfurized terL-octylpheliol dithiophosphoric acid 379 g. (0.8 mol) of sulfurized terL-octylphenol (Product A) was placed in a 3-necked 2 liter flask equipped with a stirrer, thermometer, and reflux condenser. The viscous material was fluidized by heating to about 70 C., after which 88.8 g. (0.4 mol) of P285 was added. The mixture was heated at 160 C. for 2 hours with rapid stirring, after which it was dissolved in 1 liter of ethylene dichloride and filtered to remove a small amount of unreacted P285. A 15 ml. portion of the solution was poured into an evaporating dish and placed on the steam bath to remove the solvent. A dark sticky solid was obtained which analyzed 4.7% P (phosphorus) and 17.7% S.
Product C.n-Butylamine tert.-octylphenol sulfiide dithiophosphate The reaction solution containing Product B was poured into a 4-necked 2 liter flask equipped with a stirrer, thermometer, reflux condenser, and dropping funnel, after which 58.4 g. (0.8 mol) of n-butyl amine was added dropwise over a 30 minute period during which time the temperature rose from 28 C. to 46 C. After stirring at room temperature for one hour, the solution was poured into a large evaporating dish and the solvent removed by nitrogen blowing on the steam bath. An amber, tacky solid was obtained which analyzed 14.8% S, 3.9% P, and 2.0% N (nitrogen). The product was completely insoluble in CS2, diflicultly soluble in CCl4, and had a mild odor.
Product D.Hydrolysis of n-butylamine tert.-octylphenol sulfide dithiophosphate A solution of 56.0 g. (0.05 mol) of Product C in 500 ml. of dioxane was placed in a 4-necked 2 liter flask equipped with a stirrer, thermometer, reflux condenser, and dropping funnel. Over a 30 minute period, 40 g.
, (1 mol) of NaOH in 200 ml. of
H2O was added dropwise. The reaction mixture was heated at reflux with rapid stirring for 5 hours after which it was placed on the steam bath and evaporated to'dryness. The light yellow pasty mass was mixed with about 400 ml. of hot water and neutralized by the addition of HCl. The aqueous mixture was extracted with 3-200 ml. portions of ether. The ether extract was dried over anhydrous Na2SO4. Evaporation of the solvent yielded a sticky reddish black solid which analyzed 13.9% S, 0.8% I, and 2.3% N. This material was practically odorless. EXAMPLE 2.PREPARATION OF PRIOR ART PRODUCTS In order to obtain a direct comparison of the products A 3-necked 2 liter flask equipped with a stirrer, thermometer and condenser was charged with 412 g. (2 mol) of tert.-octylphenol. After heating to melt the phenol, 111 g. of P2S5 (0.5 mol) was added with stirring after which the reaction mixture was heated at C. for 2 hours. The product was then dissolved in ethylene dichloride and filtered to remove a small amount of unreacted P285. After removal of the solvent on the steam bath, a viscous brown liquid was obtained which analyzed 6.2% P and 9.7% S.
Product F.Reaction of tert.-octylphenol dithiophosphoric acid with sulfur monochloride 430 g. of Product E, tert.-octylphenol dithiophosphoric acid (0.85 mol) was dissolved in 800 ml. of ethylene dichloride. The solution was poured into a 4-necked 2 liter flask equipped with a stirrer, thermometer, reflux condenser, and dropping funnel. 57.4 g. of sulfur monochloride (0.425 mol) was then added dropwise over a period of 45 minutes with no temperature rise and a mild evolution of hydrogen chloride. The reaction mixture was heated at reflux (86 C.) with stirring for 18 hours after which the solvent was removed by N2 blowing on the steam bath. A reddish brown tacky solid was obtained which analyzed 5.7% P and 14.8% S.
Product G.Treatment of Product F with n-butylamine Product F was dissolved in 1 liter of ethylene dichloride and the solution was poured into a 4-necked 2 liter flask equipped with a stirrer,- thermometer, reflux condenser and dropping funnel. 62.0 g. (0.85 mol) of n-butylamine was then added over a 30 minute period during which time the temperature rose from 30 C. to 33 C. After stir-ring at room temperature for 1 hour, the solution was poured into an evaporating dish for removal of the solvent. A black viscous liquid was obtained which analyzed 4.7% P, 12.7% S, and 2.2% N. This product was readily soluble in both CS: and CCL; and had a strong disagreeable odor.
Product H .Hydrolysis of Product G This hydrolysis was carried out by the same procedure as described in making Product D using 54.0 g. of Product G. A dark solid was obtained which analyzed 0.3% P, 1.8% N, and 4.3% S and possessed an unpleasant, phenolic odor.
EXAMPLE 3.COMPARISON OF PHYSICAL AND CHEMICAL CHARACTERISTICS OF PRODUCTS C AND G In view of the marked differences in physical and chemical characteristics of the two products, it is possible to draw the following conclusions:
Product C consists chiefly of compounds having-the approximate average formula:
s sn-mNtotm 0 BEN C 2 17 08H CH having the following theoretical analysis: N-1.2 wt. percent, Sl 6.7 wt percent, P5.4 wt.-percent.
The structure ofProduct C arises from the fact that the reaction of a phenol and sulfur halide'is known to form a phenol sulfide containing one-or more sulfur atoms interconnecting benzene nuclei. Subsequent reaction with phosphorus pentasulfide forms the dithiophosphate having an available'sulfhydryl group which in turn reacts with the amine. Evidence of reaction'of the amine and thiophosphate is further shown inthat a temperature rise of 16 C. occurred when the amine was added. Drastic hydrolysis of product C resultedin substantially no reduction of the sulfur content of the'compound. This is characteristic of the sulfur bridge between aromatic nuclei, such bridges not beingrsusceptible to hydrolysis even under severe conditions.
Product G, on the other handyappears to be chiefly a polysulfi-de derivative of diaryldithiophosphoric: acid .in which the hydrogen of the sulfhydryl groups of two molecules :of-the. dithiophosphoric acid, formed by reacting phenol and-P285, is removedyand the two resultingradicals are joined by'oneor more atoms -.of sulfur when reacted with sulfur'halide. Nowacid groupsare available for further reaction. Thisagrees with experimental data. There was no evidence of reaction between the polysultide and the amine since substantiallyno temperature increase occurred when the'two materials were :mixed together. The amine appeared to be present. in a mechanically occluded state or as a loose coordination compound with the polysulfide. Additional evidence that Product G is a polysulfide compound arises from the fact-that drastic hydrolysis of this material, under the identical conditions used in hydrolyzing product C, resulted in a loss of approximately two-thirds of the sulfur content and most of the phosphorus. It is characteristic that the sulfur of such polysulfide structures is relatively loosely bound and is quite susceptible to hydrolysis.
Additional evidence of the marked difierences in chemical structure between products C and G is found in the fact that the former compound was insoluble in carbon disulfide whereas the latter compound was readily soluble inthis solvent.
EXAMPLE 4.-COMPARISON OF LUBRICANT AD- DITIVE' PROPERTIES OF PRODUCTSC AND G Phorone detergency test Blends containing 1% by weight each of products C and G in a paraflinic-type mineral lubricating oil of SAE-3O grade and a sample of the unblended base oil were submitted to adetergencyrtest designed to measure the effectiveness of theadditives for preventing harmful engine deposits in internal combustion engines. The test is conducted as follows: 100 g. of testoil 'are weighed into a clean, 300 cc. tall-form, open glass beaker provided with a stirrer. The beaker is placed in an oil bath maintained at a-temperature of 275 'F. After stirring the test oil for 10 minutes, 10 cc. of phorone and a measured amount of 10% sulfuric acid are added. The mixture is then stirred for one hour during which time a synthetic sludge is formed. The oil is poured off, the beaker-is rinsed with heptane, wiped with a clean cloth to remove loose deposits, dried and'then weighed to determine the amount of tenaciously adhering deposits'remaining in the beaker. The amount of tenaciously adhering deposits correlates with engine deposits formed in heavy duty internal combustion engines operating at relatively high temperatures.
Several runs were carried out on each blend in which the amount of sulfuric acid added was varied. From these data, the phorone number, which is defined as the cubic centimeters of 10% sulfuric acid required to form 10 mgs. of beaker deposits, is determined. A relatively high phorone number is indicative of an additive having good detergency characteristics- The results of the tests follow: TABLE.I.-PHORONE DETERGENCY TEST Beaker Deposit, mgs.
cc.ot10% H2804 Base Oil Base Oil Base Oil 1 a 1 a Product Product O G 48 3 p 22 0 39 0.5 2e 14 Phoronc N 0., ea. 10% 112804110 form 10 mg. beaker deposits 2 2. 1 0. 3
1 Not determined. 1 Obtained by interpolation of plotted data.
It. is seen from this test that Product C is approximately seven times more efl ective in detergency character? istics than Product G at a deposit level of 10 mg. Product G imparted substantially no beneficial detergency properties to the lubricant base stock.
Bearing Corrosion tests Blends containing 0.25 each of the products C and G in an acid-treated naphthenic-type mineral lubricating oil having a viscosity at F. of 355 SUS, and a sample of the unblended base oil, were submitted to a' corrosion test designed to measure the effectiveness of the products-in inhibiting the corrosiveness of a typical min-- eral lubricating oil toward the surfaces of copper-lead bearings. The test was conducted as follows: 500 cc. of the oil was placed in a glass oxidation tube (13 inches long and 2% inches in diameter) fitted at the bottom with a /1 inch air inlet tube perforated to facilitate air distribution. The oxidation tube was then immersed in a heating bath so that the oil temperature was maintained at 325 F during the test. Two quarter sections of automotive bearings of copper-lead alloy of known weight having a total area of 25 sq. cm. were attached to opposite sides of a stainless steel rod which was then immersed in the test'oil and rotated at 600 R. P. M., thus providing sufiicient agitation of the sample during the test. Air was then blown through the oil at therate of 2 cu. ft. per hour. At the end of each 4-hour period the hearings were removed, washed with naphtha and weighed to determine the amount of loss by corrosion. The bearings were then repolished (to increase-the'severity of the test) ,reweighed, and then subjected to the test for additional 4-hour periods in likemanner. The results are given in Table II as corrosion life, which indicates the number of hours 'required for the bearings to lose 100 mg. in weight, determined by interpolation of the data obtained in the various periods.
TABLEIL- t HOUR BEARING CORROSION TEST 4-Hour S. O. D. Life (Hrs. to lose 100 mg./25 sq. cm. Cu-Pb Bearing Surface) Blend Base Oil Base on +0.25% Product ml Base Oil +0.25% Product G H Product C is more than 3.5 times as effective as Product G as a corrosioninhibitor.
EXAMPLE 5.PREPARATION OF ISOPROPYL- AMINE SALT OF TERT.-OCTYL PHENOL SUL- FIDE TI-HOPHOSPHATE sulfide so prepared (containing 1.5 gram atoms of sulfur per mol), and 716 g. of a refined light lubricating oil of approximately SAE10 grade was heated in a 4 liter beaker until a homogeneous solution was obtained (90 C.). 111 g. of P285 was added and the reaction temperature was increased to 140 C. and maintained at this point for 4 hours, followed by filtration to remove a small amount of insoluble material. The filtrate was placed in a 4 liter beaker, and a solution of 118 g. of isopropylarnine in 300 g. of a refined light lubricating oil of approximately SAE-10 grade was added over a 2 hour period, with rapid stirring, the temperature being kept at 4050 C. by means of an ice bath. The product was then left on the steam bath overnight with nitrogen blowing, followed by filtration to remove a slight haze. The product was a dark red, viscous, practically odorless concentrate containing 1.86% phosphorus and 6.92% sulfur. The calculated values for a 40% concentrate of /P\ 0 O @SMQ CsHn CaHr! are 2.01% phosphorus and 7.32% sulfur.
A lubricant blend containing the product of this example was submitted to a bearing corrosion test conducted by the conditions described in Example IV. The base stock employed was an SAE grade paraflinic-type mineral lubricating oil having a bearing corrosion life of 10 hours. This base oil containing 0.25% by weight of the isopropyl amine salt of tert.-octyl phenol sulfide thiophosphate had a bearing corrosion life of 33 hours.
The products of the present invention may be employed not only in ordinary hydrocarbon lubricating oils but also in the heavy duty type of lubricating oils which have been compounded with such detergent type additives as metal soaps, metal petroleum sulfonates, metal phenates, metal alco'holates, metal alkyl phenol sulfides, metal organo phosphates, thiophosphates, phosphites and thiophosphites, metal salicylates, metal xanthates and thioxanthates, metal thiocarbamates, amines and amine derivatives, reaction products of metal phenates and sulfur, re action products of metal phenates and phosphorus sulfides, metal phenol sulfonates, and the like. Thus, the additives of the present invention may be used in lubrieating oils containing such other addition agents as bariurn tert.-octylphenol sulfide, calcium tert.-amylphenol sulfide, nickel oleate, barium stearate, calcium phenyl stearate, zinc diisopropyl salicylate, aluminum naphthenate, calcium cetyl phosphate, barium di-tert.-amylphenol sulfide, calcium petroleum sulfonate, zinc methyl cyclohexyl thiophosphate, calcium dichlorostearate, etc. Other types of additives such as phenols and phenol sulfides may be employed.
The lubricating oil base stocks used in the compositions of this invention may be straight mineral lubricating oils or distillates derived from paraflinic, naphthenic, asphaltic or mixed base crudes, or, if desired, various blended oils may be employed as well as residuals, particularly those from which asphaltic constituents have been carefully removed. The oils may be refined by conventional methods using acid, alkali and/or clay or other agents such as aluminum chloride, or they may be extracted oils produced, for example, by solvent extraction with solvents of the type of phenol, sulfur dioxide, furfural, dichlorod-iethyl ether, nitrobenzene, crotonaldehyde, etc. Hydrogenated oils or white oils may be employed as well as synthetic oils prepared, for example, by the polymerization of olefins or by the reaction of oxides of carbon with hydrogen or by the hydrogenation of coal or its products. In certain instances cracking coil tar fractions and coal tar or shale oil distillates may also be used. Also, for special application, animal, vegetable or fish oils or their hydrogenated or voltolized products may be employed in admixture with mineral oils.
For the best results the base stock chosen should normally be that oil which without the new additive present gives the optimum performance in the service contemplated. However, since one advantage of the additives is that their use also makes feasible the employment of less satisfactory mineral oils or other oils, no strict rule can be laid down for the choice of the base stock. Certain essentials must of course be observed. The oils must possess the viscosity and volatility characteristics known to be required for the service contemplated. The oil must be a satisfactory solvent for the additive, although in some cases auxiliary solvent agents may be used; 7 The lubricating oils, however they may have been produced, may vary considerably in viscosity and other properties depending upon the particular use for which they are desired, but they usually range from about 40 to 150 sec- 0nd Saybolt viscosity at 210 F. For the lubrication of certain low and medium speed diesel engines the general practice has often been to use a lubricating oil base stock prepared from naphthcnic or aromatic crudes and having a Saybolt viscosity at 210 F. of 45 to seconds and a viscosity index of 0 to 50. However, in certain types of diesel engine and other gasoline engine service, oils of higher viscosity index are often preferred, for example, up to 75 to 100, or even higher, viscosity index.
In addition to the material to be added according to the present invention, other agents may also be used such as dyes, pour depressors, heat thickened fatty oils,.sulfurized fatty oils, organo-metallic compounds, metallic or other soaps, sludge dispersers, antioxidants, thickeners, viscosity index improvers, oiliness agents, resins, rubber, olefin polymers, voltolized fats, voltolized oils, and/or voltolized waxes and colloidal solids such as graphite or zinc oxide, etc. Solvents and assisting agents, such as esters, ketones, alcohols, aldehydes, halogenated or nitrated compounds, and the like may also be employed.
Assisting agents which are particularly desirable as plasticizers and def oamers are the higher alcohols having eight or more carbon atoms and preferably 12 to 20 carbon atoms. The alcohols may be saturated straight and branched chain aliphatic alcohols such as octyl alcohol (CBHI'IOH), lauryl alcohol (C12H25OH), cetyl alcohol (CrsHzaOH), stearyl alcohol, sometimes referred to as octadecyl alcohol (C18H3'IOH), heptadecyl alcohol (C17H35OH), and the like, the corresponding olefinic alcohols such as oleyl alcohol; cyclic alcohols such as naphthenic alcohols; and aryl substituted alkyl alcohols,'for
instance, phenyl octyl alcohol, or octadecyl benzyl alcohol or mixtures of these various alcohols, which may be pure or substantially pure synthetic alcohols. One may also use mixed naturally occurring alcohols such as those found in wool fat (which is known to contain a substantial percentage of alcohols having about 16 to 18 carbon atoms) and in sperm oil (which contains a high percentage of cetyl alcohol); and although it is preferable to isolate the alcohols from those materials, for some purposes, the wool fat, sperm oil or other natural products rich in alcohols may be used per se. Products prepared synthetically by chemical processes may also be used, such as .alcohols prepared by the oxidation of petroleum hydrocarbons, e. g. paraflin wax, petrolatum, etc.
In addition to being employed in crankcase lubricants the additives of the present invention may also be used in extreme pressure lubricants, engine flushing oils, industrial oils, general machinery oils, process oils, rust preventive compositions and greases.
The additives of the present invention may be employed as antioxidant or stabilizing agents not only in mineral lubricating oils, but also in petroleum hydrocarbon products generally, where improved resistance to oxidation is desired. Thus the products may be added to motor oils, diesel fuels, kerosene, waxes, hydrocarbon polymers, etc. and other mineral oils.
The present invention is not to be considered as limited by any of the examples described herein, which are given by way of illustration only, but it is to be limited solely by the terms of the appended claims.
What is claimed is:
1. A lubricating oil composition comprising a major proportion of a mineral lubricating oil and a minor, oxi dation inhibiting amount of a product obtained by react- 10 ing about 2 moles of an alkyl phenol sulfide having the formula:
OH OH R S: R
where R is an alkyl group having in the range of about 4 to 20 carbon atoms and x represents an integer of about 1 to 3, with about 1 mole of P285 at a temperature of about to C. for about 2 to 4 hours, and thereafter reacting the resulting alkyl phenol sulfide-P285 reaction product with about 2 moles of a primary aliphatic amine, selected from the group consisting of n-butylamine and isopropylamine.
2. A lubricating oil composition comprising a major proportion of a mineral lubricating oil and about 0.1 to 2.0% by weight, based on the total composition, of a prodnot obtained by reacting about 2 moles of tert. octyl phenol sulfide with about 1 mole of P285 at a temperature of about 140 to 160 C. for about 2 to 4 hours, and thereafter reacting the resultant tert. octyl phenol sulfide-P285 reaction with about 2 moles of a primary aliphatic amine selected from the group consisting of n-butylarnine and isopropylamine.
References Cited in the file of this patent UNITED STATES PATENTS

Claims (1)

1. A LUBRICATING OIL COMPOSITION COMPRISING A MAJOR PROPORTION OF A MINERAL LUBRICATING OIL AND A MINOR, OXIDATION INHIBITING AMOUNT OF A PRODUCT OBTAINED BY REACTING ABOUT 2 MOLES OF AN ALKYL PHENOL SULFIDE HAVING THE FORMULA:
US329112A 1952-12-31 1952-12-31 Hydrocarbon oil products Expired - Lifetime US2766207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US329112A US2766207A (en) 1952-12-31 1952-12-31 Hydrocarbon oil products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US329112A US2766207A (en) 1952-12-31 1952-12-31 Hydrocarbon oil products

Publications (1)

Publication Number Publication Date
US2766207A true US2766207A (en) 1956-10-09

Family

ID=23283895

Family Applications (1)

Application Number Title Priority Date Filing Date
US329112A Expired - Lifetime US2766207A (en) 1952-12-31 1952-12-31 Hydrocarbon oil products

Country Status (1)

Country Link
US (1) US2766207A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3002014A (en) * 1958-07-30 1961-09-26 Monsanto Chemicals S-amine phosphorothioates
US3159578A (en) * 1960-02-26 1964-12-01 Shell Oil Co Organic functional fluids and polymeric amine salt additives therefor
US4377527A (en) * 1981-03-09 1983-03-22 Standard Oil Company (Indiana) Ammonia catalyzed preparation of zinc dihydrocarbyl dithiophosphates
US5102566A (en) * 1987-10-02 1992-04-07 Exxon Chemical Patents Inc. Low ash lubricant compositions for internal combustion engines (pt-727)
US5141657A (en) * 1987-10-02 1992-08-25 Exxon Chemical Patents Inc. Lubricant compositions for internal combustion engines
WO2001012761A1 (en) * 1999-08-17 2001-02-22 Exxonmobil Research And Engineering Company Crystal formation reduction in lubricating compositions
WO2001012762A1 (en) * 1999-08-17 2001-02-22 Exxonmobil Research And Engineering Company Crystal formation inhibition in lubricating compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2362624A (en) * 1943-01-21 1944-11-14 Standard Oil Co Lubricant
US2556963A (en) * 1946-07-15 1951-06-12 Gaudin Olivier Benzenes containing sulfur in their allylic or propenylic side chains and process of preparing them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2362624A (en) * 1943-01-21 1944-11-14 Standard Oil Co Lubricant
US2556963A (en) * 1946-07-15 1951-06-12 Gaudin Olivier Benzenes containing sulfur in their allylic or propenylic side chains and process of preparing them

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3002014A (en) * 1958-07-30 1961-09-26 Monsanto Chemicals S-amine phosphorothioates
US3159578A (en) * 1960-02-26 1964-12-01 Shell Oil Co Organic functional fluids and polymeric amine salt additives therefor
US4377527A (en) * 1981-03-09 1983-03-22 Standard Oil Company (Indiana) Ammonia catalyzed preparation of zinc dihydrocarbyl dithiophosphates
US5102566A (en) * 1987-10-02 1992-04-07 Exxon Chemical Patents Inc. Low ash lubricant compositions for internal combustion engines (pt-727)
US5141657A (en) * 1987-10-02 1992-08-25 Exxon Chemical Patents Inc. Lubricant compositions for internal combustion engines
WO2001012761A1 (en) * 1999-08-17 2001-02-22 Exxonmobil Research And Engineering Company Crystal formation reduction in lubricating compositions
WO2001012762A1 (en) * 1999-08-17 2001-02-22 Exxonmobil Research And Engineering Company Crystal formation inhibition in lubricating compositions

Similar Documents

Publication Publication Date Title
US2409687A (en) Sulfur and metal containing compound
US2451345A (en) Compounded lubricating oil
US2765289A (en) Corrosion inhibitors and compositions containing the same
US2760933A (en) Lubricants
US2719126A (en) Corrosion inhibitors and compositions containing same
US2749311A (en) Corrosion inhibitors and compositions containing the same
US2418894A (en) Compounded lubricating oil
US2552570A (en) Oxidation resisting hydrocarbon products
US2443264A (en) Compounded lubricating oil
US2471115A (en) Lubricating oil
US2516119A (en) Metal, phosphorus, and sulfur-containing organic compounds
US2415833A (en) Lubricant
US2645657A (en) Thiophosphate esters
US2451346A (en) Compounded lubricating oil
US2758971A (en) Blending agents for mineral oils
US2783204A (en) Corrosion preventing agent
US2658062A (en) Mineral oil additive
US2766207A (en) Hydrocarbon oil products
US2636858A (en) Mineral oil additive
US2689258A (en) Reaction of terpenes with thiophosphorous acid esters and products thereof
US2743235A (en) Mineral oil composition
US2420893A (en) Compounded lubricating oil
US2409726A (en) Lubricant composition
US2506310A (en) Lubricating oil composition
US3296137A (en) Lubricants containing aldehydohydrocarbon sulfides