US2763609A - Vulcanization of silicone rubber with high energy electrons - Google Patents
Vulcanization of silicone rubber with high energy electrons Download PDFInfo
- Publication number
- US2763609A US2763609A US291542A US29154252A US2763609A US 2763609 A US2763609 A US 2763609A US 291542 A US291542 A US 291542A US 29154252 A US29154252 A US 29154252A US 2763609 A US2763609 A US 2763609A
- Authority
- US
- United States
- Prior art keywords
- convertible
- organopolysiloxane
- electrons
- high energy
- vulcanization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004073 vulcanization Methods 0.000 title description 12
- 229920002379 silicone rubber Polymers 0.000 title description 11
- 239000004945 silicone rubber Substances 0.000 title description 10
- 229920001296 polysiloxane Polymers 0.000 claims description 59
- 239000007787 solid Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 6
- -1 etc. Chemical group 0.000 description 24
- 239000000945 filler Substances 0.000 description 22
- 239000003795 chemical substances by application Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 11
- 239000004965 Silica aerogel Substances 0.000 description 9
- 239000006229 carbon black Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 4
- 239000004342 Benzoyl peroxide Substances 0.000 description 3
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000019400 benzoyl peroxide Nutrition 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 125000003944 tolyl group Chemical group 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 2
- 210000001364 upper extremity Anatomy 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 241000129187 Melanerpes lewis Species 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 125000000068 chlorophenyl group Chemical group 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- IBDMRHDXAQZJAP-UHFFFAOYSA-N dichlorophosphorylbenzene Chemical compound ClP(Cl)(=O)C1=CC=CC=C1 IBDMRHDXAQZJAP-UHFFFAOYSA-N 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229940044631 ferric chloride hexahydrate Drugs 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- NQXWGWZJXJUMQB-UHFFFAOYSA-K iron trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].Cl[Fe+]Cl NQXWGWZJXJUMQB-UHFFFAOYSA-K 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000010058 rubber compounding Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/16—Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/10—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C71/00—After-treatment of articles without altering their shape; Apparatus therefor
- B29C71/04—After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0866—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
- B29C2035/0877—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2083/00—Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/46—Molding using an electrical heat
Definitions
- This invention relates to the curing or vulcanization of organopolysiloxanes convertible to the solid elastic state. More particularly, the invention is concerned with the curing of the aforesaid organopolysiloxanes by irradiation of the latter with high energy electrons.
- the vulcanization or curing of organopolysiloxanes to the solid elastic state has been efiected by means of curing agents such as benzoyl peroxide, tertiary butyl perbenzoate, etc., in combination With the application of heat.
- curing agents such as benzoyl peroxide, tertiary butyl perbenzoate, etc.
- the use of such curing agents is accompanied by the disadvantage that after the product is converted to the solid, elastic, substantially infusible and insoluble state, the presence of chemical residues of the aforesaid curing agents tends to afi'ect deleteriously some of the properties of the cured product, such as the heat-aging properties, the electrical properties, etc.
- a still further object is to vulcanize silicone rubber 1 nited States Patent 0 filled with fillers which cannot be satisfactorily cured by the use of the usual chemical curing agents.
- Another object of the invention is to effect vulcanization of organopolysiloxanes to the solid elastic state in varying degrees of depth which cannot be done by presently known methods.
- the convertible organopolysiloxane or silicone compositions which may be highly viscous masses, or gummy elastic solids, depending on the state of condensation, the condensing agent employed, the starting organopolysiloxane used to make the convertible organopolysiloxances, etc., will hereinafter be referred to as convertible organopolysiloxane or, more specifically, as convertible methylpolysiloxane.
- convertible organopolysiloxanes with which the present invention is concerned are well known, for purposes of showing persons skilled in the art the various convertible organopolysiloxanes which may be employed in the practice of the present 2,763,609 Patented Sept.
- the particular convertible organopolysiloxane used is not critical and may be any one of those described in the foregoing patents and generally obtained by condensing a liquid organopolysiloxane containing an average of from about 1.95 to 2.25, preferably from about 1.98 to about 2.05, silicon-bonded organic groups per silicon atom.
- the usual condensing agents which may be employed and which are well known in. the art may include, for instance, ferric chloride hexahydrate, phenyl phosphoryl chloride, alkaline condensing agents, such as potassium hydroxide, sodium hydroxide, etc.
- These convertible organopolysiloxanes generally comprise polymeric diorganosiloxanes which may contain, for example, 2 mol per cent copolymerized monorganosiloxane, for example, copolymerized monomethylsiloxane.
- polymeric diorganosiloxanes which may contain, for example, 2 mol per cent copolymerized monorganosiloxane, for example, copolymerized monomethylsiloxane.
- the starting liquid organopolysiloxane from which the convertible organopolysiloxanes are prepared one which contains about 1.999 to 2.01, inclusive, organic groups, for example, methyl groups per silicon atom Where more than about 90 per cent of the silicon atoms in the polysiloxane contain two silicon-bonded dialkyl groups.
- the starting organopolysiloxanes used to make the convertible organopolysiloxanes by condensation thereof preferably comprise organic substituents consisting essen tially of monovalent organic radicals attached to silicon through carbon-silicon linkages, there being on the average between 1.95 and 2.25 organic radicals per silicon atom, and in which the siloxane units consist of units of the structural formula RzSiO where R is preferably a radical of the group consisting of methyl and phenyl radicals. At least per cent of the total number of R groups are preferably methyl radicals.
- the polysiloxane may be one in which all of the siloxane units are (CH3)2SiO or the siloxane may be a copolymer of dimethylsiloxane and a minor amount (e. g., from 1 to 20 mol per cent) of any of the following units alone or in combination therewith: C6H5(CH3)SiO and (CsH5)2SiO.
- the convertible organopolysiloxane may be compounded with various fillers on ordinary rubber compounding rolls, for example, silica, silica aerogel, titanium dioxide, calcium silicate, ferric oxide, chromic oxide, cadmium sulfide, asbestos, glass fibers, calcium carbonate, carbon black, lithopone, talc, etc., and molded, extruded, cast or otherwise shaped prior to the irradiation with the high energy electrons to give a product which after irradiation has physical characteristics, e. g., elasticity, compressibility, etc., similar to those of natural rubber and other known synthetic rubbers and Whose strength properties are comparable with those of silicone rubbers cured by means of chemical vulcanization accelerators and heat.
- various fillers on ordinary rubber compounding rolls for example, silica, silica aerogel, titanium dioxide, calcium silicate, ferric oxide, chromic oxide, cadmium sulfide, asbestos, glass fibers, calcium carbonate, carbon black,
- Fig. 1 is a partially sectionalized, simplified view of apparatus useful in the practice of the invention
- Fig. 2 is a partially sectionalized view of alternative apparatus which may be employed to obtain, the desired results in accordance with the invention.
- high voltage apparatus 1 capable of producing a beam of high energy electrons. for irradiating the convertible organ polysiloxane in accordance with the invention.
- High voltage apparatus 1 may be of the type disclosed in United States Patent 2,144,518Westendorp, issued January 17, 1939, and assigned to the assignee of the present invention.
- this apparatus comprises a resonant system having an open-magnetic circuit inductance coil (not shown) which is positioned within a tank 2 and energized by a source of alternating voltage to generate high voltage across its extremities.
- a source of electrons which is maintained at the potential of the upper extremity of the inductance coil whereby a pulse of electrons is accelerated down envelope 3 once during each cycle of the energizing voltage when the upper extremity of the inductance coil is at a negative potential with respect to the lower end.
- an elongated metal tube 4 the upper portion 5 of which is hermetically sealed to a tank 2, as illustrated, by any convenient means such as silver solder.
- the lower portion 6 of. the tube 4 is conical in cross section to permit an increased angular spread of the electron beam.
- End-window 7 which may be hermetically sealed to. tube 4 by means of silver solder. End-window 7 should be thin enough to permit electrons of desired energy to pass therethrough but thick enough to withstand the force of atmospheric pressure.
- Stainless steel of about 0.002" thickness has been found satisfactory for use with electron energies of above 230,000 electron volts or greater because. this thickness of stainless steel stops electrons of lower energies. Beryllium and other materials of lower stopping power may also be advantageously employed.
- endwindow 7 in arcuate shape as shown, greater strength for resisting the force atmospheric pressure may be obtained for a given window thickness. Desired focusing of accelerated electrons may be secured by a magnetic field generating winding 8 energized by a source of'direct current 9 through a variable resistor 9.
- a platform 10 upon which the convertible organopolysiloxane 11 is positioned, is supported in the path of the electrons emerging from end-window 7 as illustrated.
- High energy electrons penetrate the convertible organopolysiloxane (preferably containing a filler) to a depth dependent upon the energy of the electrons and density of the material, and thus initiate curing or vulcanization to form the solid, elastic, substantially infusible and insoluble products of the present invention.
- Conversion of the organopolysiloxane to the vulcanized, solid, elastic state is essentially independent of the dose accumulation rate of electron irradiation but is dependent upon the total dose.
- dose accumulation rate is meant the number of roentgen units of electron irradiation per unit time applied to the organopolysiloxane.
- Total dose refers to the total number of roentgen units applied in the curing operation.
- a roentgen unit as usually defined, is the amount of radiation that produces one electrostatic unit of charge per cubic centimeter of air under standard temperature and pressure conditions, and as employed here, refers to the amount of electron radiation measured with an air-equivalent ionization chamber at the position of the surface of the convertible organopolysiloxane.
- the dependence of the cure upon total dose will be evident from the examples which are disclosed below.
- the total dose may be varied depending on the degree of cure desired, and the depth of cure may be changed as desired by varying the energy level of the electron irradiation.
- the actual degree of cure increases as the total dose is increased. In practice, it has been found that total doses of from about 2X10 roentgens (R) to 7 l0 R are desirable for most uses. However, total doses outside these limits may be employed where special applications are involved.
- KVP refersto the peak voltage in kilovolts generated by the inductance coil with high voltage apparatus 1 during the conducting half cycle, and thus is a measure of the energy of electrons emerging from the window 7).
- the irradiation dose was governed by the magnitude of the beam current, the position of the sample in the beam, and the length of time the sample was exposed to the beam.
- the actual determination of the rate of accumulation of dose in R/sec. at the sample position in question was. determined by means of an air-equivalent ionization chamber. For example, in carrying out the tests described below, it was possible to realize a total dose of 2.5X10 R in 17.5 seconds at a distance of 10 cm. from the window of the accelerating tube with a beam current of microamperes.
- the passage of the extruded composition through the beam was at a constant rate, this extrusion rate being fixed so that, for a particular beam current and location or position in the beam, the material remained exposed to the beam of electrons long enough to accumulate the total dose which was desired for curing.
- EXAMPLE 1 In this example, essentially pure octamethylcyclotetrasiloxane was condensed at a temperature of about C. with 0.01 per cent, by weight, thereof KOH to give a highly viscous, substantially non-flowable, convertible polymeric dimethylsiloxane.
- convertible organopolysiloxane was thereafter filled with various fillers, for example, silica aerogel, carbon black and lignin, and molded at room temperature into flat sheets and placed at about 10 cm. distance from the window of the apparatus described in Fig. 1 and irradiated with the high energy electrons.
- the penetration of the electrons is directly proportional to the voltage and inversely proportional to the density of the material so that for a 3,000 kv. machine, total penetration is equivalent to about 13 mm. of water or for a density of 1.5, which is approximately that of the silicone rubber filled with silica aerogel, is about 9 mm.
- machines operating, for instance, at voltages up to 3,000 kv. and about 10 milliamperes beam current it is possible to cure larger quantities of material and at a fast rate.
- Threads of polymeric dimethylsiloxane containing the carbon black filler referred to above and free of any chemical curing agent have been extruded and passed by the exit window of the electron acceleration employed for effecting cure of the various silicone rubber composition-s described in Example 1, to yield a cured silicone rubber thread (0.030 diameter) which was cured as fast as it was being extruded.
- the material was cured at a rate of about 0.6" per second and at a total dose of approximately 3X10 R using the apparatus described above.
- EXAMPLE 2 100 parts of the convertible polymeric dimethylsiloxane described in Example 1 containing 50 parts, by weight, carbon black (Statex 93), was extruded in the form of a thin :wall tubing whose wall thickness was about 0.012" and outside diameter about A.
- the tube was electron cured as it was being extruded at a rate of about 0.1" per second.
- the average curing dose was about BXIO R.
- the tubing was completely cured and was substantially infusible and insoluble.
- chemical curing agents would be quite difiic-ult, especially since such thin wall tubing would normally collapse before complete cure could be effected.
- This cured tube was quite heat resistant and even after many hours at elevated temperatures was extremely flexible.
- Fig. 2 Continuous vulcanization of extruded convertible organopolysiloxanes may be obtained with apparatus such as that illustrated in Fig. 2 wherein similar numerals are utilized to identify like elements hereinbefore described.
- the convertible organopolysiloxane 12 is extruded from an extruder 13 in the shape of the orifice of the die and continuously positioned upon a moving belt 14 which may comprise, for example, a continuous thin sheet of metal, such as stainless steel about 0.002" in thickness, extending around pulleys 15 and 16.
- One of the pulleys may be connected to a driven shaft (not shown) so that the convertible organopolysilox-ane after being positioned upon the moving belt, passes under endwindow 7 as is indicated by arrow '17 and is irradiated by high energy electrons, and thereafter passes off the moving belt in the direction of the arrow at 18.
- convertible organopolysiloxane may be produced containing, for instance, from 0 to about 150 per cent, by weight, filler based on the entire weight of filled material.
- the filler (when used) on a weight basis may be employed in an amount equal to from about 0.15 to 3 parts of filler per part of convertible organopolysiloxane, for example, convertible polydimethylsiloxane.
- the amount of such filler which may advantageously be used with the convertible organopolysiloxane is much less than usual fillers.
- the amount of silica aerogel which may be tolerated in the filler composition is generally below 50 to 60 parts of the silica aerogel filler per parts of the convertible organopolysiloxane.
- the rate of treatment that is, the dosage rate accumulation or the electron impingement rate, and the time of treatment or the rate at which the convertible organopolysiloxane has moved past the point at which irradiation is being carried out, etc., may be varied widely without departing from the scope of the invention.
- Such products can be used as tapes which can be wrapped around, for instance, conductors, and thereafter subjected to further curing, for instance, electron irradiation, whereby the uncured portion is caused to become vulcanized in place using the wrapping force as means for pressure instead of using expensive molds for the purpose.
- the presently described invention for rapid intermediate precures
- convertible organopolysiloxanes containing curing agents e. g., benzoyl peroxide, etc, incorporated therein.
- curing agents e. g., benzoyl peroxide, etc
- the products of this invention are useful in applications, such as, for instance, tubing, electrical insulation (e. g., as conductor insulation, etc), shock absorbers, etc. They are particularly useful as gaskets in applications involving high temperatureconditions, especially in those places where they may be subjected to the effects of halogenated hydrocarbons as insulating media, namely, in the manufacture of capacitors. Because of their improved heat resistance, they are valuable as materials for use in applications where natural or other synthetic rubbers may fail owing to the deleterious effect of heat. Elastomers produced by the practice of our invention have the additional property of retaining their flexibility at low temperatures, for example, at temperatures as low as at least minus 60 C.
Landscapes
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE520402D BE520402A (enrdf_load_html_response) | 1952-06-03 | ||
DENDAT1050993D DE1050993B (de) | 1952-06-03 | Verfahren zur Überführung von Polysiloxan in den festen elastischen Zustand | |
US291542A US2763609A (en) | 1952-06-03 | 1952-06-03 | Vulcanization of silicone rubber with high energy electrons |
GB15194/53A GB757024A (en) | 1952-06-03 | 1953-06-01 | Improvements in and relating to the vulcanization of silicone rubber |
FR1080171D FR1080171A (fr) | 1952-06-03 | 1953-06-02 | Vulcanisation des caoutchoucs de silicone par des électrons de grande énergie |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US291542A US2763609A (en) | 1952-06-03 | 1952-06-03 | Vulcanization of silicone rubber with high energy electrons |
Publications (1)
Publication Number | Publication Date |
---|---|
US2763609A true US2763609A (en) | 1956-09-18 |
Family
ID=23120728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US291542A Expired - Lifetime US2763609A (en) | 1952-06-03 | 1952-06-03 | Vulcanization of silicone rubber with high energy electrons |
Country Status (5)
Country | Link |
---|---|
US (1) | US2763609A (enrdf_load_html_response) |
BE (1) | BE520402A (enrdf_load_html_response) |
DE (1) | DE1050993B (enrdf_load_html_response) |
FR (1) | FR1080171A (enrdf_load_html_response) |
GB (1) | GB757024A (enrdf_load_html_response) |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2900277A (en) * | 1955-02-08 | 1959-08-18 | Gen Electric | Process of applying protective coatings by means of high energy electrons |
US2907884A (en) * | 1955-06-14 | 1959-10-06 | High Voltage Engineering Corp | Compact neutron source |
US2914450A (en) * | 1955-01-11 | 1959-11-24 | Gen Electric | Process for irradiating flat stock organic polymers |
US2933441A (en) * | 1957-10-14 | 1960-04-19 | Astra Inc | Process of making rubber articles |
US2936261A (en) * | 1955-05-18 | 1960-05-10 | Gen Electric | Sealing irradiated polyethylene |
US2956904A (en) * | 1954-11-04 | 1960-10-18 | Minnesota Mining & Mfg | Pressure-sensitive adhesive tapes |
US2959531A (en) * | 1956-08-01 | 1960-11-08 | Phillips Petroleum Co | Solid resins from irradiated epoxidized liquid conjugated diene polymers |
US2959569A (en) * | 1956-07-05 | 1960-11-08 | Dow Corning | Method of preparing organosilicon graft polymers |
US2963747A (en) * | 1957-05-15 | 1960-12-13 | Western Electric Co | Method of plastic encapsulation using irradiation |
US2964457A (en) * | 1957-06-28 | 1960-12-13 | Phillips Petroleum Co | Silica reinforced rubber |
US2969327A (en) * | 1958-07-23 | 1961-01-24 | Du Pont | Dielectric heat sealing blanket |
US2975088A (en) * | 1956-02-29 | 1961-03-14 | Allis Chalmers Mfg Co | Unsupported silicone rubber electrical insulation and method of preparing same |
US2987431A (en) * | 1956-08-31 | 1961-06-06 | Buchler Franz | Method of manufacturing panels and panel so produced |
US2997418A (en) * | 1956-10-18 | 1961-08-22 | Gen Electric | Cold welding of organopolysiloxanes |
US2997419A (en) * | 1956-10-18 | 1961-08-22 | Gen Electric | Cold welding of polyester resins |
US3006830A (en) * | 1957-05-31 | 1961-10-31 | Dow Chemical Co | Method for improving the dyeability of fiber-forming cellulose esters |
US3007859A (en) * | 1956-08-15 | 1961-11-07 | Phillips Petroleum Co | Atomic reactor |
US3012001A (en) * | 1957-03-06 | 1961-12-05 | Us Rubber Co | Composition of vinyl chloride polymer plus two unsaturated monomers |
US3027312A (en) * | 1958-05-29 | 1962-03-27 | Phillips Petroleum Co | Irradiation of tubular materials |
US3037010A (en) * | 1957-11-27 | 1962-05-29 | Du Pont | Polymeric perfluoro-2-butyne |
US3056735A (en) * | 1955-10-07 | 1962-10-02 | S J Chemical Company | Method of adhering cured silicone rubber |
US3061001A (en) * | 1958-09-12 | 1962-10-30 | Zink Co John | Gaseous fuel burner |
US3061531A (en) * | 1957-03-06 | 1962-10-30 | Us Rubber Co | Irradiation of vinyl chloride polymer plus two unsaturated monomers |
US3061483A (en) * | 1956-11-23 | 1962-10-30 | Harold W Coles | Coating of metal with layers of titanium esters and a polymer by exposure to high energy irradiation |
US3065158A (en) * | 1958-01-27 | 1962-11-20 | Dow Corning | Method of vulcanizing organosiloxanes |
US3069378A (en) * | 1957-08-16 | 1962-12-18 | Gen Electric | Covulcanizate of fluorinated polyacrylate elastomer and organopolysi-loxane gum |
US3080990A (en) * | 1961-03-10 | 1963-03-12 | Vir Tis Co Inc | Freeze-drying flasks |
US3081485A (en) * | 1958-11-20 | 1963-03-19 | Steigerwald Karl Heinz | Process and apparatus for treating synthetic plastic materials |
US3090738A (en) * | 1954-08-18 | 1963-05-21 | Dow Corning | Method of curing organosilicon compounds |
US3098808A (en) * | 1958-04-14 | 1963-07-23 | Phillips Petroleum Co | Promotion of high energy radiation effects in polymeric materials |
US3123511A (en) * | 1964-03-03 | Radioactive treatment of insulating materials | ||
US3144399A (en) * | 1958-06-16 | 1964-08-11 | Grace W R & Co | Polyethylene product |
US3158991A (en) * | 1958-04-24 | 1964-12-01 | Dal Mon Research Co | Irradiated polymeric propellants and process of rocket propulsion |
US3179546A (en) * | 1958-12-03 | 1965-04-20 | Dow Corning | Method of bonding silicone rubber to other materials |
US3203169A (en) * | 1958-04-24 | 1965-08-31 | Dal Mon Research Co | Irradiated polymers and propulsion process |
US3681786A (en) * | 1970-07-13 | 1972-08-08 | Medical Eng Corp | Solid human prosthesis of varying consistency |
US3807052A (en) * | 1972-06-26 | 1974-04-30 | Union Carbide Corp | Apparatus for irradiation of a moving product in an inert atmosphere |
US3959053A (en) * | 1974-08-05 | 1976-05-25 | The Goodyear Tire & Rubber Company | Surface treatment of tires to reduce flash |
DE2543514A1 (de) | 1975-09-30 | 1977-04-07 | Thagard Technology Co | Verfahren zur durchfuehrung chemischer reaktionen bei hohen temperaturen, hierfuer geeigneter reaktionsapparat und dessen anwendung |
US4158617A (en) * | 1976-03-08 | 1979-06-19 | General Motors Corporation | Radiation cured and monomer modified silicon elastomers |
US4362674A (en) * | 1980-11-28 | 1982-12-07 | High Voltage Engineering Corporation | Process for making radiation cured silicone rubber articles |
US4490314A (en) * | 1980-11-28 | 1984-12-25 | High Voltage Engineering Corporation | Radiation cured silicone rubber articles |
US4534889A (en) * | 1976-10-15 | 1985-08-13 | Raychem Corporation | PTC Compositions and devices comprising them |
US4737324A (en) * | 1986-11-07 | 1988-04-12 | Jmk International, Inc. | Method of forming spark plug boots with radiation cure |
US4775778A (en) * | 1976-10-15 | 1988-10-04 | Raychem Corporation | PTC compositions and devices comprising them |
US4865905A (en) * | 1983-06-23 | 1989-09-12 | Raychem Corporation | Article for protection of a substrate |
US5066755A (en) * | 1984-05-11 | 1991-11-19 | Stamicarbon B.V. | Novel irradiated polyethylene filaments tapes and films and process therefor |
US5466144A (en) * | 1992-12-21 | 1995-11-14 | Johnson & Johnson Vision Products, Inc. | Apparatus for treating an ophthalmic lens mold |
WO1996027430A1 (de) * | 1995-03-04 | 1996-09-12 | Gkss-Forschungszentrum Geesthacht Gmbh | Strahlenchemisch modifizierte silikonkompositmembran für die ultrafiltration |
EP1234846A4 (en) * | 2000-06-15 | 2003-06-25 | China Petroleum & Chemical | SILICONE IN THE FORM OF FINE SULFIDE POWDER, PROCESS FOR PREPARING SAME AND APPLICATIONS THEREOF |
US20110206924A1 (en) * | 2008-10-29 | 2011-08-25 | Liu Junkang J | Electron beam cured, nonfunctionalized silicone pressure sensitive adhesives |
US20110206923A1 (en) * | 2008-10-29 | 2011-08-25 | Liu Junkang J | Electron beam cured silicone materials |
US20110212325A1 (en) * | 2008-10-29 | 2011-09-01 | Determan Michael D | Gentle to skin adhesive |
US8822560B2 (en) | 2008-10-29 | 2014-09-02 | 3M Innovative Properties Company | Electron beam cured silicone release materials |
WO2015143065A1 (en) * | 2014-03-18 | 2015-09-24 | Immunolight, Llc | Improved adhesive bonding composition and method of use |
US10087343B2 (en) | 2007-08-06 | 2018-10-02 | Immunolight, Llc | Adhesive bonding composition and method of use |
US10202721B2 (en) | 2010-04-29 | 2019-02-12 | 3M Innovative Properties Company | Electron beam cured siliconized fibrous webs |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4273634A (en) * | 1979-11-14 | 1981-06-16 | Dow Corning Corporation | Precured silicone emulsion and method for preparation |
FR2821865B1 (fr) * | 2001-03-08 | 2003-08-15 | Ferrari S Tissage & Enduct Sa | Cable elastique tendeur |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB299735A (en) * | 1927-05-30 | 1928-10-30 | Hermann Plauson | Process and apparatus for producing rapidly moving electrons and for subjecting matter thereto |
US2350330A (en) * | 1938-09-28 | 1944-06-06 | Theron P Remy | Treatment of hydrocarbons with radioactive materials |
US2405019A (en) * | 1943-10-05 | 1946-07-30 | Plax Corp | Process of making organo-silicon compounds containing a c-si bond |
US2448556A (en) * | 1947-01-16 | 1948-09-07 | Gen Electric | Synthetic elastic and elastomeric products |
US2484595A (en) * | 1947-01-16 | 1949-10-11 | Gen Electric | Synthetic elastic and elastomeric products |
US2516848A (en) * | 1945-10-09 | 1950-08-01 | Electronized Chem Corp | Method of producing butadiene from petroleum and petroleum fractions |
-
0
- BE BE520402D patent/BE520402A/xx unknown
- DE DENDAT1050993D patent/DE1050993B/de active Pending
-
1952
- 1952-06-03 US US291542A patent/US2763609A/en not_active Expired - Lifetime
-
1953
- 1953-06-01 GB GB15194/53A patent/GB757024A/en not_active Expired
- 1953-06-02 FR FR1080171D patent/FR1080171A/fr not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB299735A (en) * | 1927-05-30 | 1928-10-30 | Hermann Plauson | Process and apparatus for producing rapidly moving electrons and for subjecting matter thereto |
US2350330A (en) * | 1938-09-28 | 1944-06-06 | Theron P Remy | Treatment of hydrocarbons with radioactive materials |
US2405019A (en) * | 1943-10-05 | 1946-07-30 | Plax Corp | Process of making organo-silicon compounds containing a c-si bond |
US2516848A (en) * | 1945-10-09 | 1950-08-01 | Electronized Chem Corp | Method of producing butadiene from petroleum and petroleum fractions |
US2448556A (en) * | 1947-01-16 | 1948-09-07 | Gen Electric | Synthetic elastic and elastomeric products |
US2484595A (en) * | 1947-01-16 | 1949-10-11 | Gen Electric | Synthetic elastic and elastomeric products |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123511A (en) * | 1964-03-03 | Radioactive treatment of insulating materials | ||
US3090738A (en) * | 1954-08-18 | 1963-05-21 | Dow Corning | Method of curing organosilicon compounds |
US2956904A (en) * | 1954-11-04 | 1960-10-18 | Minnesota Mining & Mfg | Pressure-sensitive adhesive tapes |
US2914450A (en) * | 1955-01-11 | 1959-11-24 | Gen Electric | Process for irradiating flat stock organic polymers |
US2900277A (en) * | 1955-02-08 | 1959-08-18 | Gen Electric | Process of applying protective coatings by means of high energy electrons |
US2936261A (en) * | 1955-05-18 | 1960-05-10 | Gen Electric | Sealing irradiated polyethylene |
US2907884A (en) * | 1955-06-14 | 1959-10-06 | High Voltage Engineering Corp | Compact neutron source |
US3056735A (en) * | 1955-10-07 | 1962-10-02 | S J Chemical Company | Method of adhering cured silicone rubber |
US2975088A (en) * | 1956-02-29 | 1961-03-14 | Allis Chalmers Mfg Co | Unsupported silicone rubber electrical insulation and method of preparing same |
US2959569A (en) * | 1956-07-05 | 1960-11-08 | Dow Corning | Method of preparing organosilicon graft polymers |
US2959531A (en) * | 1956-08-01 | 1960-11-08 | Phillips Petroleum Co | Solid resins from irradiated epoxidized liquid conjugated diene polymers |
US3007859A (en) * | 1956-08-15 | 1961-11-07 | Phillips Petroleum Co | Atomic reactor |
US2987431A (en) * | 1956-08-31 | 1961-06-06 | Buchler Franz | Method of manufacturing panels and panel so produced |
US2997419A (en) * | 1956-10-18 | 1961-08-22 | Gen Electric | Cold welding of polyester resins |
US2997418A (en) * | 1956-10-18 | 1961-08-22 | Gen Electric | Cold welding of organopolysiloxanes |
US3061483A (en) * | 1956-11-23 | 1962-10-30 | Harold W Coles | Coating of metal with layers of titanium esters and a polymer by exposure to high energy irradiation |
US3012001A (en) * | 1957-03-06 | 1961-12-05 | Us Rubber Co | Composition of vinyl chloride polymer plus two unsaturated monomers |
US3061531A (en) * | 1957-03-06 | 1962-10-30 | Us Rubber Co | Irradiation of vinyl chloride polymer plus two unsaturated monomers |
US2963747A (en) * | 1957-05-15 | 1960-12-13 | Western Electric Co | Method of plastic encapsulation using irradiation |
US3006830A (en) * | 1957-05-31 | 1961-10-31 | Dow Chemical Co | Method for improving the dyeability of fiber-forming cellulose esters |
US2964457A (en) * | 1957-06-28 | 1960-12-13 | Phillips Petroleum Co | Silica reinforced rubber |
US3069378A (en) * | 1957-08-16 | 1962-12-18 | Gen Electric | Covulcanizate of fluorinated polyacrylate elastomer and organopolysi-loxane gum |
US2933441A (en) * | 1957-10-14 | 1960-04-19 | Astra Inc | Process of making rubber articles |
US3037010A (en) * | 1957-11-27 | 1962-05-29 | Du Pont | Polymeric perfluoro-2-butyne |
US3065158A (en) * | 1958-01-27 | 1962-11-20 | Dow Corning | Method of vulcanizing organosiloxanes |
US3098808A (en) * | 1958-04-14 | 1963-07-23 | Phillips Petroleum Co | Promotion of high energy radiation effects in polymeric materials |
US3203169A (en) * | 1958-04-24 | 1965-08-31 | Dal Mon Research Co | Irradiated polymers and propulsion process |
US3158991A (en) * | 1958-04-24 | 1964-12-01 | Dal Mon Research Co | Irradiated polymeric propellants and process of rocket propulsion |
US3027312A (en) * | 1958-05-29 | 1962-03-27 | Phillips Petroleum Co | Irradiation of tubular materials |
US3144399A (en) * | 1958-06-16 | 1964-08-11 | Grace W R & Co | Polyethylene product |
US2969327A (en) * | 1958-07-23 | 1961-01-24 | Du Pont | Dielectric heat sealing blanket |
US3061001A (en) * | 1958-09-12 | 1962-10-30 | Zink Co John | Gaseous fuel burner |
US3081485A (en) * | 1958-11-20 | 1963-03-19 | Steigerwald Karl Heinz | Process and apparatus for treating synthetic plastic materials |
US3179546A (en) * | 1958-12-03 | 1965-04-20 | Dow Corning | Method of bonding silicone rubber to other materials |
US3080990A (en) * | 1961-03-10 | 1963-03-12 | Vir Tis Co Inc | Freeze-drying flasks |
US3681786A (en) * | 1970-07-13 | 1972-08-08 | Medical Eng Corp | Solid human prosthesis of varying consistency |
US3807052A (en) * | 1972-06-26 | 1974-04-30 | Union Carbide Corp | Apparatus for irradiation of a moving product in an inert atmosphere |
US3959053A (en) * | 1974-08-05 | 1976-05-25 | The Goodyear Tire & Rubber Company | Surface treatment of tires to reduce flash |
DE2543514A1 (de) | 1975-09-30 | 1977-04-07 | Thagard Technology Co | Verfahren zur durchfuehrung chemischer reaktionen bei hohen temperaturen, hierfuer geeigneter reaktionsapparat und dessen anwendung |
US4158617A (en) * | 1976-03-08 | 1979-06-19 | General Motors Corporation | Radiation cured and monomer modified silicon elastomers |
US4534889A (en) * | 1976-10-15 | 1985-08-13 | Raychem Corporation | PTC Compositions and devices comprising them |
US4775778A (en) * | 1976-10-15 | 1988-10-04 | Raychem Corporation | PTC compositions and devices comprising them |
US4362674A (en) * | 1980-11-28 | 1982-12-07 | High Voltage Engineering Corporation | Process for making radiation cured silicone rubber articles |
US4490314A (en) * | 1980-11-28 | 1984-12-25 | High Voltage Engineering Corporation | Radiation cured silicone rubber articles |
US4865905A (en) * | 1983-06-23 | 1989-09-12 | Raychem Corporation | Article for protection of a substrate |
US5066755A (en) * | 1984-05-11 | 1991-11-19 | Stamicarbon B.V. | Novel irradiated polyethylene filaments tapes and films and process therefor |
US4737324A (en) * | 1986-11-07 | 1988-04-12 | Jmk International, Inc. | Method of forming spark plug boots with radiation cure |
US5466144A (en) * | 1992-12-21 | 1995-11-14 | Johnson & Johnson Vision Products, Inc. | Apparatus for treating an ophthalmic lens mold |
WO1996027430A1 (de) * | 1995-03-04 | 1996-09-12 | Gkss-Forschungszentrum Geesthacht Gmbh | Strahlenchemisch modifizierte silikonkompositmembran für die ultrafiltration |
EP1234846A4 (en) * | 2000-06-15 | 2003-06-25 | China Petroleum & Chemical | SILICONE IN THE FORM OF FINE SULFIDE POWDER, PROCESS FOR PREPARING SAME AND APPLICATIONS THEREOF |
US6838490B2 (en) | 2000-06-15 | 2005-01-04 | China Petroleum & Chemical Corporation | Silicone rubber in the form of a finely divided powder, method for the production and the use of the same |
US10087343B2 (en) | 2007-08-06 | 2018-10-02 | Immunolight, Llc | Adhesive bonding composition and method of use |
US8541481B2 (en) | 2008-10-29 | 2013-09-24 | 3M Innovative Properties Company | Gentle to skin adhesive |
US20110212325A1 (en) * | 2008-10-29 | 2011-09-01 | Determan Michael D | Gentle to skin adhesive |
US20110206923A1 (en) * | 2008-10-29 | 2011-08-25 | Liu Junkang J | Electron beam cured silicone materials |
US8822560B2 (en) | 2008-10-29 | 2014-09-02 | 3M Innovative Properties Company | Electron beam cured silicone release materials |
US8822559B2 (en) | 2008-10-29 | 2014-09-02 | 3D Innovative Properties Company | Electron beam cured silicone release materials |
US9017771B2 (en) | 2008-10-29 | 2015-04-28 | 3M Innovative Properties Company | Gentle to skin adhesive |
US9359529B2 (en) | 2008-10-29 | 2016-06-07 | 3M Innovative Properties Company | Electron beam cured silicone materials |
EP2350220B1 (en) | 2008-10-29 | 2017-04-12 | 3M Innovative Properties Company | Electron beam cured silicone materials |
US20110206924A1 (en) * | 2008-10-29 | 2011-08-25 | Liu Junkang J | Electron beam cured, nonfunctionalized silicone pressure sensitive adhesives |
US10202721B2 (en) | 2010-04-29 | 2019-02-12 | 3M Innovative Properties Company | Electron beam cured siliconized fibrous webs |
US11001962B2 (en) | 2010-04-29 | 2021-05-11 | 3M Innovative Properties Company | Electron beam cured siliconized fibrous webs |
WO2015143065A1 (en) * | 2014-03-18 | 2015-09-24 | Immunolight, Llc | Improved adhesive bonding composition and method of use |
US11345833B2 (en) | 2014-03-18 | 2022-05-31 | Immunolight, Llc | Adhesive bonding composition and method of use |
Also Published As
Publication number | Publication date |
---|---|
BE520402A (enrdf_load_html_response) | 1900-01-01 |
GB757024A (en) | 1956-09-12 |
FR1080171A (fr) | 1954-12-07 |
DE1050993B (de) | 1959-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2763609A (en) | Vulcanization of silicone rubber with high energy electrons | |
US2948666A (en) | Irradiation process | |
US2921006A (en) | Polymerization with high energy electrons | |
US3563870A (en) | Melt strength and melt extensibility of irradiated linear polyethylene | |
Du et al. | Dynamic behavior of surface charge on direct-fluorinated polyimide films | |
US2888419A (en) | Polyethylene composition containing organopolysiloxane resin | |
US3179546A (en) | Method of bonding silicone rubber to other materials | |
US3050490A (en) | Boron nitride containing self-adhering | |
US3677877A (en) | Article of silicone rubber having surfaces resistant to dirt pick-up | |
US2997419A (en) | Cold welding of polyester resins | |
US3006463A (en) | Self-fusing tape | |
Stelescu et al. | Exploring the effect of electron beam irradiation on the properties of some EPDM‐flax fiber composites | |
US3050491A (en) | Method of preparing self-adhering organopolysiloxane elastomers | |
US3084114A (en) | Irradiated filler-containing polyethylene | |
US2904481A (en) | Solid state polymerization | |
US3065158A (en) | Method of vulcanizing organosiloxanes | |
US2997418A (en) | Cold welding of organopolysiloxanes | |
US3116226A (en) | Irradiation of fluorocarbon copoluymers | |
US2858259A (en) | Electron irradiation of preformed polyamide resin | |
US4362674A (en) | Process for making radiation cured silicone rubber articles | |
US2945792A (en) | Polyolefins | |
US3056735A (en) | Method of adhering cured silicone rubber | |
US2924559A (en) | Polyethylene blend | |
US3090738A (en) | Method of curing organosilicon compounds | |
US2979482A (en) | Organopolysiloxanes stabilized with ferrocene and ferrocene derivatives |