US2760906A - Desulfurization of hydrocarbon oils with vanadium oxide catalyst in the presence of naphthenes - Google Patents
Desulfurization of hydrocarbon oils with vanadium oxide catalyst in the presence of naphthenes Download PDFInfo
- Publication number
- US2760906A US2760906A US245076A US24507651A US2760906A US 2760906 A US2760906 A US 2760906A US 245076 A US245076 A US 245076A US 24507651 A US24507651 A US 24507651A US 2760906 A US2760906 A US 2760906A
- Authority
- US
- United States
- Prior art keywords
- sulfur
- catalyst
- naphthenes
- hydrogen
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 title claims description 48
- 229930195733 hydrocarbon Natural products 0.000 title claims description 14
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 14
- 238000006477 desulfuration reaction Methods 0.000 title claims description 8
- 230000023556 desulfurization Effects 0.000 title claims description 8
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 title claims description 7
- 229910001935 vanadium oxide Inorganic materials 0.000 title claims description 7
- 239000003921 oil Substances 0.000 title description 8
- 239000004215 Carbon black (E152) Substances 0.000 title description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 54
- 229910052717 sulfur Inorganic materials 0.000 claims description 54
- 239000011593 sulfur Substances 0.000 claims description 54
- 238000006243 chemical reaction Methods 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- 239000001257 hydrogen Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 230000003197 catalytic effect Effects 0.000 claims description 6
- 239000012808 vapor phase Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims description 3
- 150000003682 vanadium compounds Chemical class 0.000 claims description 3
- 239000008246 gaseous mixture Substances 0.000 claims description 2
- 239000000047 product Substances 0.000 description 15
- 150000002431 hydrogen Chemical class 0.000 description 14
- 239000000852 hydrogen donor Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 239000003208 petroleum Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 238000005984 hydrogenation reaction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 6
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 6
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000006276 transfer reaction Methods 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- 238000006555 catalytic reaction Methods 0.000 description 4
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000003518 caustics Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 230000003009 desulfurizing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 150000003464 sulfur compounds Chemical class 0.000 description 3
- 229930192474 thiophene Natural products 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- CETBSQOFQKLHHZ-UHFFFAOYSA-N Diethyl disulfide Chemical compound CCSSCC CETBSQOFQKLHHZ-UHFFFAOYSA-N 0.000 description 2
- XAQHXGSHRMHVMU-UHFFFAOYSA-N [S].[S] Chemical compound [S].[S] XAQHXGSHRMHVMU-UHFFFAOYSA-N 0.000 description 2
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 2
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical compound CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 150000002019 disulfides Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003577 thiophenes Chemical class 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- JOZDADPMWLVEJK-UHFFFAOYSA-N 1-pentylsulfanylpentane Chemical compound CCCCCSCCCCC JOZDADPMWLVEJK-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- HTIRHQRTDBPHNZ-UHFFFAOYSA-N Dibutyl sulfide Chemical compound CCCCSCCCC HTIRHQRTDBPHNZ-UHFFFAOYSA-N 0.000 description 1
- ZERULLAPCVRMCO-UHFFFAOYSA-N Dipropyl sulfide Chemical compound CCCSCCC ZERULLAPCVRMCO-UHFFFAOYSA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ZQRGREQWCRSUCI-UHFFFAOYSA-N [S].C=1C=CSC=1 Chemical compound [S].C=1C=CSC=1 ZQRGREQWCRSUCI-UHFFFAOYSA-N 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- KYYSIVCCYWZZLR-UHFFFAOYSA-N cobalt(2+);dioxido(dioxo)molybdenum Chemical compound [Co+2].[O-][Mo]([O-])(=O)=O KYYSIVCCYWZZLR-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- ALTWGIIQPLQAAM-UHFFFAOYSA-N metavanadate Chemical compound [O-][V](=O)=O ALTWGIIQPLQAAM-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 235000016768 molybdenum Nutrition 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 235000020004 porter Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/24—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with hydrogen-generating compounds
- C10G45/28—Organic compounds; Autofining
- C10G45/30—Organic compounds; Autofining characterised by the catalyst used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
- B01J23/22—Vanadium
Definitions
- the present invention relates to the treatment of sulfurcontaining organic materials, in particular, sulfur-bearing hydrocarbon material, to desulfurize the same. More particularly, the present invention relates to the desulfurization of sulfur-containing petroleum fractions, in particular fractions containing ring type sulfur compounds.
- Sulfur occurs in petroleum stocks, generally i'n two main forms, as mercaptans and as part of a more or less substituted ring, of which thiophenef is the prototype.
- the former type is generally found in the lower boiling fractions, in the naphtha, kerosene, and light gas oil material, whereas the ring-sulfur compounds form the bulk of the sulfur-bearing material of the higher boiling petroleum fraction.
- the present invention relates to a novel process for removing catalytically sulfur of the ring type from sulfurcontaining crude and distillates without the necessity of adding extraneous hydrogen, by a process involving a transfer of hydrogen from a hydrogen donor compound to the sulfur compound. It has been discovered that sulfur-containing fractions may be freed of substantial amounts of such sulfur by contacting the sulfur-containing materials in the presence of a compound adapted for use as a hydrogen donor in a hydrogen transfer reaction. Among the hydrogen donors found to be most practicable are the naphthenes.
- This invention further dilfers from conventional hydrogenation reactions in that molecular hydrogen is not supplied to the reaction as such, but is supplied in situ from a hydrogen donor such as a naphthene or an isoparafiin.
- the invention is especially applicable to catalyzed reactions in which hydrogen is directly transferred from the hydrogen donor to the sulfur being removed from the organic molecule.
- the sulfur removed from the'organic compounds is subsequently converted by the hydrogen transfer reaction to a sulfide, usually hydrogen sulfide.
- the hydrogen transfer reaction is carried out in the vapor phase with the use of a catalyst.
- the use of the selective catalyst results in much greater selectivities in the removal of sulfur to give the desired sulfur-free products and a substantial reduction in undesirable degradation reactions of the starting materials to gaseous products and carbonaceaus by-products.
- Naphthenes can be defined as saturated compounds of the general formula C2H2n having closed links composed of methylene groups.
- the naphthenic hydrocarbons which can be employed as hydrogen donors may be those having six cyclic carbon atoms or more, that is, cyclohexane and its derivatives. Naphthenic rings having four or less carbon atoms are too unstable to function satisfactorily. Alkylated derivatives of these naphthenes such as methylcyclohexane can also be employed. During the course of the reaction, the naphthenes are dehydrogenated to produce aromatic type products.
- cyclohexane when cyclohexane is used, it is converted to benzene and when methylcyclohexane is used, it is converted to toluene.
- the hydrogen atoms which are thus. removed from the naphthenes are catalytically utilized in the presence of the catalyst to combine with the sulfur'present as organically bound sulfur in the feed stock, thereby removing the sulfur from the feed stock and converting it into an easily separable form.
- Cyclohexane and its higher homologues are particularly adapted for use in the role of hydrogen donors because the removal of six hydrogen atoms from cyclohexane converts it to the completely f aromatized benzene.
- the reaction is carried out in vapor phase in the presence of the catalyst and under conditions of temperature, pressure, feed rates, and the like, so chosen as to produce the maximum possible removal of sulfur from the feed stock and at the same time to obtain high selectivity and relatively pure final sulfur-free products.
- the equipment employed for this process may be of any type known to those skilled in the art for effecting a vapor phase catalytic reaction.
- liquid feed is charged to a vaporizer fromwhich the resulting feed vapors pass through a preheatingi zone and thence into the catalytic reaction zone iniwhi'ch the vapors are contacted with the catalyst.
- reaction product and non-condensible gases.
- the catalyst which has been found to be particularly useful 'in carrying out the reaction to remove organically bound sulfur is a'specially prepared vanadiunroxide cat-' alyst supported on alumina.
- vanadium catalysts for certain specific refinery operations has previously been suggested, for instance, hydroforming and isomerization and'the like. In these operationsit has been. the general equivalent of related compounds such as molyb denum, chromium and the like These processes are generally ones involving added'hydrogen, andthe catalystsgenerally have behavior and activities of a comparable nature.
- the catalyst In order to. reactivate the. catalyst, carbonaceous deposits-are removed andthe catalyst regenerated by a strippingsprocessaas With steam, nitrogen, flue gas and thelike, at elevated .temperaturesof about 1300-1600 F. Also, the organic mattermay be burnedoif directly Withair. In its ease of regeneration, the catalyst has a decided. advantage over such materials. as activated carbon, vor catalysts supported on activated carbon.
- the desulfurized reactionmixture is taken from the catalytic reaction; zone and preferably condensed to a liquid comprising-the reactionproducts and non-condensible'gases.
- Theliquid reaction product so obtained can bezworkedup inany suitablemauner, for example, by.
- any hydrogenrsulfide'presentin the liquid may be removed by-- extraction, caustic :washing, or by other'conventional methodsxfor. removal: of hydrogen sulfide.
- Unchanged or-zincompletely, desulfurized reactants can be recycled, together. with freshsulfur-containing ,feed and fresh hydrogen donor material.
- an inert diluent such as; :for example, a portion of. .the non-condensible gaseous products.
- therange of'temperaturesfor car ying outthe desulfurization reaction is: of the order'of 6009-1 100 F.
- Optimumvtemperatures: for the-reaction are; consid ered to beabout.750.”-95'0 F.
- temperatures .higherthan this limit
- This may be determined by ascertaining the naphthene content of the feedand, if'necessary, augmenting thiswith extraneous naphthenes, such as cyclohexane, etc.
- sulfur-containing feed stocks which may be desulfurized by this novel hydrogen transfer reaction
- these include various types of organic materials having organically bound.
- sulfur suchfas thiophene, alkylated thiophenes, and other thiophene derivatives, diethyl sulfide, diethyl disulfide, dipropyl sulfide, dibutyl sulfide, diamyl sulfide,- mercaptans, various types of sulfur acids, etc.
- The-process isespecially useful for desulfurizing petroleum fractions, as for instance, naphtha fractions containing organically bound sulfur which must be removed before the fractions can be used for many purposes.
- compounds must be used whose desulfurized products are sufiiciently stable to withstand the relatively high temperatures and yet emerge from the reaction zone as intact molecules.
- The. process may be executed in a batch or continuous manner. Generally, better conversions are obtained with multipassprocesses.
- the catalyst may be employed in a fixed bed, movingbed, or in a fluidized manner, depending on the type of operation desired.
- Aluminum amylate washydrolyzed by the addition of water to give an aqueous slurry containing about 5 weight percent alumina. Glacial acetic acid was added to this slurry to theextent of 6 weight percent based on alumina and the resulting slurry was dried for twenty-four hours inasteam oven (250" F.).
- the recovered dry gel was, 1000 grams of dry alumina was ground to a powder, treated with 85.2 grams of ammonium meta vanadate dissolved. in 1400 grams of hot water. The resulting paste was well mixed and dried in a steam oven.
- the po,wder was reimpregnated with another 85,2 grams ofammonium meta vanadate as above and again dried to give a final composition of 10% V205 on alumina.
- the catalyst was activated by heating at 850 F. overnight prior to use.
- catalysts can be prepared from alumina obtainedfrom other sources, such as by precipitation from aqueous solutions of alumina nitrate, chloride, etc., by the addition of ammonium hydroxide;
- Example-I Thathighjsulfur removal by hydrogen transfer is apparently specific to the vanadia-alumina system and is not shown by vanadia supported on other carriers, oralumina alone, is demonstrated by the following data.
- a mixture off'10' volume percent thiophene in methyl cycl heX-ane was. passed through a vaporizer and preheate" andthe vapors passed over the respective catalyst bed at a temperature of 800" F. and a pressure of 200 After analyzed for sulfur.
- the catalyst compositions in these ruiis were all prepared by impregnation of the hydrous ge s.
- Example ll That the method of preparation of the catalyst is a very important factor in its activity as a hydrogen transfer desulfurizing catalyst is shown by the following data.
- the catalyst produced by the dry impregnation of the gel was considerably more active than that prepared by impregnation of the hydrous gel.
- the reaction conditions of Example I were employed.
- Impregnated Dry Gel-. 2. 7 1.0 96. 3 4. 2 0. 5 88 Impregnated Hydrous Gel 11.7 0.7 87. 6 4. 9 1.2 75
- V205-A1203 catalyst over activated carbon, which is also a hydrogen transfer catalyst, and over a molybdena-alumina catalyst, which is a known efficient hydrogenationdehydrogenation catalyst.
- the feeds and the reaction conditions are the same as those previously employed.
- the vanadia-chromia and molybdena catalysts were prepared by impregnation of the dry gel.
- Example IV T 0 determine the effectiveness of this method of desulfurizing upon refinery streams, a heavy naphtha containing 0.66 wt. percent thiophene sulfur and a naphthene 6 content of 40 vol. percent was passed over a catalyst consisting of 10% V205 on A1203 at 0.5 v./v./hr. under a pressure of 200 p. s. i. g. at 800 F. After caustic washing, the oil product had a sulfur content of 0.17, equivalent to a 74% reduction in sulfur.
- the hydrogen donating naphthene may be present initially in the stream being treated. In these cases, it is not necessary to add extraneous naphthenes. Where there is only a relatively small amount of naphthenes present, it is desirable to add extraneous naphthenes, such as cyclohexane and cyclopentane, and their homologues and analogues.
- a process for catalytic desulfurization of hydrocarbons containing ring sulfur which comprises reacting in the vapor phase, a gaseous mixture containing added naphthenes and hydrocarbons containing ring sulfur in the presence of a hydrogen transfer gel type catalyst consisting essentially of vanadium oxide supported on alumina, prepared by impregnating dry alumina gel with a water soluble vanadium compound followed by thermal conversion of said compound to vanadium oxide and thereafter activating the catalyst by heating at elevated temperatures, at temperatures of between about 750 to about 950 F.
- a hydrogen transfer gel type catalyst consisting essentially of vanadium oxide supported on alumina, prepared by impregnating dry alumina gel with a water soluble vanadium compound followed by thermal conversion of said compound to vanadium oxide and thereafter activating the catalyst by heating at elevated temperatures, at temperatures of between about 750 to about 950 F.
- a process for the catalytic removal of ring sulfur from sulfur-containing hydrocarbons which comprises vaporizing said hydrocarbons, forming a gaseous stream containing said vapors in the presence of a vaporized naphthenic hydrocarbon and in the substantial absence of added free hydrogen, passing said gaseous stream at a temperature of between 750 to about 950 F.
- a hydrodesulfurization catalyst prepared by impregnating dry alumina gel with a vanadium-containing compound followed by the thermal conversion of said vanadium compound to vanadium oxide and thereafter activating the catalyst by a heat treatment, transferring hydrogen from said naphthenic compound to said hydrocarbons containing ring sulfur by the catalytic action of said vanadium catalyst whereby said ring sulfur is removed from said hydrocarbons and said naphthenic hydrocarbon is converted at least partly to aromatic hydrocarbons.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NL80929D NL80929C (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1951-09-04 | ||
| NLAANVRAGE7510134,A NL172020B (nl) | 1951-09-04 | Werkwijze voor het bereiden van een dessertprodukt met lage calorische waarde. | |
| US245076A US2760906A (en) | 1951-09-04 | 1951-09-04 | Desulfurization of hydrocarbon oils with vanadium oxide catalyst in the presence of naphthenes |
| GB20707/52A GB717012A (en) | 1951-09-04 | 1952-08-18 | Improvements in or relating to desulfurization of petroleum fractions |
| FR1064811D FR1064811A (fr) | 1951-09-04 | 1952-08-29 | Désulfuration d'hydrocarbures |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US245076A US2760906A (en) | 1951-09-04 | 1951-09-04 | Desulfurization of hydrocarbon oils with vanadium oxide catalyst in the presence of naphthenes |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2760906A true US2760906A (en) | 1956-08-28 |
Family
ID=22925181
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US245076A Expired - Lifetime US2760906A (en) | 1951-09-04 | 1951-09-04 | Desulfurization of hydrocarbon oils with vanadium oxide catalyst in the presence of naphthenes |
Country Status (4)
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2911359A (en) * | 1956-04-30 | 1959-11-03 | Union Oil Co | Desulfurization process and catalyst |
| US2977324A (en) * | 1957-06-26 | 1961-03-28 | Ici Ltd | Catalysts |
| CN110252367A (zh) * | 2019-05-06 | 2019-09-20 | 江苏大学 | 溶剂热法制备少层氮化碳负载二氧化钒催化剂及其脱硫应用 |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2075171A (en) * | 1932-06-10 | 1937-03-30 | Phillips Petroleum Co | Process for desulphurizing hydrocarbons |
| US2253308A (en) * | 1937-05-05 | 1941-08-19 | Standard Catalytic Co | Desulphurization of hydrocarbons |
| US2324066A (en) * | 1940-08-03 | 1943-07-13 | Standard Oil Dev Co | Purification of hydrocarbon oils |
| US2324067A (en) * | 1940-08-03 | 1943-07-13 | Standard Oil Dev Co | Purification of hydrocarbon oils |
| US2372084A (en) * | 1942-10-24 | 1945-03-20 | Standard Oil Dev Co | Process of desulphurizing motor fuels and improving octane rating |
| US2498559A (en) * | 1945-10-15 | 1950-02-21 | Kellogg M W Co | Desulfurization and conversion of a naphtha |
| US2500146A (en) * | 1946-07-08 | 1950-03-14 | Union Oil Co | Catalysts for conversion of hydrocarbons |
| US2547380A (en) * | 1945-10-01 | 1951-04-03 | Union Oil Co | Catalyst for hydrocarbon conversion |
| US2573726A (en) * | 1947-06-30 | 1951-11-06 | Anglo Iranian Oil Co Ltd | Catalytic desulphurisation of naphthas |
| US2591525A (en) * | 1947-12-22 | 1952-04-01 | Shell Dev | Process for the catalytic desulfurization of hydrocarbon oils |
| US2640802A (en) * | 1949-11-16 | 1953-06-02 | Anglo Iranian Oil Co Ltd | Catalytic desulfurization of petroleum hydrocarbons |
-
0
- NL NLAANVRAGE7510134,A patent/NL172020B/xx unknown
- NL NL80929D patent/NL80929C/xx active
-
1951
- 1951-09-04 US US245076A patent/US2760906A/en not_active Expired - Lifetime
-
1952
- 1952-08-18 GB GB20707/52A patent/GB717012A/en not_active Expired
- 1952-08-29 FR FR1064811D patent/FR1064811A/fr not_active Expired
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2075171A (en) * | 1932-06-10 | 1937-03-30 | Phillips Petroleum Co | Process for desulphurizing hydrocarbons |
| US2253308A (en) * | 1937-05-05 | 1941-08-19 | Standard Catalytic Co | Desulphurization of hydrocarbons |
| US2324066A (en) * | 1940-08-03 | 1943-07-13 | Standard Oil Dev Co | Purification of hydrocarbon oils |
| US2324067A (en) * | 1940-08-03 | 1943-07-13 | Standard Oil Dev Co | Purification of hydrocarbon oils |
| US2372084A (en) * | 1942-10-24 | 1945-03-20 | Standard Oil Dev Co | Process of desulphurizing motor fuels and improving octane rating |
| US2547380A (en) * | 1945-10-01 | 1951-04-03 | Union Oil Co | Catalyst for hydrocarbon conversion |
| US2498559A (en) * | 1945-10-15 | 1950-02-21 | Kellogg M W Co | Desulfurization and conversion of a naphtha |
| US2500146A (en) * | 1946-07-08 | 1950-03-14 | Union Oil Co | Catalysts for conversion of hydrocarbons |
| US2573726A (en) * | 1947-06-30 | 1951-11-06 | Anglo Iranian Oil Co Ltd | Catalytic desulphurisation of naphthas |
| US2591525A (en) * | 1947-12-22 | 1952-04-01 | Shell Dev | Process for the catalytic desulfurization of hydrocarbon oils |
| US2640802A (en) * | 1949-11-16 | 1953-06-02 | Anglo Iranian Oil Co Ltd | Catalytic desulfurization of petroleum hydrocarbons |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2911359A (en) * | 1956-04-30 | 1959-11-03 | Union Oil Co | Desulfurization process and catalyst |
| US2977324A (en) * | 1957-06-26 | 1961-03-28 | Ici Ltd | Catalysts |
| CN110252367A (zh) * | 2019-05-06 | 2019-09-20 | 江苏大学 | 溶剂热法制备少层氮化碳负载二氧化钒催化剂及其脱硫应用 |
| CN110252367B (zh) * | 2019-05-06 | 2022-01-11 | 江苏大学 | 溶剂热法制备少层氮化碳负载二氧化钒催化剂及其脱硫应用 |
Also Published As
| Publication number | Publication date |
|---|---|
| NL80929C (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | |
| NL172020B (nl) | |
| FR1064811A (fr) | 1954-05-18 |
| GB717012A (en) | 1954-10-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3663431A (en) | Two-phase hydrocarbon conversion system | |
| US2417308A (en) | Desulphurization and hydroforming | |
| US2393288A (en) | Process for the catalytic reforming of hydrocarbon mixtures | |
| US2542970A (en) | Refining of cracked naphthas by selective hydrogenation | |
| US2325034A (en) | Method of desulphurizing petroleum fractions | |
| US3063936A (en) | Desulfurization of hydrocarbon oils | |
| Byrns et al. | Catalytic desulfurization of gasolines by cobalt molybdate process | |
| US2440673A (en) | Method of utilizing a fuel gas in refining a petroleum fraction | |
| US2463741A (en) | Desulfurization and reforming process | |
| US2761817A (en) | Hydrodesulfurization process with precoditioned catalyst | |
| US3023158A (en) | Increasing the yield of gasoline boiling range product from heavy petroleum stocks | |
| US3694350A (en) | Hydrodesulfurization with a hydrogen transfer catalyst and an alkaline composition | |
| US3905893A (en) | Plural stage residue hydrodesulfurization process | |
| US3008897A (en) | Hydrocarbon demetallization process | |
| US3309307A (en) | Selective hydrogenation of hydrocarbons | |
| US2758060A (en) | Removal of vanadium and/or sodium from petroleum by hydrogenation in the presence of bauxite | |
| US2760906A (en) | Desulfurization of hydrocarbon oils with vanadium oxide catalyst in the presence of naphthenes | |
| HU175553B (hu) | Sposob dlja udalenija merkaptanov iz frakcijj nefti | |
| US2769758A (en) | Removal of sodium and vanadium from petroleum hydrocarbons followed by catalytic desulphurisation of said petroleum hydrocarbons | |
| US2640011A (en) | Desulfurization of heavy petroleum oils | |
| Donath | Coal-hydrogenation vapor-phase catalysts | |
| US10968400B2 (en) | Process to remove olefins from light hydrocarbon stream by mercaptanization followed by MEROX removal of mercaptans from the separated stream | |
| US2574446A (en) | Catalytic desulfurization of gas oilkerosene mixtures | |
| US2761816A (en) | Hydrodesulfurization process using a cobalt molybdate catalyst presulfided with the feed under specific conditions | |
| US2399781A (en) | Manufacture of toluene |