US2759661A - Vapor ejector pumps - Google Patents

Vapor ejector pumps Download PDF

Info

Publication number
US2759661A
US2759661A US282068A US28206852A US2759661A US 2759661 A US2759661 A US 2759661A US 282068 A US282068 A US 282068A US 28206852 A US28206852 A US 28206852A US 2759661 A US2759661 A US 2759661A
Authority
US
United States
Prior art keywords
vapor
jet
plates
tube
spout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US282068A
Inventor
Noller Hans Georg
Reich Gunter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US282068A priority Critical patent/US2759661A/en
Application granted granted Critical
Publication of US2759661A publication Critical patent/US2759661A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/466Arrangements of nozzles with a plurality of nozzles arranged in parallel

Definitions

  • the invention relates to vapor ejector pumps using any desired liquid as driving medium, especially pumps having a straight or converging hollow body arranged in front of the jet at a predetermined distance around the vapor spout and over a predetermined distance along that vapor spout to permit dilfusion or predetermined expansion of the vapor passing the jet, thereby producing a vacuum in the space surrounding the jet, regardless whether in the pump a spout of vapor of water, of mercury or oil is formed.
  • FIG. 1 shows in section an example of realizing the invention as applied to a simple vapor ejector pump
  • Fig. 2 shows another form of guiding surfaces, viewed in the direction of arrows of Fig. l and in a direction perpendicular to the view of Fig. 1;
  • Fig. 3a represents another type of guiding surfaces, also viewed in direction of arrows 10 of Fig. 1;
  • Figs. 3b and 30 represent side views of certain guiding surfaces shown in Figs. 3a.
  • Fig. 1 designates in section a driving jet, to which over line 12 in direction of arrow 13, driving vapor from a boiler (not shown) is supplied.
  • Driving jet 11 is arranged in the interior of a tube 14 shaped partly conically and partly cylindrically. Tube 14 is connected to a recipient (not shown) to be evacuated.
  • the conical portion 14' of tube 14 is connected to difiusor 15 which is shaped convergent in the direction of the current of the driving vapor.
  • diffusor 15 In the interior of diffusor 15, there are arranged two concentric tubes 16, 17 of varying length, 16 being shown in section and 17 in full.
  • Tube 16 is attached to the inner wall of diffuser 15 by means of radial wires 18.
  • tube 17 is connected by means of radial metal strips 19 to the inner wall of diffusor 15.
  • Diffusor 15 is arranged inside of vessel 20, also shown in section.
  • Vessel 20 consists of a cylindrical portion 21 having an end wall 22. Inside of vessel 21, 22, there 2,759,661 Patented Aug. 21, 1956 "ice is arranged another substantially cylindrical vessel 23 into which the small end of diifusor 15 extends. The space between the inner surface of cylinder 21 and the outer surface of cylinder 23 is connected to an outlet tube 24.
  • Box 25 diagrammatically represents a condenser of otherwise well known construction which is supplied with circulating cooling water used for the condensation of the driving vapor.
  • Line 26 serves to return the condensed driving medium in direction of arrow 27 into the boiler.
  • Tubes 16 and 17 counteract the transversal movement of the vapor spout within diifusor 15 so that the above mentioned instabilities can not occur anymore.
  • Fig. 2 the guiding surfaces are shown to consist of a series of parallel plates 28-31 which are also parallel to the axis of the diffusor. Plates 2831 are attached to the inner surface of the dilfusor, for example by weldmg.
  • the guiding surfaces are formed in two sets of plates, a vertical set 32-36 and a horizontal set 3731.
  • Vertical as well as horizontal plates are attached to the inner wall of dilfusor tube 15 in any appropriate manner, for example by welding.
  • Figs. 3b and 30 show in more detail one of the vertical and horizontal plates 34 and 39, respectively. Both types of plates are of generally trapezoidal shape.
  • Vertical plate 34, Fig. 3b has slits 42-46 extending from the two oblique edges and the small base of the trapezium into vertical direction to the top Horizontal plate 39, Fig. 30, has slots 47-51 extending from the large base of the trapezium vertically to the bottom. Slots of Figs. 3b and 3c are of different length, as shown.
  • the plates of Fig. 3b and 3c are slidable one into the other in such a manner that a plate, such as shown in Fig. 30, will he slid from the bottom into a plate, such as shown in Fig. 3b, in such a manner that the planes of the two types of plates will be arranged perpendicular to each other.
  • plates 34 and 39, as well as the other plates, i. e. vertical plates 32, 33, 35, 36 and horizontal plates 37, 38, 40, 41 should be constructed in such a manner that they can be assembled with central plates 34 and 39 to an arrangement of guiding surfaces similar to that shown in Fig. 30.
  • a jet for passing a vapor spout to produce a vacuum in space surrounding the jet said space being defined by a conical tube coaxial with and surrounding said jet; with a gradually increasing diameter from a point behind the opening of said jet to a point in front of the opening of said jet, thereby causing diffusion of said spout; said conical tube having at its small end an input tube to be connected to the space to be evacuated, and having connected at its large end an output tube; and dividing members supported in said output tube in the path of said spout and extending substantially in a direction parallel to the axis of said jet so as to permit passage of vapor with at least a reduction in transversal motion of the vapor particles.
  • said dividing members are in the form of concentric tubes having an axis substantially coinciding with the axis of said jet.
  • said output tube is a conical tube, said conical tube extending with gradually decreasing diameter from the front opening of the first tube in the direction of the axis of said jet and coaxially therewith.
  • said dividing 3 members are in the form of two sets of sheets, each set having spaced parallel spaced elements, which are also parallel to the axis of said jet.

Description

Aug. 21, 1956 G. NGLLER ETAL 2,759,661
VAPOR EJECTOR PUMPS Filed April 12, 1952 Fig-7 14' 15 1a 19 17 21 F ig.2 15
34 Fig.3C 3g lNVEN TOR s HANS GEO/Q6 NOlLE/Q AND G'J/VTSQ REI'CH United States Patent VAPOR EJECTOR PUIVIPS Hans Georg Niiller, Koln-Sulz, and Giinter Reich, Bad Godesberg, Germany Application April 12, 1952, Serial No. 282,068
6 Claims. (Cl. 230-95) The invention relates to vapor ejector pumps using any desired liquid as driving medium, especially pumps having a straight or converging hollow body arranged in front of the jet at a predetermined distance around the vapor spout and over a predetermined distance along that vapor spout to permit dilfusion or predetermined expansion of the vapor passing the jet, thereby producing a vacuum in the space surrounding the jet, regardless whether in the pump a spout of vapor of water, of mercury or oil is formed.
Such pumps have been found to show during operation instabilities in the adjusted pressure value. Experiments underlying this invention have shown that these instabilities result from the fact that the cross-section of the spout within the ditfusor varies, narrowing down depending upon varying suction pressure, i. e. the pressure in the recipient to be evacuated.
As a result, between the vapor spout and the inner wall of the diffuser there is formed a ring-shaped slit through which air, gas or vapor can return into the recipient to be evacuated.
It is therefore an object of the invention to provide in a straight or cylindrical difiusor, guiding plates or surfaces which intersect at an angle a plane perpendicular to the axis of the diifusor.
Such guiding surfaces counteract variation in the free cross-section of the spout due to varying suction pressure. As a result, the above mentioned slit will be reduced, if not avoided.
These and other objects of the invention will be more fully described in the drawing annexed herewith, in which Fig. 1 shows in section an example of realizing the invention as applied to a simple vapor ejector pump;
Fig. 2 shows another form of guiding surfaces, viewed in the direction of arrows of Fig. l and in a direction perpendicular to the view of Fig. 1;
Fig. 3a represents another type of guiding surfaces, also viewed in direction of arrows 10 of Fig. 1;
Figs. 3b and 30 represent side views of certain guiding surfaces shown in Figs. 3a.
In Fig. 1, 11 designates in section a driving jet, to which over line 12 in direction of arrow 13, driving vapor from a boiler (not shown) is supplied. Driving jet 11 is arranged in the interior of a tube 14 shaped partly conically and partly cylindrically. Tube 14 is connected to a recipient (not shown) to be evacuated.
The conical portion 14' of tube 14 is connected to difiusor 15 which is shaped convergent in the direction of the current of the driving vapor. In the interior of diffusor 15, there are arranged two concentric tubes 16, 17 of varying length, 16 being shown in section and 17 in full. Tube 16 is attached to the inner wall of diffuser 15 by means of radial wires 18. Similarly, tube 17 is connected by means of radial metal strips 19 to the inner wall of diffusor 15.
Diffusor 15 is arranged inside of vessel 20, also shown in section. Vessel 20 consists of a cylindrical portion 21 having an end wall 22. Inside of vessel 21, 22, there 2,759,661 Patented Aug. 21, 1956 "ice is arranged another substantially cylindrical vessel 23 into which the small end of diifusor 15 extends. The space between the inner surface of cylinder 21 and the outer surface of cylinder 23 is connected to an outlet tube 24. Box 25 diagrammatically represents a condenser of otherwise well known construction which is supplied with circulating cooling water used for the condensation of the driving vapor. Line 26 serves to return the condensed driving medium in direction of arrow 27 into the boiler.
Tubes 16 and 17 counteract the transversal movement of the vapor spout within diifusor 15 so that the above mentioned instabilities can not occur anymore.
In Fig. 2 the guiding surfaces are shown to consist of a series of parallel plates 28-31 which are also parallel to the axis of the diffusor. Plates 2831 are attached to the inner surface of the dilfusor, for example by weldmg.
In the modification of 3a, the guiding surfaces are formed in two sets of plates, a vertical set 32-36 and a horizontal set 3731. Vertical as well as horizontal plates are attached to the inner wall of dilfusor tube 15 in any appropriate manner, for example by welding.
Figs. 3b and 30 show in more detail one of the vertical and horizontal plates 34 and 39, respectively. Both types of plates are of generally trapezoidal shape. Vertical plate 34, Fig. 3b, has slits 42-46 extending from the two oblique edges and the small base of the trapezium into vertical direction to the top Horizontal plate 39, Fig. 30, has slots 47-51 extending from the large base of the trapezium vertically to the bottom. Slots of Figs. 3b and 3c are of different length, as shown.
The plates of Fig. 3b and 3c are slidable one into the other in such a manner that a plate, such as shown in Fig. 30, will he slid from the bottom into a plate, such as shown in Fig. 3b, in such a manner that the planes of the two types of plates will be arranged perpendicular to each other.
The description shows that plates 34 and 39, as well as the other plates, i. e. vertical plates 32, 33, 35, 36 and horizontal plates 37, 38, 40, 41 should be constructed in such a manner that they can be assembled with central plates 34 and 39 to an arrangement of guiding surfaces similar to that shown in Fig. 30.
We claim:
1. In a vapor ejector pump, a jet for passing a vapor spout to produce a vacuum in space surrounding the jet, said space being defined by a conical tube coaxial with and surrounding said jet; with a gradually increasing diameter from a point behind the opening of said jet to a point in front of the opening of said jet, thereby causing diffusion of said spout; said conical tube having at its small end an input tube to be connected to the space to be evacuated, and having connected at its large end an output tube; and dividing members supported in said output tube in the path of said spout and extending substantially in a direction parallel to the axis of said jet so as to permit passage of vapor with at least a reduction in transversal motion of the vapor particles.
2. Pump according to claim 1, wherein said dividing members are in the form of concentric tubes having an axis substantially coinciding with the axis of said jet.
3. Pump according to claim 1, wherein said output tube is a conical tube, said conical tube extending with gradually decreasing diameter from the front opening of the first tube in the direction of the axis of said jet and coaxially therewith.
4. Pump according to claim 3, wherein said dividing members are in the form of spaced parallel plates, arranged substantially in a direction parallel to the axis of said jet.
5. Pump according to claim 3, wherein said dividing 3 members are in the form of two sets of sheets, each set having spaced parallel spaced elements, which are also parallel to the axis of said jet.
6. Pump according to claim 5 wherein said two sets of sheets are arranged to penetrate each other at right 5 angles and are of substantially trepzoidal shape, each having a number of longitudinal slots permitting the elements of said two sets to penetrate each other, thereby subdividing the cross section of said spout into a number of quadrangular longitudinal channels extending in a 10 direction parallel to the axis of said jet.
UNITED STATES PATENTS Bills May 24, Boeing June 18, Ehrhart Feb. 6, Lamn Mar. 12, Hickman Aug. 20,
US282068A 1952-04-12 1952-04-12 Vapor ejector pumps Expired - Lifetime US2759661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US282068A US2759661A (en) 1952-04-12 1952-04-12 Vapor ejector pumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US282068A US2759661A (en) 1952-04-12 1952-04-12 Vapor ejector pumps

Publications (1)

Publication Number Publication Date
US2759661A true US2759661A (en) 1956-08-21

Family

ID=23079966

Family Applications (1)

Application Number Title Priority Date Filing Date
US282068A Expired - Lifetime US2759661A (en) 1952-04-12 1952-04-12 Vapor ejector pumps

Country Status (1)

Country Link
US (1) US2759661A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879548A (en) * 1997-05-07 1999-03-09 Al-Ali; Amier Method and apparatus for collecting a substance
US6083384A (en) * 1999-02-02 2000-07-04 Al-Ali; Amier Method and apparatus for collecting a substance
US6877960B1 (en) 2002-06-05 2005-04-12 Flodesign, Inc. Lobed convergent/divergent supersonic nozzle ejector system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US475716A (en) * 1892-05-24 James a
US676673A (en) * 1899-08-28 1901-06-18 Leo Otto Boeing Injector for forcing hot air.
US1444539A (en) * 1917-09-21 1923-02-06 Westinghouse Electric & Mfg Co Steam-actuated ejector
US2193135A (en) * 1938-01-22 1940-03-12 Asea Ab High vacuum vapor jet pump
US2406017A (en) * 1945-04-17 1946-08-20 Distillation Products Inc Vacuum apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US475716A (en) * 1892-05-24 James a
US676673A (en) * 1899-08-28 1901-06-18 Leo Otto Boeing Injector for forcing hot air.
US1444539A (en) * 1917-09-21 1923-02-06 Westinghouse Electric & Mfg Co Steam-actuated ejector
US2193135A (en) * 1938-01-22 1940-03-12 Asea Ab High vacuum vapor jet pump
US2406017A (en) * 1945-04-17 1946-08-20 Distillation Products Inc Vacuum apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879548A (en) * 1997-05-07 1999-03-09 Al-Ali; Amier Method and apparatus for collecting a substance
US6050781A (en) * 1997-05-07 2000-04-18 Al-Ali; Amier Method for collecting a substance
US6083384A (en) * 1999-02-02 2000-07-04 Al-Ali; Amier Method and apparatus for collecting a substance
US6877960B1 (en) 2002-06-05 2005-04-12 Flodesign, Inc. Lobed convergent/divergent supersonic nozzle ejector system

Similar Documents

Publication Publication Date Title
US2084755A (en) Refrigerant distributor
US3200764A (en) Fluid injector
US3130024A (en) Apparatus for separating foreign matter from air
US2759661A (en) Vapor ejector pumps
US2704555A (en) Low loss venturi tube
US2358508A (en) Separator
JPS5631438A (en) Reaction tank
Kastner et al. An investigation of the performance and design of the air ejector employing low-pressure air as the driving fluid
US2085506A (en) Dust collector
US1950069A (en) Apparatus for the removal of solid substances in suspension in a current of gas
US3320729A (en) Apparatus for removing liquid from a liquid laden gas stream
US1362997A (en) Propelling apparatus
US3595482A (en) Spray devices
US1267897A (en) Air-pump.
GB1040985A (en) High frequency electron discharge apparatus
US3321891A (en) Apparatus for transporting atomizable material
US2295087A (en) Fluid cooling apparatus and method
US2474695A (en) Collecting and separating apparatus
US3199272A (en) Particle-from-gas separators
US2189532A (en) Heat transfer apparatus
US2390814A (en) Pump
US2366277A (en) Aspirator pump
US2691481A (en) Vacuum pumping apparatus
US2762558A (en) Vapor jet pump
US2505953A (en) High-vacuum diffusion pump