US2756906A - Filling machine - Google Patents

Filling machine Download PDF

Info

Publication number
US2756906A
US2756906A US339320A US33932053A US2756906A US 2756906 A US2756906 A US 2756906A US 339320 A US339320 A US 339320A US 33932053 A US33932053 A US 33932053A US 2756906 A US2756906 A US 2756906A
Authority
US
United States
Prior art keywords
hopper
valve
shroud
powder
bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US339320A
Inventor
Clarence F Carter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US279889A external-priority patent/US2687271A/en
Application filed by Individual filed Critical Individual
Priority to US339320A priority Critical patent/US2756906A/en
Application granted granted Critical
Publication of US2756906A publication Critical patent/US2756906A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/54Large containers characterised by means facilitating filling or emptying
    • B65D88/64Large containers characterised by means facilitating filling or emptying preventing bridge formation
    • B65D88/66Large containers characterised by means facilitating filling or emptying preventing bridge formation using vibrating or knocking devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/04Methods of, or means for, filling the material into the containers or receptacles
    • B65B1/18Methods of, or means for, filling the material into the containers or receptacles for filling valve-bags

Definitions

  • This invention relates to an automatic machine for weighing fine powders and vacuum filling of containers, and to the method thereof.
  • Figure l is an elevation of a machine designed to accomplish these purposes.
  • Figure 2 is a sectional elevation of a hopper and valving mechanism shown diagrammatically in Figure 1.
  • Figure 3 is a plan View in section along the lines 3-3 of Figure 2.
  • Figure 4 is a plan view of the machine along lines 4 4 of Figure 1.
  • Figure 5 is an elevation in partial section of one of the shroud elements of the machine, with a bag in filling position.
  • Figure 6 is an end view in section along lines 6--6 of Figure 5.
  • Figure 7 is an elevation in partial section of a modification using a different type shroud and filling spout which may be used in place of those shown in Figure 1, one being in filling position and another with the shroud open and in position for receiving an empty bag.
  • Figure 8 is a plan view of Figure 7.
  • Figure 9 is an end View in section of a closed shroud with the bag filled.
  • Figure l0 is an end View in section showing the shroud open and the filled bag being dropped.
  • FIG. 1 is a large storage hopper of' any conventional design.
  • Valve 2 is of the type generally designated A in Figure 2.
  • a line 5, in the top of the hopper, leads to a source of vvacuum and to atmospheric relief, through an arrangement generally designated as C in Figure 2.
  • the hopper is suspended on a balance arm 6, by means of the knife edge 7.
  • the lever actuates a conventional weighing scale 8.
  • a contact point 9 On the scale dial is a contact point 9, which may be contacted by the indicator hand 10 to close an electrical circuit not shown, thereby operating a solenoidvalve and causing valve 2 to close, as hereinafter more fully explained.
  • the contact 9 may be made adjustable by known means to correspond to any desiredweight of material.
  • a second valve 11 of the ⁇ type shown at A At the bottom of hopper 4 is a second valve 11 of the ⁇ type shown at A.
  • a second flexible connection12 joins the outlet of the valve with duct 13, which leads to a flexible connection 14 opening into weighing hopper 15. This hopper also is mounted by knife edge 16, on arm 17'.
  • the vacuum-relief line 19 is of the construction shown at C.
  • At-the outlet of the hopper is a valve 20, of the type designated B on Figure 2.
  • a flexible connection 21 leads to final weighing hopper 22. This is mounted on the knife edge 23 and arm 24.
  • a scale 25 is actuated by arm 24, has two Contact points, one at 26 and one at 27, which may be contacted by pointer 25 to actuate solenoid valves controlling valve 20.
  • Mounted on the bottom of the hopper is a valve 28, of the type designated A.
  • a ilexible connection 29 joins the hopper to a line discharging into a container as hereinafter described in greater detail.
  • FIG. 2 is an elevation in section of hopper 22, showing details of the construction of valves A, B and C, as Well as details of the internal hopper structure. Hoppers 4 and 15 are of similar construction.
  • the hopper comprises au outer wall 30 of any suitable material such as sheet metal.
  • the hopper is lined with a flexible material such as rubber, either synthetic or natural, the liner being designated 31. At the lower end, the liner is turned back over the end of the sheet metal hopper wall, and is held in place by flange 32 attached to the hopper and flange 33 attached to valve A.
  • a channel 34 extends around the top of the hopper, and the liner 31 is turned back over the inside edge thereof and is held in place by the hopper lid 35 when it is clamped or bolted in place.
  • Lying between the liner 31 and the outer wall 30 is a plurality of rubber tubes36. These are sealed at their lower ends, and are held in position at the upper end by being turned back over the channel and held in place by the hopper top 35. These tubes are spaced apart as shown, the distance generally being of the order of 0.5-1 inch. Since the amount of surface at the upper end of the tapered hopper is greater than at the lower end, some of the tubes are necessarily shorter than others.
  • An air-vacuum line 37 leads into the space between wall 30 and liner 31. This is connected to the atmosphere and to a source of vacuum not shown, through a three-Way valve not shown, whereby the space between the wall 30 and the liner 31 may be alternately evacuated and relieved to the air.
  • the flexible liner 31 will assume the position shown in Figure 3 when the space is evacuated, but upon relief of the air, the liner will return to its normal position.
  • the liner is caused to vibrate and thus dislodge the powder that may be in the hopper, causing it to flow freely and quickly out of the hopper without substantial holdup. This action also assists in de-aerating the powder within the hopper.
  • the valve designated A is attached to hopper 22 by means of flanges 32 and 33.
  • the body of the valve 33 is generally cylindrical.
  • a flexible connection 29 is mounted by means of flange 39 to the exterior of the valve.
  • the flexible connection is attached to flange 40.
  • An air-vacuum line 41 extends through a compression fitting 42 to a T, 43, which is plugged at 44.
  • Extending downwardly from the T is a tube 45, perforated at 46.
  • Tube 45 is plugged at 48.
  • the sleeve 47 is attached at each of its ends to tube 45, and when air pressure is applied through line 41, assumes the position shown in the dotted lines, thus completely closing the passage through the valve.
  • Line 41 leads to a threeway valve which connectsto a source of air pressure and to a vacuum supply.
  • tube 47 assumes the position shown in the drawing. It is important thatvacuum be applied, since otherwise the sleeve 47 may not resume its normal position but may wrinkle. Upon application of the vacuum, a substantiaily unobstructed annular passage is formed.
  • Hopper 1S is connected to the valve generally designated B, by means of flanges 5t) and 5l.
  • This valve has three sections 52, 53 and 54, which are generally cylindrical.
  • a rubber liner 55 is ,held terminally in section 53 by being pinched between flanges S6 and 57, 53 and 59. This rubber liner may be beaded at the ends.
  • a smaller tube 6d which is supported by means of spider 61 or other suitable means.
  • a relatively large, annular passageway is formed etween tube 61 and liner 55.
  • An air-vacuum line e2 extends through an appropriate compression fitting 63 to T 6d, which is plugged at 65.
  • Extending downwardly therefrom is a small tube o6, which is perforated at 67. This tube is plugged at the lower end.
  • a rubber sleeve 68 is attached, as was described in connection with valve A, to tube 66.
  • the liner 55 is inflated by applying air pressure to air-vacuum line 69, which extends through the wall of the section 53, through compression fitting 70.
  • the liner 55 Upon being inilated, the liner 55 assumes the position shown by the dotted line. ln a similar manner, by applyair to line 62, the liner 68 may be iuliated to close the passageway between tube 60 and the liner titi.
  • Cover plate 35 is provided with an opening 71, which is covered by a screen 72 mounted by any convenient means, such as bracket '73.
  • an outlet tube 74 which may be attached to the "l" 75, one arm 76 of which leads to a source of vacuum, and the other arm 77 leads to the atmosphere.
  • valves 7S and 79 Mounted within lines '76 and 'i7 are two valves 7S and 79, or the type described in greater detail in connection with valve A. From these lead the lines dll and 81, connecting with a three-way valve or cock 82. This valve connects by way line S3 to a source of compressed air.
  • Through shell of cock 82 is an opening 80', and a line S1' leading to line 7d.
  • a groove S2 affords communication between lines Si and 81' when the cock is in the position shown, to deiiate valve 79.
  • Flange 40 is designed to coincide with flange S4 in sealing relationship.
  • Flange l0 is forced against flange 54 and sealing rubber 85 by applying air pressure to air cylinder 86, the piston of which strikes bracket S7, forcing the two flanges into sealing relationship. This is done after hopper 22 has been filled and the contents are to be drawn into the container.
  • the filling tube or head tid Leading from ange 842i is the filling tube or head tid. This extends through the top of a split shroud S9, which, when closed completely, surrounds a container such as bag
  • the bag shown is of the multi-walled type, which is sealed or sewed before filling and which is filled through a small opening left in one corner for introduction of the filling spout 91. This opening is closed after the filling operation is complete, by a ap 92, which automatically' covers the opening when the contents of the bag rest against it.
  • Stich bags are of familiar design and form no part of this invention.
  • the shroud 39 is made up in two sections, and may be of the type shown in Figures l, 4, 5 and 6, or may be of the type shown in Figures 7 to l0. These sections, when closed, form a vacuum-tight receptacle surrounding the bag, as shown in Figures 5 and 6.
  • One section of the split shroud is stationary, and is made up of wall 93, bottom 94, top section 95, and wall 96.
  • the other, movable section is made up of top section 97 and walls 98 and 99.
  • a resilient washer or sealing member such as shown at 100, to insure a gastight seal.
  • the air cylinder 103 is pivotally mounted on a frame 104, which is attached to the main frame of the machine.
  • a pair of upper guide tracks 105, 10S, and a corresponding pair of lower guide tracks litio, 1% (best seen in Figure l), are mounted on frame 1li-l and are attached to a frame itl, H7, on which the stationary member of the split shroud is rigidly mounted. These guide tracks slope upwardly and away from the stationary member of the split shroud.
  • a bracket 10S Mounted on thernovable member of the shroud is a bracket 10S, supporting rollers 199, which follow the guides and 106 when the movable portion of the shroud is retracted by the air cylinder 1h53 and its piston M32.
  • the air cylinders are oi conventional design and need not be explained in detail.
  • the manner of opening the shroud by swinging the movable portion outwardly and upwardly, permits ready placement of the bag on the iilling nozzle 91 and removal of the filled bag from the shroud.
  • the bag is removed from the shroud by operation of an air cylinder 110, which is mounted wall 93 of the stationary member of the shroud and which has a platen 111 attached to piston 112 of the air cylinder.
  • a three-way valve H3 Mounted on wall 96 of the stationary member is a three-way valve H3, which leads to a source ot vacuum attached to line 114 when the valve is in the position shown and when the shroud is closed tor filling.
  • the three-way valve has a port 115 open to the atmosphere. Communication to the interior of the shroud is made through port 116.
  • the lling spout 91 may be equipped with a sealing device to prevent passage of powder from the interior of the bag into the shroud during the lling operation.
  • a section of extra heavy pipe 1li' is provided.
  • a portion of the pipe is cut away at 113, and over this is placed a grid or screen 119.
  • a rubber sleeve 129 is placed over and supported by the grid.
  • the sleeve is preferably a section of thin-walled rubber tubing, which is attached at either end to the pipe, and which lits substantially iiush with the outside of the pipe section M7. This leaves an annular space around a part ot the length ot the pipe 117, which serves as an air pocket.
  • the thin-walled tubing 12@ When the interior of the shroud is evacuated during the tilling operation, the thin-walled tubing 12@ is caused to expand into the position shown by the dotted lines, due to expansion of the air within this annular space.
  • the expanded tube thus presses against the end of the bag and the closure flap 92 sufciently to prevent dust from escaping from between the lling spout and the bag into the shroud. Since the rubber tube ld is substantially flush with the outside of pipe 117, it offers no impediment to the bag being placed over the spout.
  • the apparatus can be operated as a single-head unit, or a plurality of the shroud elements can be mounted on a rotatable dial, as shown in Figures l and 4, for a more rapid lling operation.
  • the unit is mounted on a stationary base 121, supporting a vertical pipe 122, over whichl is a rotatable pipe 123 to which is rigidly attached a rotatable dial or platform 124, supported by a web 125.
  • the supporting frames 107 for the stationary portion of the split shrouds are rigidly attached to dial 124.
  • the dial is rotated by any suitable means, such as motor 126, speed reducer 127, and Geneva movement 128. These are all well known mechanical devices and need not be described in detail.
  • a conventional rotary air valve mounted above the Geneva movement is a conventional rotary air valve, generally indicated at 130. This supplies air to the air cylinders which open and close th; ⁇ shrouds and eject the filled bags, and is designed to time their operation at the appropriate stations.
  • the rotary valve and timing means are not per se a part of the invention, since any suitable means may be used.
  • the lower member 131 is stationary,
  • Air inlets 133, and air outlets 134, are provided. Air passes through grooves (not shown) in the face of member 131. These coincide with the ports 134, so that air is supplied at the required time, and for the interval necessary, to operate the air cylinders for opening of the shroud and ejection of the bag at the proper stations.
  • the weighing hoppers are supported by any suitable structure not shown, above the rotating elements.
  • station I is the filling station.
  • the air cylinder 103 is actuated by air received from rotary valve 13b' through line 134 to cause the shroud to open, so that by the time it reaches station III, it is completely open and the bag is ready for discharge.
  • air cylinder 110 is actuated to push the bag out of the Shroud into chute 135, from whence it travels to the disposal point.
  • the shroud unit at station IV is open, ⁇ and at this point a bag is slipped over the filling spout.
  • the rotation of the unit is intermittent, so that during the period of time necessary to fill the unit in station I, there is plenty of time for ithe filled bag to be ejected at station III and for another bag to be placed over the filling spout at station IV.
  • the split shroud is closed by the air cylinder, and by the time the element reaches station I, it is ready to be filled.
  • a filled bag is shown as it is ejected from the open shroud.
  • the operation as illustrated in Figure l three weighing hoppers and a storage hopper are provided. Two of the weighing hoppers are for obtaining rough weights, and likewise serve the purpose of de-aerating the powder.y
  • the third hopper 22 is a final-weight hopper.
  • a powder such as carbon black, zinc oxide, or any other finely divided bulk material is placed in storage hopper 1.
  • Hopper 4 is evacuated through line 5.
  • Powder is drawn through valve 2, which is open. Since hopper 4 is suspended by means of the knife edge 7 and the lever 6, and is conducted by flexible coupling to the storage hopper 1 and the line 13, the arm 6 is free to act upon scale 8, the indicating pointer of which is set at 0 before the filling operation begins.
  • the arm 10 rotates and eventually contacts point 9, which closes an electrical circuit actuating a solenoid valve, causing valve 2 to close as hereinbefore described.
  • valve 2 can be kept closeduntil hopper 4 is ready to receive another charge of powder.
  • Scale 8 is set so that the amount of material weighed into hopper 4 is in excess of that which is ultimately to be delivered to the container. This excess amount may vary from a few ounces to several pounds.
  • the material having been delivered to hopper 4, hopper 16, which is empty at this point, is evacuated, line 5 is closed to vacuum and is relieved to atmospheric pressure; valve 11 is opened and the contents of hopper 4 move into hopper 15.
  • the scale 18, actuated in a similar manner to scale 8, causes valve 11 to close when the pointer strikes contact 18. Again the charge transferred to hopper is slightly in excess of that to be ultimately delivered to the container, although in general it may be more nearly the desired amount than is that delivered to hopper 4. Hopper 15 is now released to atmospheric pressure by operation of the valve on line 19, and hopper 22 is evacuated. Valve particles.
  • valves in Figure 2 are shown in position for drawing powder from hopper 15 into hopper 22.
  • Valve 79 is open, valve 78 is closed, valve B is open, and valve A is closed.
  • Hopper 22 is being evacuated, which causes powder to flow from hopper 15 into hopper 22 through the two annular spaces shown in valve B.
  • Hopper 22 is suspended as shown in Figure l.
  • the solenoid valve controlling line 69 is actuated, thereby applying air pressure to liner 55 and causing itto inflate and close the puter large annular space around tube 60. This shuts off the major flow of powder.
  • the point of contact is selected so that the weight of powder introduced into hopper 22 is slightly less than that ultimately desired. This may be a matter of an ounce or several ounces, depending upon the size of the Valve and the amount of powder to be weighed. Powder continues to be drawn through the inner annular space around tube 66, and the scale indicator 25 continues on as the weight of powder in hopper 22 increases until it contacts point 27, at which point another solenoid valve is actuated to apply air pressure to line 62 and inflate rubber sleeve 68, thus yclosing the valve and shutting off any further flow of powder from hopper 15. Hopper 22 now contains the exact amount of powder desired, and it is ready for transfer to the ultimate container.
  • the solenoid valves referred to may be of typey such as V-S vof Skinner Chuck Company, Norwalk, Connecticut.
  • Valve 20 is then closed, and hopper 22 is released to atmospheric pressure.
  • one of the shrouds containing an empty bag and ready for filling, movesinto position at station I.
  • the interior of the shroud is evacuated by pulling a vacuum through line 114, and three-way valve 113 being in the position shown in Figure 6.
  • valve 28 is kept closed.l
  • the thin rubber tube expands to seal the opening in the corner of the bag.
  • valve 28 is opened, and the entire contents of hopper 22 are pulled into the bag.
  • each of the hoppers is constructed as shown in Figure 2, so that the vibrating effect of the inner liner prevents hangup of powder inside the hopper, so that this, together with the difference in pressure on the powder in the hopper and within the bag, causes the complete delivery of an accurately weighed amount of material to the container.
  • valve 113 is rotated 90 counterclockwise to relieve the vacuum within the shroud, the air cylinder 86 is released, and the seal between flanges 40 and 84 is broken. Since the flexible coupling 21 is stretched when the flanges are clamped together, the contraction upon releaselallows ange 40 to swing clear of flange 84.
  • the hopper 22 is again filled with an laccurately weighed amount of powder while the dial is being rotated 011e quarter turn to bring the next unit into filling position.
  • flange 40 vmust be slightly above flange 85, to permit the shroud unit to move into filling position, and when it reaches this position, the air cylinder 86 may be actuated by any well known means to cause flange 40 to seal against flange 84 and gasket 85.
  • this filling apparatus causes a de-aeration of the powder.
  • Many fine powders such as carbon black and the like, are light and fluffy due to the fact that air is entrapped between the Such a condition is necessary to the free flow of the powder, but if this fluffy powder is placed directly in a container, the container must be of suflicient volume to hold the desired weight of aerated powder, which means that when the powder settles, the container will show considerable outage. This is undesirable.
  • each of the hoppers 4, 15 and 22 are constructed as shown in Figure 2.
  • the operation of this device has been explained above.
  • the walls alternately present the corrugated pattern shown in Figure 3 and then assume a substantially smooth inner surface when the vacuum is released. This exerts a lateral squeezing or kneading action on the powder as it lies in the hopper. This aids in releasing entrained air in the powder. Since, as the hopper is being filled, it is under vacuum, the combined effect of the vacuum and the kneading action is to hasten the removal of air from the powder, and to cause it to become more and more compact.
  • the body of the powder is drawn downwardly and into the constriction at the valve, so as to further tend to squeeze out the air entrapped in the powder.
  • the ultimate ettect is to continuously knead the powder and to force the air out of it, and as a consequence, it becomes more and more compact; that is, the apparent density is reduced.
  • the movement of the withdrawn air is counter to the movement of the powder, so that it is continuously agitated, and this assures rapid and uniform flow without compacting the powder to such an extent that it will bridge, or collect on the walls.
  • FIG. 7 to 10 is illustrated another and preferred form of shroud.
  • This shroud comprises a plate 136, rigidly mounted on the supports 152, 153 which may be used in place of dial 124.
  • a support 137 is provided for this purpose.
  • Support 137 is provided with an arm 138.
  • Plate 136 serves as one side of the shroud.
  • Mounted on the arm 138 is a rod 139, which passes through the bearings 140 attached to levers 141, which in turn are attached to the movable member of the shroud 142 which forms the remaining side thereof.
  • the piston 143 of an air cylinder 144 is pivotally connected at 145 to cross bar 146, which extends between the member 141.
  • the air cylinder is mounted on a bracket 146', which is attached to supports 137.
  • a three-way valve 113 is attached to the stationary member 136, as previously described in connection with Figure 6.
  • a lling spout is attached to the ange 84 as a vertical section 147, forming an S at 148 and passing through one corner of the stationary member 136 and thence downwardly to a spout 149.
  • a bag 15d which is sewed as previously described, and having a sealing flap at the top corner, is f slipped over the vertical spout 149. In this case the bag lies on its side, resting on the bottom of the member 142, as may be seen by examination of the righthand portion of Figure 7, and Figure 9.
  • the spout 149 may be provided with a sealing means 151, such as that illustrated in connection with Figure 5.
  • a sealing means 151 such as that illustrated in connection with Figure 5.
  • FIG. 7 and 8 two elements of a four-shroud unit are shown in Figures ⁇ 7 and 8. It is possible to construct the apparatus with only three units, and hence three stations, namely, a filling station, a dumping station, and a bagplacement station. As previously mentioned, this can also be constructed as a single-station machine.
  • the multiple-station machines provide for greater filling capacity than can be realized with a single-unit machine.
  • the various operations are synchronized by suitable timing devices, so that it is automatic.
  • the bags are placed in position by hand.
  • the containers can be positioned for lling by automatic means, which will vary depending upon the type and construction of the container, appropriate modifications being made for this purpose.
  • the machine can also be designed to operate with a larger number of units and having more than one illing station.
  • a hopper having an opening at the top and a discharge outlet at the bottom, comprising a rigid tapered outer shell, a continuous elastic inner liner attached to the hopper in gastight relationship at the top and the discharge outlets, a plurality of tubular elements between the liner and the shell to space the liner from the shell, said elements being iixed to the shell adjacent the top at substantially regular intervals around the periphery thereof, and extending downwardly along the shell wall toward the outlet of the hopper, a top for the top opening of the hopper, means in the hopper top for introducing powder into the hopper, and means for cyclically evacuating and relieving the vacuum in the space between the liner and the shell.
  • tubular elements are rubber tubes sealed at each end.
  • a hopper comprising a rigid conical outer shell having an open top and a bottom outlet, a continuo-us elastic inner liner attached to the shell in gastight relationship at the top and discharge end, a plurality of elongated spacing elements between the liner and the shell, said elements being iixed to the shell at substantially regular intervals around the periphery thereof and extending downwardly along the shell wall from the top toward the outlet of the hopper, a top for closing said hopper, means for evacuating the hopper, means for introducing powder into the hopper through said top when evacuated, means for releasing the vacuum on the hopper, vacuum means for removing powder from the hopper through the bottom outlet, and means for cyclically evacuating and relieving the vacuum in the space between the liner and the shell.

Description

July 31., 1956 c. F. CARTER 2,756,906
FILLING MACHINE Original Filed April l. 1952 5 Sheets-Sheet l July 31, 1956 c. F. CARTER FILLING MACHINE 5 Sheets-Shoe?. 2
Original Filed April l, 1952 Ilm-'lll JNVEN TOR. Clare/zoe E Carer muy A TTORNE'YS July 31, 1956 c. F. cAPTl-:R 2,756,906
FILLING MACHINE Original Filed April l, 1952 5 Sheets-Shee 3 ATTORNEYS July 3l, 1956 c. F. CARTER FILLING MACHINE 5 Sheets-Sheet 4 Original Filed April l, 1952 JNVENToR.
TTOKNEYS July 31, 1956 c.'F. CARTER FILLING MACHINE:`
5 Sheets-Sheet 5 orgginal Filed April 1, 1952 INVENTOR. 'hzren Ezri'cr Arran/n.;
United States Patent FILLING MACHINE Clarence F. Carter, Danville, lll.
Ori inal application April 1 1952 Serial No. 279,889, ngow Patent No. 2,687,271dated ugust 24, 1954. I )ivided and this application January 16, 1953, Serial No.339,320
4 claims. (cl. zzz-203) This invention relates to an automatic machine for weighing fine powders and vacuum filling of containers, and to the method thereof.
It is an object to automatically weigh powders with substantial accuracy, and to deliver them by vacuum methods to bags, boxes, cartons and the like, particularly containers holding 10-100 pounds of powder.
It is a further object to de-aerate the powders before delivery to the containers, so as to eliminate objectionable outage therein after the contents have settled.
Figure l is an elevation of a machine designed to accomplish these purposes.
Figure 2 is a sectional elevation of a hopper and valving mechanism shown diagrammatically in Figure 1.
Figure 3 is a plan View in section along the lines 3-3 of Figure 2.
Figure 4 is a plan view of the machine along lines 4 4 of Figure 1.
Figure 5 is an elevation in partial section of one of the shroud elements of the machine, with a bag in filling position.
Figure 6 is an end view in section along lines 6--6 of Figure 5.
Figure 7 is an elevation in partial section of a modification using a different type shroud and filling spout which may be used in place of those shown in Figure 1, one being in filling position and another with the shroud open and in position for receiving an empty bag.
Figure 8 is a plan view of Figure 7.
Figure 9 is an end View in section of a closed shroud with the bag filled.
Figure l0 is an end View in section showing the shroud open and the filled bag being dropped.
Referring to the figures, the automatic weighing feature will be described first, particularly in relation to Figures 1, 2 and 3. 1 is a large storage hopper of' any conventional design. At the bottom of the hopper is a valve 2, connected by way of flexible coupling 3, to a first gross-weight hopper 4. Valve 2 is of the type generally designated A in Figure 2. A line 5, in the top of the hopper, leads to a source of vvacuum and to atmospheric relief, through an arrangement generally designated as C in Figure 2. The hopper is suspended on a balance arm 6, by means of the knife edge 7. The lever actuates a conventional weighing scale 8. On the scale dial is a contact point 9, which may be contacted by the indicator hand 10 to close an electrical circuit not shown, thereby operating a solenoidvalve and causing valve 2 to close, as hereinafter more fully explained. The contact 9 may be made adjustable by known means to correspond to any desiredweight of material. At the bottom of hopper 4 is a second valve 11 of the `type shown at A. A second flexible connection12 joins the outlet of the valve with duct 13, which leads to a flexible connection 14 opening into weighing hopper 15. This hopper also is mounted by knife edge 16, on arm 17'. This actuates a scale 18 similar-to scale 8, equipped with a contact point 18', which actuates through approf 2,756,906 Patented July 31, 1956 priate electrical connections a solenoid valve which operates to cause valve 11 to close. The vacuum-relief line 19 is of the construction shown at C. At-the outlet of the hopper is a valve 20, of the type designated B on Figure 2. A flexible connection 21 leads to final weighing hopper 22. This is mounted on the knife edge 23 and arm 24. A scale 25 is actuated by arm 24, has two Contact points, one at 26 and one at 27, which may be contacted by pointer 25 to actuate solenoid valves controlling valve 20. Mounted on the bottom of the hopper is a valve 28, of the type designated A. A ilexible connection 29 joins the hopper to a line discharging into a container as hereinafter described in greater detail.
Figure 2 is an elevation in section of hopper 22, showing details of the construction of valves A, B and C, as Well as details of the internal hopper structure. Hoppers 4 and 15 are of similar construction. The hopper comprises au outer wall 30 of any suitable material such as sheet metal. The hopper is lined with a flexible material such as rubber, either synthetic or natural, the liner being designated 31. At the lower end, the liner is turned back over the end of the sheet metal hopper wall, and is held in place by flange 32 attached to the hopper and flange 33 attached to valve A. A channel 34 extends around the top of the hopper, and the liner 31 is turned back over the inside edge thereof and is held in place by the hopper lid 35 when it is clamped or bolted in place. Lying between the liner 31 and the outer wall 30 is a plurality of rubber tubes36. These are sealed at their lower ends, and are held in position at the upper end by being turned back over the channel and held in place by the hopper top 35. These tubes are spaced apart as shown, the distance generally being of the order of 0.5-1 inch. Since the amount of surface at the upper end of the tapered hopper is greater than at the lower end, some of the tubes are necessarily shorter than others. An air-vacuum line 37 leads into the space between wall 30 and liner 31. This is connected to the atmosphere and to a source of vacuum not shown, through a three-Way valve not shown, whereby the space between the wall 30 and the liner 31 may be alternately evacuated and relieved to the air. Since the tubes 36 are sealed and contain air, the flexible liner 31 will assume the position shown in Figure 3 when the space is evacuated, but upon relief of the air, the liner will return to its normal position. By rapidly alternating between vacuum and relief during the time the hopper is being filled and emptied, the liner is caused to vibrate and thus dislodge the powder that may be in the hopper, causing it to flow freely and quickly out of the hopper without substantial holdup. This action also assists in de-aerating the powder within the hopper.
The valve designated A is attached to hopper 22 by means of flanges 32 and 33. The body of the valve 33 is generally cylindrical. A flexible connection 29 is mounted by means of flange 39 to the exterior of the valve. The flexible connection is attached to flange 40. An air-vacuum line 41 extends through a compression fitting 42 to a T, 43, which is plugged at 44. Extending downwardly from the T is a tube 45, perforated at 46. Around the tube and covering the perforations is a rubber sleeve 47. Tube 45 is plugged at 48. The sleeve 47 is attached at each of its ends to tube 45, and when air pressure is applied through line 41, assumes the position shown in the dotted lines, thus completely closing the passage through the valve. Line 41 leads to a threeway valve which connectsto a source of air pressure and to a vacuum supply. When vacuum is applied to line' 41, tube 47 assumes the position shown in the drawing. It is important thatvacuum be applied, since otherwise the sleeve 47 may not resume its normal position but may wrinkle. Upon application of the vacuum, a substantiaily unobstructed annular passage is formed.
Hopper 1S is connected to the valve generally designated B, by means of flanges 5t) and 5l. This valve has three sections 52, 53 and 54, which are generally cylindrical. A rubber liner 55 is ,held terminally in section 53 by being pinched between flanges S6 and 57, 53 and 59. This rubber liner may be beaded at the ends.
Inside the cylindrical body is a smaller tube 6d, which is supported by means of spider 61 or other suitable means. A relatively large, annular passageway is formed etween tube 61 and liner 55. An air-vacuum line e2 extends through an appropriate compression fitting 63 to T 6d, which is plugged at 65. Extending downwardly therefrom is a small tube o6, which is perforated at 67. This tube is plugged at the lower end. A rubber sleeve 68 is attached, as was described in connection with valve A, to tube 66. The liner 55 is inflated by applying air pressure to air-vacuum line 69, which extends through the wall of the section 53, through compression fitting 70. Upon being inilated, the liner 55 assumes the position shown by the dotted line. ln a similar manner, by applyair to line 62, the liner 68 may be iuliated to close the passageway between tube 60 and the liner titi.
Cover plate 35 is provided with an opening 71, which is covered by a screen 72 mounted by any convenient means, such as bracket '73. Corresponding with the opening 7i. is an outlet tube 74, which may be attached to the "l" 75, one arm 76 of which leads to a source of vacuum, and the other arm 77 leads to the atmosphere. Mounted within lines '76 and 'i7 are two valves 7S and 79, or the type described in greater detail in connection with valve A. From these lead the lines dll and 81, connecting with a three-way valve or cock 82. This valve connects by way line S3 to a source of compressed air. Through shell of cock 82 is an opening 80', and a line S1' leading to line 7d. A groove S2 affords communication between lines Si and 81' when the cock is in the position shown, to deiiate valve 79. When the cock is turned 90 counterclockwise, valve 78 is relieved through line Sil, groove and opening Sil.
Refer to Figure 5. Flange 40 is designed to coincide with flange S4 in sealing relationship. Flange l0 is forced against flange 54 and sealing rubber 85 by applying air pressure to air cylinder 86, the piston of which strikes bracket S7, forcing the two flanges into sealing relationship. This is done after hopper 22 has been filled and the contents are to be drawn into the container.
Leading from ange 842i is the filling tube or head tid. This extends through the top of a split shroud S9, which, when closed completely, surrounds a container such as bag The bag shown is of the multi-walled type, which is sealed or sewed before filling and which is filled through a small opening left in one corner for introduction of the filling spout 91. This opening is closed after the filling operation is complete, by a ap 92, which automatically' covers the opening when the contents of the bag rest against it. Stich bags are of familiar design and form no part of this invention. The shroud 39 is made up in two sections, and may be of the type shown in Figures l, 4, 5 and 6, or may be of the type shown in Figures 7 to l0. These sections, when closed, form a vacuum-tight receptacle surrounding the bag, as shown in Figures 5 and 6. One section of the split shroud is stationary, and is made up of wall 93, bottom 94, top section 95, and wall 96. The other, movable section is made up of top section 97 and walls 98 and 99. At all points of contact between the movable and the stationary sections is a resilient washer or sealing member such as shown at 100, to insure a gastight seal. On the movable section is mounted a bracket 1M, to which is pivotally attached the piston 102 of an air cylinder whereby the movable section can be moved away from and upwardly from the stationary section to the position shown in the dotted lines in Figure 6 and in plan view in the representations of the two operi shrouds on the righthand side of Figure 4. In plan view, the closed shrouds are illustrated by the two shrouds on the leftharid side of Figure 4. Since the split shrouds and the mechanism for opening and closing them are identical, the same reference numerals are employed. The air cylinder 103 is pivotally mounted on a frame 104, which is attached to the main frame of the machine. A pair of upper guide tracks 105, 10S, and a corresponding pair of lower guide tracks litio, 1% (best seen in Figure l), are mounted on frame 1li-l and are attached to a frame itl, H7, on which the stationary member of the split shroud is rigidly mounted. These guide tracks slope upwardly and away from the stationary member of the split shroud.
Mounted on thernovable member of the shroud is a bracket 10S, supporting rollers 199, which follow the guides and 106 when the movable portion of the shroud is retracted by the air cylinder 1h53 and its piston M32. The air cylinders are oi conventional design and need not be explained in detail. The manner of opening the shroud by swinging the movable portion outwardly and upwardly, permits ready placement of the bag on the iilling nozzle 91 and removal of the filled bag from the shroud. The bag is removed from the shroud by operation of an air cylinder 110, which is mounted wall 93 of the stationary member of the shroud and which has a platen 111 attached to piston 112 of the air cylinder. When the shroud is open, as shown in the upper righthand corner of Figure 4, the platen 111 thrust the bag outwardly and ott of the lloor 94 of the stationary member of the shroud. An empty bag is then placed in position as shown in Figure 5, by slipping the opening at the valve end over the nozzle 91.
Mounted on wall 96 of the stationary member is a three-way valve H3, which leads to a source ot vacuum attached to line 114 when the valve is in the position shown and when the shroud is closed tor filling. The three-way valve has a port 115 open to the atmosphere. Communication to the interior of the shroud is made through port 116.
The lling spout 91 may be equipped with a sealing device to prevent passage of powder from the interior of the bag into the shroud during the lling operation. in this case a section of extra heavy pipe 1li' is provided. A portion of the pipe is cut away at 113, and over this is placed a grid or screen 119. A rubber sleeve 129 is placed over and supported by the grid. The sleeve is preferably a section of thin-walled rubber tubing, which is attached at either end to the pipe, and which lits substantially iiush with the outside of the pipe section M7. This leaves an annular space around a part ot the length ot the pipe 117, which serves as an air pocket. When the interior of the shroud is evacuated during the tilling operation, the thin-walled tubing 12@ is caused to expand into the position shown by the dotted lines, due to expansion of the air within this annular space. The expanded tube thus presses against the end of the bag and the closure flap 92 sufciently to prevent dust from escaping from between the lling spout and the bag into the shroud. Since the rubber tube ld is substantially flush with the outside of pipe 117, it offers no impediment to the bag being placed over the spout.
The apparatus can be operated as a single-head unit, or a plurality of the shroud elements can be mounted on a rotatable dial, as shown in Figures l and 4, for a more rapid lling operation. ln this case, the unit is mounted on a stationary base 121, supporting a vertical pipe 122, over whichl is a rotatable pipe 123 to which is rigidly attached a rotatable dial or platform 124, supported by a web 125. The supporting frames 107 for the stationary portion of the split shrouds are rigidly attached to dial 124. The dial is rotated by any suitable means, such as motor 126, speed reducer 127, and Geneva movement 128. These are all well known mechanical devices and need not be described in detail. Mounted above the Geneva movement is a conventional rotary air valve, generally indicated at 130. This supplies air to the air cylinders which open and close th;` shrouds and eject the filled bags, and is designed to time their operation at the appropriate stations. The rotary valve and timing means are not per se a part of the invention, since any suitable means may be used. The lower member 131 is stationary,
and the upper member 132 revolves with the member 123.`
Air inlets 133, and air outlets 134, are provided. Air passes through grooves (not shown) in the face of member 131. These coincide with the ports 134, so that air is supplied at the required time, and for the interval necessary, to operate the air cylinders for opening of the shroud and ejection of the bag at the proper stations.
The weighing hoppers are supported by any suitable structure not shown, above the rotating elements. As shown in Figure 4, station I is the filling station. Asthe device is rotated between stations II and III, the air cylinder 103 is actuated by air received from rotary valve 13b' through line 134 to cause the shroud to open, so that by the time it reaches station III, it is completely open and the bag is ready for discharge. At this point, air cylinder 110 is actuated to push the bag out of the Shroud into chute 135, from whence it travels to the disposal point. The shroud unit at station IV is open,`and at this point a bag is slipped over the filling spout. It will be noted that the rotation of the unit is intermittent, so that during the period of time necessary to fill the unit in station I, there is plenty of time for ithe filled bag to be ejected at station III and for another bag to be placed over the filling spout at station IV. After the bag is filled at station I, and as the element to which the bag has been added at station IV moves forward into station I, the split shroud is closed by the air cylinder, and by the time the element reaches station I, it is ready to be filled. In Figure 1, at 90a and 90b, a filled bag is shown as it is ejected from the open shroud.
The operation As illustrated in Figure l, three weighing hoppers and a storage hopper are provided. Two of the weighing hoppers are for obtaining rough weights, and likewise serve the purpose of de-aerating the powder.y The third hopper 22 is a final-weight hopper.
A powder such as carbon black, zinc oxide, or any other finely divided bulk material, is placed in storage hopper 1. Hopper 4 is evacuated through line 5. Powder is drawn through valve 2, which is open. Since hopper 4 is suspended by means of the knife edge 7 and the lever 6, and is conducted by flexible coupling to the storage hopper 1 and the line 13, the arm 6 is free to act upon scale 8, the indicating pointer of which is set at 0 before the filling operation begins. As the hopper fills with powder, the arm 10 rotates and eventually contacts point 9, which closes an electrical circuit actuating a solenoid valve, causing valve 2 to close as hereinbefore described. By the use of relays and a timing device, all well known, valve 2 can be kept closeduntil hopper 4 is ready to receive another charge of powder. Scale 8 is set so that the amount of material weighed into hopper 4 is in excess of that which is ultimately to be delivered to the container. This excess amount may vary from a few ounces to several pounds. The material having been delivered to hopper 4, hopper 16, which is empty at this point, is evacuated, line 5 is closed to vacuum and is relieved to atmospheric pressure; valve 11 is opened and the contents of hopper 4 move into hopper 15. The scale 18, actuated in a similar manner to scale 8, causes valve 11 to close when the pointer strikes contact 18. Again the charge transferred to hopper is slightly in excess of that to be ultimately delivered to the container, although in general it may be more nearly the desired amount than is that delivered to hopper 4. Hopper 15 is now released to atmospheric pressure by operation of the valve on line 19, and hopper 22 is evacuated. Valve particles.
20 is opened, this operating in the following manner to' deliver an accurate, predetermined weight of powder to hopper 22.
The valves in Figure 2 are shown in position for drawing powder from hopper 15 into hopper 22. Valve 79 is open, valve 78 is closed, valve B is open, and valve A is closed. Hopper 22 is being evacuated, which causes powder to flow from hopper 15 into hopper 22 through the two annular spaces shown in valve B. Hopper 22 is suspended as shown in Figure l. When the weight of material in hopper 22 is suflicient such that scale indicator 2S strikes contact point 26, the solenoid valve controlling line 69 is actuated, thereby applying air pressure to liner 55 and causing itto inflate and close the puter large annular space around tube 60. This shuts off the major flow of powder. The point of contact is selected so that the weight of powder introduced into hopper 22 is slightly less than that ultimately desired. This may be a matter of an ounce or several ounces, depending upon the size of the Valve and the amount of powder to be weighed. Powder continues to be drawn through the inner annular space around tube 66, and the scale indicator 25 continues on as the weight of powder in hopper 22 increases until it contacts point 27, at which point another solenoid valve is actuated to apply air pressure to line 62 and inflate rubber sleeve 68, thus yclosing the valve and shutting off any further flow of powder from hopper 15. Hopper 22 now contains the exact amount of powder desired, and it is ready for transfer to the ultimate container. The solenoid valves referred to may be of typey such as V-S vof Skinner Chuck Company, Norwalk, Connecticut.
Valve 20 is then closed, and hopper 22 is released to atmospheric pressure. By this time one of the shrouds, containing an empty bag and ready for filling, movesinto position at station I. Flanges 40 and 84 y.are clamped together as shown in Figure 5. The interior of the shroud is evacuated by pulling a vacuum through line 114, and three-way valve 113 being in the position shown in Figure 6. Until the shroud is substantially evacuated, valve 28 is kept closed.l As it is evacuated, the thin rubber tube expands to seal the opening in the corner of the bag. When the desired vacuum has been reached (and this is ordinarily within the range of about l5 to Z0 inches of mercury), valve 28 is opened, and the entire contents of hopper 22 are pulled into the bag. The sudden release of the contents into the bag causes the material to pack. As previously pointed out, each of the hoppers is constructed as shown in Figure 2, so that the vibrating effect of the inner liner prevents hangup of powder inside the hopper, so that this, together with the difference in pressure on the powder in the hopper and within the bag, causes the complete delivery of an accurately weighed amount of material to the container.
At this point valve 113 is rotated 90 counterclockwise to relieve the vacuum within the shroud, the air cylinder 86 is released, and the seal between flanges 40 and 84 is broken. Since the flexible coupling 21 is stretched when the flanges are clamped together, the contraction upon releaselallows ange 40 to swing clear of flange 84. In the rotary machine above described, the hopper 22 is again filled with an laccurately weighed amount of powder while the dial is being rotated 011e quarter turn to bring the next unit into filling position. The normal position of flange 40 vmust be slightly above flange 85, to permit the shroud unit to move into filling position, and when it reaches this position, the air cylinder 86 may be actuated by any well known means to cause flange 40 to seal against flange 84 and gasket 85.
As previously mentioned, the operation of this filling apparatus causes a de-aeration of the powder. Many fine powders such as carbon black and the like, are light and fluffy due to the fact that air is entrapped between the Such a condition is necessary to the free flow of the powder, but if this fluffy powder is placed directly in a container, the container must be of suflicient volume to hold the desired weight of aerated powder, which means that when the powder settles, the container will show considerable outage. This is undesirable.
In the present apparatus, each of the hoppers 4, 15 and 22 are constructed as shown in Figure 2. The operation of this device has been explained above. The walls alternately present the corrugated pattern shown in Figure 3 and then assume a substantially smooth inner surface when the vacuum is released. This exerts a lateral squeezing or kneading action on the powder as it lies in the hopper. This aids in releasing entrained air in the powder. Since, as the hopper is being filled, it is under vacuum, the combined effect of the vacuum and the kneading action is to hasten the removal of air from the powder, and to cause it to become more and more compact. When the hopper is discharged, either to the next hopper in line, or to the container, the body of the powder is drawn downwardly and into the constriction at the valve, so as to further tend to squeeze out the air entrapped in the powder. Thus, as the powder progresses from one hopper to the next, the ultimate ettect is to continuously knead the powder and to force the air out of it, and as a consequence, it becomes more and more compact; that is, the apparent density is reduced. By the time it reaches the container, the largest portion of entrapped air h as been removed, and as a consequence, a smaller container could be used than if the air-filled powder were directly introduced into the container. The movement of the withdrawn air is counter to the movement of the powder, so that it is continuously agitated, and this assures rapid and uniform flow without compacting the powder to such an extent that it will bridge, or collect on the walls.
In Figures 7 to 10 is illustrated another and preferred form of shroud. This shroud comprises a plate 136, rigidly mounted on the supports 152, 153 which may be used in place of dial 124. A support 137 is provided for this purpose. Support 137 is provided with an arm 138. Plate 136 serves as one side of the shroud. Mounted on the arm 138 is a rod 139, which passes through the bearings 140 attached to levers 141, which in turn are attached to the movable member of the shroud 142 which forms the remaining side thereof. The piston 143 of an air cylinder 144 is pivotally connected at 145 to cross bar 146, which extends between the member 141. The air cylinder is mounted on a bracket 146', which is attached to supports 137. A three-way valve 113 is attached to the stationary member 136, as previously described in connection with Figure 6. A lling spout is attached to the ange 84 as a vertical section 147, forming an S at 148 and passing through one corner of the stationary member 136 and thence downwardly to a spout 149. A bag 15d, which is sewed as previously described, and having a sealing flap at the top corner, is f slipped over the vertical spout 149. In this case the bag lies on its side, resting on the bottom of the member 142, as may be seen by examination of the righthand portion of Figure 7, and Figure 9. The spout 149 may be provided with a sealing means 151, such as that illustrated in connection with Figure 5. When the bag is filled, it assumes the position shown in Figure 9. When the shroud element reaches station III, the movable element 142 of the split shroud is thrust outwardly by actuating air cylinder 144, and the bag drops downwardly as shown in Figure l onto a chute or conveyor belt, to be removed to storage.
As illustrated, two elements of a four-shroud unit are shown in Figures` 7 and 8. It is possible to construct the apparatus with only three units, and hence three stations, namely, a filling station, a dumping station, and a bagplacement station. As previously mentioned, this can also be constructed as a single-station machine. The multiple-station machines provide for greater filling capacity than can be realized with a single-unit machine. The various operations are synchronized by suitable timing devices, so that it is automatic. Generally the bags are placed in position by hand. The containers can be positioned for lling by automatic means, which will vary depending upon the type and construction of the container, appropriate modifications being made for this purpose. The machine can also be designed to operate with a larger number of units and having more than one illing station.
The invention is not limited to the exact embodiments illustrated.
This application is a division of my co-pending application Serial No. 279,889, tiled April l, 1952, and now United States Patent No. 2,687,271.
I claim as my invention:
1. A hopper having an opening at the top and a discharge outlet at the bottom, comprising a rigid tapered outer shell, a continuous elastic inner liner attached to the hopper in gastight relationship at the top and the discharge outlets, a plurality of tubular elements between the liner and the shell to space the liner from the shell, said elements being iixed to the shell adjacent the top at substantially regular intervals around the periphery thereof, and extending downwardly along the shell wall toward the outlet of the hopper, a top for the top opening of the hopper, means in the hopper top for introducing powder into the hopper, and means for cyclically evacuating and relieving the vacuum in the space between the liner and the shell.
2. The apparatus of claim 1 wherein the tubular elements are rubber tubes sealed at each end.
3. The apparatus of claim 1 wherein some tubular elements extend to points adjacent the discharge outlet, and some elements extend to points intermediate the length of the hopper.
4. A hopper comprising a rigid conical outer shell having an open top and a bottom outlet, a continuo-us elastic inner liner attached to the shell in gastight relationship at the top and discharge end, a plurality of elongated spacing elements between the liner and the shell, said elements being iixed to the shell at substantially regular intervals around the periphery thereof and extending downwardly along the shell wall from the top toward the outlet of the hopper, a top for closing said hopper, means for evacuating the hopper, means for introducing powder into the hopper through said top when evacuated, means for releasing the vacuum on the hopper, vacuum means for removing powder from the hopper through the bottom outlet, and means for cyclically evacuating and relieving the vacuum in the space between the liner and the shell.
Allen June 10, 1947 Vincent Iuly 28, 1953
US339320A 1952-04-01 1953-01-16 Filling machine Expired - Lifetime US2756906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US339320A US2756906A (en) 1952-04-01 1953-01-16 Filling machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US279889A US2687271A (en) 1952-04-01 1952-04-01 Weighing and filling machine
US339320A US2756906A (en) 1952-04-01 1953-01-16 Filling machine

Publications (1)

Publication Number Publication Date
US2756906A true US2756906A (en) 1956-07-31

Family

ID=26959941

Family Applications (1)

Application Number Title Priority Date Filing Date
US339320A Expired - Lifetime US2756906A (en) 1952-04-01 1953-01-16 Filling machine

Country Status (1)

Country Link
US (1) US2756906A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2913147A (en) * 1954-09-13 1959-11-17 Acf Ind Inc Lading storage and discharge apparatus
DE1084633B (en) * 1957-07-13 1960-06-30 Clarence Freemont Carter Method and device for filling containers with powdery filling goods
US2981298A (en) * 1958-07-21 1961-04-25 Clarence W Vogt Method and equipment for filling open mouth receptacles with pulverulent material
US3024816A (en) * 1958-06-30 1962-03-13 Arenco Ab Control device for a packing machine associated with one or more weighing machines for automatic weighing of predetermined batches of material
US3090409A (en) * 1959-10-15 1963-05-21 Howe Richardson Scale Co Bagging machine
US3106230A (en) * 1960-03-14 1963-10-08 Cherry Burrell Corp Method and apparatus for filling non-rigid containers
US3645301A (en) * 1970-10-14 1972-02-29 Black Products Co Bag venting device for valve bag filling machines
US3669317A (en) * 1969-05-07 1972-06-13 Georgy Semenovich Ivchenko A device for unloading bulk material from reservoirs
US3756459A (en) * 1971-01-12 1973-09-04 Damon Corp Method and apparatus for metering fluid utilizing pressure differentials
WO1980002409A1 (en) * 1979-05-08 1980-11-13 Ind Beratung Anstalt Automatic loader apparatus for loading bags in rotary bag-filling machines
US4813818A (en) * 1987-08-25 1989-03-21 Michael Sanzone Apparatus and method for feeding powdered materials
US5353966A (en) * 1990-06-01 1994-10-11 Anag A. Nussbaumer Ag Apparatus for discharging dosed quantities of a bulk material
EP1164079A1 (en) * 2000-05-12 2001-12-19 Firma Haver & Boecker Rotating filling machine
US20110183049A1 (en) * 2010-01-27 2011-07-28 Stephan Dieter Simbuerger Device And A Process For Continuously Feeding Chocolate Ingredients As Well As A System And A Process For Producing A Chocolate Mass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2170258A (en) * 1936-08-27 1939-08-22 Smidth & Co As F L Method and apparatus for handling powdered material
US2421977A (en) * 1943-04-05 1947-06-10 Allen Sherman Hoff Co Apparatus for handling dust
US2646905A (en) * 1950-11-01 1953-07-28 Goodrich Co B F Inflatable panel assembly for storage bins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2170258A (en) * 1936-08-27 1939-08-22 Smidth & Co As F L Method and apparatus for handling powdered material
US2421977A (en) * 1943-04-05 1947-06-10 Allen Sherman Hoff Co Apparatus for handling dust
US2646905A (en) * 1950-11-01 1953-07-28 Goodrich Co B F Inflatable panel assembly for storage bins

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2913147A (en) * 1954-09-13 1959-11-17 Acf Ind Inc Lading storage and discharge apparatus
DE1084633B (en) * 1957-07-13 1960-06-30 Clarence Freemont Carter Method and device for filling containers with powdery filling goods
US3024816A (en) * 1958-06-30 1962-03-13 Arenco Ab Control device for a packing machine associated with one or more weighing machines for automatic weighing of predetermined batches of material
US2981298A (en) * 1958-07-21 1961-04-25 Clarence W Vogt Method and equipment for filling open mouth receptacles with pulverulent material
US3090409A (en) * 1959-10-15 1963-05-21 Howe Richardson Scale Co Bagging machine
US3106230A (en) * 1960-03-14 1963-10-08 Cherry Burrell Corp Method and apparatus for filling non-rigid containers
US3669317A (en) * 1969-05-07 1972-06-13 Georgy Semenovich Ivchenko A device for unloading bulk material from reservoirs
US3645301A (en) * 1970-10-14 1972-02-29 Black Products Co Bag venting device for valve bag filling machines
US3756459A (en) * 1971-01-12 1973-09-04 Damon Corp Method and apparatus for metering fluid utilizing pressure differentials
WO1980002409A1 (en) * 1979-05-08 1980-11-13 Ind Beratung Anstalt Automatic loader apparatus for loading bags in rotary bag-filling machines
US4813818A (en) * 1987-08-25 1989-03-21 Michael Sanzone Apparatus and method for feeding powdered materials
US5353966A (en) * 1990-06-01 1994-10-11 Anag A. Nussbaumer Ag Apparatus for discharging dosed quantities of a bulk material
EP1164079A1 (en) * 2000-05-12 2001-12-19 Firma Haver & Boecker Rotating filling machine
US20110183049A1 (en) * 2010-01-27 2011-07-28 Stephan Dieter Simbuerger Device And A Process For Continuously Feeding Chocolate Ingredients As Well As A System And A Process For Producing A Chocolate Mass

Similar Documents

Publication Publication Date Title
US2720375A (en) Filling machine
US2756906A (en) Filling machine
US2815621A (en) Method and apparatus for filling open mouth receptacles
US4872493A (en) Apparatus for filling a lined container
FI72389C (en) Device for filling bags with bulk in a weight-determined quantity.
US3261379A (en) Apparatus for packaging dry divided solid materials
US2613864A (en) Apparatus for filling containers
US4854353A (en) Bulk container filling apparatus
US3195586A (en) Method and apparatus for accurately dispensing divided material
US4269548A (en) Apparatus for measuring and controlling flow of pulverulent material
US3189061A (en) Low head force flow packer
US2609134A (en) Machine for bagging cereals or grain
US5573044A (en) Vacuum apparatus for filling bags with particulate material
US2687271A (en) Weighing and filling machine
US3589411A (en) Filling apparatus
JPH0343322A (en) Liquid filling method to bag-shaped container
US2642215A (en) Oscillating valve mechanism
US2831510A (en) Filling machine for open mouth bags
US2687145A (en) Pilot controlled pressure and vacuum operated pneumatic valve
US3072208A (en) Valve bag packer apparatus
US2955796A (en) Valve bag filling machines
US3516454A (en) Packing apparatus
US3557847A (en) Dispensing apparatus for particulate matter
US2996858A (en) Bag-filling and handling machine
US3498344A (en) Apparatus for filling bags with preweighed quantities of material