US2728301A - Gear pump - Google Patents

Gear pump Download PDF

Info

Publication number
US2728301A
US2728301A US293981A US29398152A US2728301A US 2728301 A US2728301 A US 2728301A US 293981 A US293981 A US 293981A US 29398152 A US29398152 A US 29398152A US 2728301 A US2728301 A US 2728301A
Authority
US
United States
Prior art keywords
housing
gear
bushing
fluid
bushings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US293981A
Inventor
Paul G Lindberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LINDBERG TRUST
Original Assignee
LINDBERG TRUST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LINDBERG TRUST filed Critical LINDBERG TRUST
Priority to US293981A priority Critical patent/US2728301A/en
Application granted granted Critical
Publication of US2728301A publication Critical patent/US2728301A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0061Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • F04C15/0026Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump

Description

Dec, 27. 1955 P. cs. LINDBERG 2,728,301
GEAR PUMP Filed June 17, 1952 4 Sheets-Sheet 1 INVENTOR.
PAUL G. LINDBERG ATTORNEY 27, 1955 P. e. LINDBERG 2328,30}
GEAR PUMP Filed June 17, 1952 4 Sheets-Sheet 2 INVENTOR. PAUL G. LINDBERG ATTO RNEY
Dec. 27, 1955 P. G. LINDBERG 2,728,303
GEAR PUMP Filed June 17, 1952 4 Sheets-Sheet 3 ZNVENTOR. PAUL G. LiNDBERG ATTORNEY GGGGGG M P United States Patent 1 2,728,301 GEAR PUMP Paul G. Lindberg, Willoughby, Ohio, assignor to Lindberg Trust, Cleveland, Ohio, a trust of Ohio Application June 17, 1952, Serial No. 293,981 4 Claims. (Cl. 103-126) This invention relates to pressure fluid gear pumps and has for one of its primary objects to provide an improved gear pump of simplified construction and increased efficiency, and is a continuation in part of co-pending application entitled Paul G. Lindberg Number 159,673, filed May 3, 1950, now Patent No. 2,641,192, for Gear Pump.
I have found that in gear pumps of such construction that provides for automatically maintaining pressure responsive longitudinally floating bearing bushings in sealed contact with the side faces of the associated gears, there is a tendency for the fluid pressure on the discharge, or high pressure, side to exceed fluid pressure on the low pressure, or inlet, side to such an extent as to cause the bearing bushings to bind against the housing on the inlet side. This binding tendency is so pronounced as to cause serious malfunctioning and eventual erratic operation or damage to the gear pump.
It is therefore one of the primary objects of my invention to provide an improved gear pump of this type in which this binding tendency of the bearing bushings will be eliminated. Another object is to provide a simplified construction in which no additional parts are required and in which virtually no additional expense is involved in the modification of the assembly for accomplishing the elimination of this binding tendency of the bearing bushings.
A more specific object of the invention is to provide a means of communication of the excess fluid pressure from the high pressure side to a point between the adjacent surfaces of the bearing bushings and the housing on the low pressure side to counteract the force of the fluid pressure on the high pressure side tending to force the bearing bushings against the housing on the low pressure side sufficiently to avoid any resulting binding of the bearing bushings against the housing on the low pressure side.
With the foregoing and other objects in view, the invention resides in the combination of parts and in the details of construction hereinafter set forth in the following specification and appended claims, certain embodiments thereof being illustrated in the accompanying drawings, in which Figure 1 is a view in elevation of the gear pump showing the inlet and outlet end;
Figure 2 is a view in section taken through the pump along line 2-2 of Figure 1;
Figure 3 is a view in section taken along line 3-3 of Figure 2, showing the bushings to have pressure equalizing slots in their faces adjacent to the housing;
Figure 4 is a view in section taken along line 4-4 of Figure 3;
Figure 5 is a view in perspective of one of the gear journal bushings, showing it to have a slot on the low pressure side and a bore therethrough;
Figure 6 is a view similar to Figure 3 showing communicating grooves from the high pressure side to a slot in the housing between the low pressure side of the bushing and housing, instead of the slot being in the bushing, as shown in Figure 3;
Figure 7 is an enlarged detailed view in perspective of one of the bushings shown in Figure 6, with no slot in its side face;
Figure 8 is a view similar to Figure 4 showing the pressure equalizing slot provided in the housing rather than in the bushings as shown in Figure 4;
2,728,301 Cc l atented Dec- 1955 Figure 9 is a view in longitudinal section taken through a modified form of gear pump in which the pressure equalizing slots are provided in the bearing bushings on the low pressure side with bores therethrough communicating with the high pressure side;
Figure 10 is a view in section taken along line 10-10 of Figure 9;
Figure 11 is a view similar to Figure 9 showing the equalizing slots in the low pressure side of the housing, rather than in the bearing bushings as shown in Figure 9; and
Figure 12 is a view in section taken along line 12-12 of Figure 11.
Referring more particularly to the drawings, the main gear pump housing 1 has secured thereto by bolts 2 a housing 3 for the fluid inlet 4 and outlet 5.
The pump is shown to comprise two pump gears 6 and 7 with meshing teeth 8 and 9. On opposite sides of teeth 8, gear 6 is provided with journals 10 and 11 and on opposite sides of teeth 9, gear 7 is provided with journals 12 and 13. Journal 11 of gear 6 and journal 13 of gear 7 are mounted to rotate in an elongated unflanged one-piece straight side bushing 14 which is mounted to be longitudinally slidable on the inner surface of housing member 15 and which fills up the housing cavity. Such a bushing 14 is shown in perspective in Figure 7. Journal 10 of gear 6 and journal 12 of gear 7 are mounted to rotate in a similar elongated unflanged one-piece straight side bushing 16 that is likewise mounted to be longitudinally slidable on the inner surface of the housing and likewise fills up the housing cavity. The opposed faces 17 and 18 of bushings 14 and 16 are pressure loaded to engage the opposite side faces of gear teeth 8 of gear 6 in fluid sealing relationship, and the opposed faces 19 and 20 of bushings 14 and 16 are pressure loaded to engage the opposite side faces of gear teeth 9 of gear 7 in fluid sealing relationship. Gears 6 and 7 are provided with longitudinal bores 21 and 22.
Journal 10 of gear 6 has a reduced extension 23 that is splined to a coupling member 24 having a flange 25 that engages with a bearing ring 26, the opposite side of which presses against a flexible seal ring 27, that, in turn, presses against a collar 28 provided with an annular seal ring 29 between it and the housing and secured therein by a snap ring 30. Coupling member 24 is secured by pin 31 to the splined gear connector 32. A compression coil spring 33, hearing inwardly against gear journal 10 is provided to eliminate end play of gear 6 and affecting the seal assembly at this end of the gear.
Housings 1 and 3 when connected together are fluid sealed by rings 34 and 35. The fluid from inlet 4 passes through inlet chamber 36 to gear 7 and from gear 6 the fluid passes through outlet passage 37 to outlet 5.
Mounted in housing 3 is a spring and pressure loaded slidable pin 38 provided with an annular seal ring 39. It is normally urged by a compression coil spring 40 in the recessed head of the plug to initially resiliently force the one-piece gear bushing 14 to the left, as viewed in Figure 4, which leaves an axial chamber 41 between the housing 3 and bushing 14.
Fluid pressure is fed in from the high pressure side from passage 37 through passage 48 in behind and in the recessed head of floating pin 38 to force the pin 33 to the left to fluid pressure load the bushing 14. Pressure loaded pin 38 is located approximately opposite the center of internal pressure and on the horizontal centerline, but displaced outwardly from the vertical centerline, as shown in dotted lines in Figure 8. The resulting action of pressure fluid from the high pressure, or discharge, side on the pin 38 is to pressure load the bushings. Pressure fluid in space 50 behind bushing 16 and" behind spring 33 is vented through passage 51 and bore 21 to space 1 behind bushing 14. i
Housing '3 is provided with a bore 42 to receive a retaining plug 43 and a coil spring 44, urging a ball valve 45 to normally close passage 46 that communicates with passage 47 leading to axial chamber 41. This provides a low pressure relief valve for venting chamber 41 to low pressure through passage 49 to the inlet passage 35.
The one-piece floating bushings 14 and not only completely fill the housing cavities, but are also elongated and straight sided with no flanges. The intimate contact of their outer surfaces throughout their entire lengths with the inner surface of the housing provides for an efiective seal against fluid leakage. They are thus selfsealing and require no additional sealing accessories. Another advantage of this one-piece floating bushing con struction lies in the fact that it is self-aligning with respect to the gear journals, the gear faces and the housing. with virtually no tendency to cock in their pressure responsive sliding movements. This latter is especially true because the single bushing 14 is pressure loaded by the single pressure loaded pin 33 which is located approximately opposite the center of internal pressure.
In my gear pump construction, I have considerably reduced the number of essential operating parts. By reason of employing single one-piece straight sided floating bushings, I am able to employ a slidable pressure pin 38 for effectively pressure loading the bushing 14 by applying the fluid pressure from the high pressure side to the pin 38. Moreover, in such a construction I find it unnecessary to employ insert plugs to insure against leakage. The fluid that accumulates in space 41, upon movement of bushing 14, is readily vented past the low pressure ball check valve to the low pressure side. Thus I find it unnecessary to provide any relief recesses be tween the side faces of the gears and the bushings.
The above described gear pump construction is disclosed in Figures 1 to 7, inclusive, forms my invention as disclosed in my aforesaid co-pending application. My improvements thereover forming my present invention will now be described.
Referring to Figure 3, I have found that in actual practice conditions arise where fluid pressure builds up on the discharge, or high pressure, side sufficient to force the bearing bushings 14 and 16 transversely against the housing on the inlet, or low pressure, side with sufficient force to cause binding of the bushing with the housing, with resulting undue wear, damage to parts and erratic pump operation.
In carrying out my object to avoid this, I propose to introduce a fluid pressure force on the low pressure side that will counteract this undesired force on the bushings applied from the high pressure side. I also propose to accomplish this preferably without the necessity of additional parts and with the minimum amount of modification of the construction above described.
Still referring to Figures 3 and 5, I have shown bushings I4 and 16 to each be provided with an elongated pressure equalizing slot 52 in its face adjacent the housing on the inlet, or low pressure, side and a bore 53 communicating with the slot 52 and leading to the high pressure chamber side. In this manner, when excess pressure is built up on the high pressure side, enough pressure is transmitted to the pressure equalizing slots to counterbalance the force exerted from the high pressure side tending to bind the bearing bushin s against the housing on the low pressure side.
As an alternative, I have shown in Figures 6 and 7, bushings 14' and 16' whose faces are not slotted. Instead, I may cut slots 54 and S5, comparable in dimensions to slots 52, in the housing adjacent bushings i4 and 16, and provide communication between slots 54 and 55' and the high pressure side through bores 53 in the bushings to accomplish a comparable result. In either event, the slots act as pressure equalizing slots for the expressed desired purpose.
In arriving at the proper dimensions of the pressure equalizing slots 52 or 54 and 55, my purpose is to so design them that the sum of the forces produced by their existence approximately equals-the opposing forces acting on the high pressure side of the bushings tending to force the bushings transversely against the low pressure side of the housing. Under ideal conditions where there is no leakage, the width of the two slots together should approximate the width of the gear. If leakage past the bushings occurs, the slot area should be increased accordingly.
In Figures 9 to 12, inclusive, I have shown my invention as applied to another type of gear pump not me ploying my novel form of bearing bushing of the type shown in Figures 1 to 8 nor the sliding piston 24 shown therein. In this construction, as shown iri Figures 9 to 12, the two parts 56 and 57 of the housing are joined together by bolts 58. The fluid flows into inlet 59 and discharged through outlet 60. The gears 61 have trunnions 62 and 63 supported by longitudinally movable floating bearing bushings 64 and 65. Springs 66 are interposed between housing 57 and the adjacent face of bushing 65. Instead of employing a sliding piston of the type shown at 24 in Figures 3 and 6, a passage 67 is provided to lead pressure fluid from the high pressure, or discharge side, into chamber 68 in back of bushing 65.
This construction is conventional, but to it I propose to show that the addition of my new and novel pressure equalizer system, described in connection with Figures 1 to 8, inclusive, is also applicable here. Accordingly, I have, in Figures 9 and 10, shown pressure equalizer slots 69 formed in bushings 64 and on the low pressure side with bores 70 leading therefrom to the discharge, or high pressure, side 60.
In Figures 11 and 12, I have eliminated the pressure equalizer slots in the bushings 64 and 65 and substituted for them, pressure equalizer slots 71 in the housing onthe low pressure side to communicate through bores 71 with the high pressure, or discharge, side 66.
Thus, it will be seen that I have provided a simple and efficient means of sufficiently counteracting the tend ency of the floating bearing bushings from being forced transversely, by excess pressure from the high pressure side, into binding relationship with the housing on the low pressure side.
I claim:
1. A gear type pump comprising a hollow housing having a fluid inlet and output, said housing having a gear chamber and an auxiliary chamber in said housing between said gear chamber and said outlet, a pair of meshing gear members mounted in said gear chamber, each of said gear members having journals extending from the opposite faces thereof, an elongated one-piece bushing having flat front and back end faces, said bushing having straight side walls connected by curved ends, said bushing being mounted to have its entire periphery longitudinally slidable in contact with the inner surface of said hollow housing, said bushing being arranged axially of the adjacent axial faces-of both of said gear members, said bushing surrounding and supporting the adjacent parallel journals of both of said gears and having a front axial face cooperable with the adjacent axial face of its associated gear members to provide a seal between said bushing and said gear members and a piston slidably mounted in said auxiliary chamber in said hollow housing and in axial contact with the back face of said bushing and a fluid passage leading from the pump discharge outlet to said auxiliary chamber on the back face of said piston to provide a fluid pressure loading on the back of said bushing to urge said bushing against said gears, the fluid intake opening in said housing being arranged on one side of the meshing area of said gears to constitute the low pressure side of said pump and the fluid outlet opening in said housing being arranged on the opposite side of said gears to constitute the high pressure side of said pump, the bushing bearings and the adjacent inner surface of said housing transverse of said bushing bearings being so formed as to provide fluid reservoirs therebetween on the low pressure side, said bushings having bores extending therethrough for supplying fluid to said reservoirs from the high pressure side to counteract the fluid pressure force from the high pressure side tending to force said bearing bushings transversely into binding relationship with said housing on the low pressure side.
2. A gear type pump comprising a hollow housing having a fluid inlet and outlet, said housing having a gear chamber and an auxiliary chamber in said housing between said gear chamber and said outlet, a pair of meshing gear members mounted in said gear chamber, each of said gear members having journals extending from the opposite faces thereof, an elongated one-piece bushing having flat front and back end faces, said bushing having straight side walls connected by curved ends, said bushing being mounted to have its entire periphery longitudinally slidable in contact with the inner surface of said hollow housing, said bushing being arranged axially of the adjacent axial faces of both of said gear members, said bushing surrounding and supporting the adjacent parallel journals of both of said gears and having a front axial face cooperable with the adjacent axial face of both of its associated adjacent gear members to provide a seal between said bushing and said gear members, a piston slidably mounted in said auxiliary chamber in said hollow housing, said auxiliary chamber being axially removed from said bushing, said piston being in axial contact with the back face of said bushing and a fluid passage leading from the pump discharge outlet to said auxiliary chamber on the back face of said piston to provide a fluid pressure loading on the back face of said bushing to urge said bushing against said gears, the fluid intake opening in said housing being arranged on one side of the meshing area of said gears to constitute the low pressure side of said pump and the fluid outlet opening in said housing being arranged on the opposite side of said gears to constitute the high pressure side of said pump, the faces of the bushing bearings adjacent the inner surface of said housing having pressure equalizing slots formed therein to provide fluid reservoirs between the bushings and the housing on the low pressure side, said bushings having bores extending therethrough for supplying fluid to said reservoirs from the high pressure side to counteract the fluid pressure force from the high pressure side tending to force said bearing bushings transversely into binding relationship with said housing on the low pressure side.
3. A gear type pump comprising a hollow housing having a fluid inlet and outlet, said housing having a gear chamber and an auxiliary chamber in said housing between said gear chamber and said outlet, a pair of meshing gear members mounted in said gear chamber, each of said gear members having journals extending from the opposite faces thereof, an elongated one-piece bushing having flat front and back end faces, said bushing having straight side walls connected by curved ends, said bushing being mounted to have its entire periphery longitudinally slidable in contact with the inner surface of said hollow housing, said bushing being arranged axially of the adjacent axial faces of both of said gear members, said bushing surrounding and supporting the adjacent parallel journals of both of said gears and having a front axial face cooperable with the adjacent axial face of its associated adjacent gear members to provide a seal between said bushing and said gear members, a piston slidably mounted in said auxiliary chamber in said hollow housing, said auxiliary chamber being axially removed from said bushing and of greater axial length than said arranged on one side of the meshing area of said gears to constitute the low pressure side of said pump and a fluid discharge opening in said housing being arranged on the opposite side of said gears to constitute the high pressure side of said pump, the faces of the bushing bearings adjacent the inner surface of said housing having pressure equalizing slots formed therein to provide fluid reservoirs between the bushings and the housing on the low pressure side, said bushings having bores extending therethrough for supplying fluid to said reservoirs from the high pressure side to counteract the fluid pressure force from the high pressure side tending to force said bearing bushings transversely into binding relationship with said housing on the low pressure side.
4. A gear type pump comprising a hollow housing having a liquid inlet and chamber and an auxiliary chamber in said housing between said gear chamber and said outlet, a pair of meshing gear members mounted in said gear chamber, each of said gear members having journals extending from the opposite faces thereof, an elongated one-piece bushing having flat front and back end faces, said bushing having straight side walls connected by curved ends, said bushing being mounted to have its entire periphery longitudinally slidable in contact With the inner surface of said hollow housing, said bushing being arranged axially of the adjacent axial faces of both of said gear members, said bushing surrounding and supporting the adjacent parallel journals of both of said gears and having a front axial face cooperable with the adjacent axial faces of both of said gear members to provide a seal between said bushing and said gear members, a piston slidably mounted in said auxiliary chamber in said hollow housing, said auxiliary chamber being axially removed from said bushing and of greater axial length than said piston, said piston being in contact with the back face of said bushing to pump and the fluid outlet opening in said housing being arranged on the opposite side of said gears to constitute the high pressure side of said pump, the inner surface of said housing adjacent said bushing bearings having pressure equalizing slots formed therein to provide fluid reservoirs between the pressure side.
References Cited in the file of this patent UNITED STATES PATENTS outlet, said housing having a gear
US293981A 1952-06-17 1952-06-17 Gear pump Expired - Lifetime US2728301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US293981A US2728301A (en) 1952-06-17 1952-06-17 Gear pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US293981A US2728301A (en) 1952-06-17 1952-06-17 Gear pump

Publications (1)

Publication Number Publication Date
US2728301A true US2728301A (en) 1955-12-27

Family

ID=23131380

Family Applications (1)

Application Number Title Priority Date Filing Date
US293981A Expired - Lifetime US2728301A (en) 1952-06-17 1952-06-17 Gear pump

Country Status (1)

Country Link
US (1) US2728301A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2817297A (en) * 1953-12-08 1957-12-24 Roper Corp Geo D Pressure loaded pump or motor
US2856860A (en) * 1955-08-03 1958-10-21 Mechanisms Company Fluid pressure transducer with end clearance control
US2876705A (en) * 1953-05-29 1959-03-10 Thompson Prod Inc Pressure loaded gear pump
US2933047A (en) * 1956-11-05 1960-04-19 Borg Warner Pressure loaded pump
US2956512A (en) * 1957-05-02 1960-10-18 Robert W Brundage Hydraulic pump or motor
DE1099562B (en) * 1958-11-29 1961-02-16 Dr Poerio Carpigiani Continuous ice cream machine
US2974605A (en) * 1959-02-12 1961-03-14 Borg Warner Pressure loaded hydraulic apparatus
US2996998A (en) * 1957-09-24 1961-08-22 Gold Harol Pump
US3000323A (en) * 1960-04-14 1961-09-19 Heil Co High pressure gear pump
US3011448A (en) * 1957-11-06 1961-12-05 Borg Warner Pressure loaded pump
US3025796A (en) * 1955-10-03 1962-03-20 Dale O Miller Gear pump
US3029739A (en) * 1958-07-09 1962-04-17 John L Nagely Gear pump or motor with radial pressure balancing means
US3043230A (en) * 1956-06-30 1962-07-10 Eckerle Otto High pressure gear pump
DE1134289B (en) * 1958-02-28 1962-08-02 Bosch Gmbh Robert Gear pump or motor
DE1134590B (en) * 1957-11-09 1962-08-09 Bosch Gmbh Robert Gear pump
US3051093A (en) * 1957-08-12 1962-08-28 New York Air Brake Co Valve plate for engine
US3053192A (en) * 1960-03-01 1962-09-11 Bosch Gmbh Robert Bearing arrangement for a hydraulic machine
US3068804A (en) * 1960-03-21 1962-12-18 Thompson Ramo Wooldridge Inc Pressure loaded pump seal
US3083645A (en) * 1960-06-17 1963-04-02 Int Harvester Co Gear pump or the like
US3086475A (en) * 1963-04-23 rosa en
DE1196507B (en) * 1958-12-23 1965-07-08 Bosch Gmbh Robert Gear pump or motor
US3196800A (en) * 1962-12-13 1965-07-27 Parker Hannifin Corp Gear pump
US3244110A (en) * 1965-01-15 1966-04-05 Planet Products Corp Pump
US3251309A (en) * 1963-04-12 1966-05-17 Parker Hannifin Corp Industrial gear pump
DE1264958B (en) * 1960-10-08 1968-03-28 Bosch Gmbh Robert Gear pump or motor
DE1272727B (en) * 1958-03-19 1968-07-11 Bosch Gmbh Robert Gear pump or motor with several pairs of forces acting on the bearing body
DE1293598B (en) * 1956-06-30 1969-04-24 Bosch Gmbh Robert Gear pump and bearing body in the pump
US3499390A (en) * 1968-04-11 1970-03-10 Parker Hannifin Corp Rotary pump
US5076770A (en) * 1990-04-13 1991-12-31 Allied-Signal Inc. Gear pump having improved low temperature operation
US20070098586A1 (en) * 2005-10-28 2007-05-03 Autotronic Controls Corporation Fuel pump
US20150354560A1 (en) * 2014-06-06 2015-12-10 Hamilton Sundstrand Corporation Gear pump drive gear pressure loaded bearing
US20150354561A1 (en) * 2014-06-06 2015-12-10 Hamilton Sundstrand Corporation Gear pump drive gear stationary bearing
US20150354562A1 (en) * 2014-06-06 2015-12-10 Hamilton Sundstrand Corporation Gear pump driven gear stationary bearing
US20150354559A1 (en) * 2014-06-06 2015-12-10 Hamilton Sundstrand Corporation Gear pump driven gear pressure loaded bearing
US20160032922A1 (en) * 2014-07-31 2016-02-04 Hamilton Sundstrand Corporation Gear pump drive gear stationary bearing
US20160123390A1 (en) * 2014-11-03 2016-05-05 Hamilton Sundstrand Corporation Gear pump bearings with hybrid pads
US11208998B2 (en) 2018-06-29 2021-12-28 Massachusetts Institute Of Technology Adaptive self-sealing microfluidic gear pump
US20230033416A1 (en) * 2021-07-27 2023-02-02 Eaton Intelligent Power Limited Controlling pressure on a journal bearing

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1771863A (en) * 1927-06-03 1930-07-29 Patiag Patentverwertungs Und I Rotary pump
US2212994A (en) * 1937-05-22 1940-08-27 L Outil R B V Sa Balanced gear pump
US2221412A (en) * 1937-05-26 1940-11-12 Waterbury Tool Co Power transmission
US2236980A (en) * 1937-12-02 1941-04-01 Joseph F Keller Liquid pump or motor
US2319374A (en) * 1939-06-28 1943-05-18 Joseph F Keller Balanced pump and motor
US2420622A (en) * 1942-04-15 1947-05-13 Borg Warner Pump with pressure loaded bushing
US2479077A (en) * 1945-07-23 1949-08-16 Webster Electric Co Inc Balanced hydraulic pump or motor
US2487721A (en) * 1944-08-09 1949-11-08 Borg Warner Engaging impellers pump
US2641192A (en) * 1950-05-03 1953-06-09 Lindberg Trust Gear pump
US2660958A (en) * 1950-08-11 1953-12-01 Borg Warner Pressure loaded gear pump
US2682836A (en) * 1950-04-20 1954-07-06 George M Holley Fuel pump
US2691945A (en) * 1950-08-30 1954-10-19 Borg Warner Pressure loaded gear pump

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1771863A (en) * 1927-06-03 1930-07-29 Patiag Patentverwertungs Und I Rotary pump
US2212994A (en) * 1937-05-22 1940-08-27 L Outil R B V Sa Balanced gear pump
US2221412A (en) * 1937-05-26 1940-11-12 Waterbury Tool Co Power transmission
US2236980A (en) * 1937-12-02 1941-04-01 Joseph F Keller Liquid pump or motor
US2319374A (en) * 1939-06-28 1943-05-18 Joseph F Keller Balanced pump and motor
US2420622A (en) * 1942-04-15 1947-05-13 Borg Warner Pump with pressure loaded bushing
US2487721A (en) * 1944-08-09 1949-11-08 Borg Warner Engaging impellers pump
US2479077A (en) * 1945-07-23 1949-08-16 Webster Electric Co Inc Balanced hydraulic pump or motor
US2682836A (en) * 1950-04-20 1954-07-06 George M Holley Fuel pump
US2641192A (en) * 1950-05-03 1953-06-09 Lindberg Trust Gear pump
US2660958A (en) * 1950-08-11 1953-12-01 Borg Warner Pressure loaded gear pump
US2691945A (en) * 1950-08-30 1954-10-19 Borg Warner Pressure loaded gear pump

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086475A (en) * 1963-04-23 rosa en
US2876705A (en) * 1953-05-29 1959-03-10 Thompson Prod Inc Pressure loaded gear pump
US2817297A (en) * 1953-12-08 1957-12-24 Roper Corp Geo D Pressure loaded pump or motor
US2856860A (en) * 1955-08-03 1958-10-21 Mechanisms Company Fluid pressure transducer with end clearance control
US3025796A (en) * 1955-10-03 1962-03-20 Dale O Miller Gear pump
DE1293598B (en) * 1956-06-30 1969-04-24 Bosch Gmbh Robert Gear pump and bearing body in the pump
US3043230A (en) * 1956-06-30 1962-07-10 Eckerle Otto High pressure gear pump
US2933047A (en) * 1956-11-05 1960-04-19 Borg Warner Pressure loaded pump
US2956512A (en) * 1957-05-02 1960-10-18 Robert W Brundage Hydraulic pump or motor
US3051093A (en) * 1957-08-12 1962-08-28 New York Air Brake Co Valve plate for engine
US2996998A (en) * 1957-09-24 1961-08-22 Gold Harol Pump
US3011448A (en) * 1957-11-06 1961-12-05 Borg Warner Pressure loaded pump
DE1134590B (en) * 1957-11-09 1962-08-09 Bosch Gmbh Robert Gear pump
DE1134289B (en) * 1958-02-28 1962-08-02 Bosch Gmbh Robert Gear pump or motor
DE1272727B (en) * 1958-03-19 1968-07-11 Bosch Gmbh Robert Gear pump or motor with several pairs of forces acting on the bearing body
US3029739A (en) * 1958-07-09 1962-04-17 John L Nagely Gear pump or motor with radial pressure balancing means
DE1099562B (en) * 1958-11-29 1961-02-16 Dr Poerio Carpigiani Continuous ice cream machine
DE1196507B (en) * 1958-12-23 1965-07-08 Bosch Gmbh Robert Gear pump or motor
US2974605A (en) * 1959-02-12 1961-03-14 Borg Warner Pressure loaded hydraulic apparatus
US3053192A (en) * 1960-03-01 1962-09-11 Bosch Gmbh Robert Bearing arrangement for a hydraulic machine
US3068804A (en) * 1960-03-21 1962-12-18 Thompson Ramo Wooldridge Inc Pressure loaded pump seal
US3000323A (en) * 1960-04-14 1961-09-19 Heil Co High pressure gear pump
US3083645A (en) * 1960-06-17 1963-04-02 Int Harvester Co Gear pump or the like
DE1264958B (en) * 1960-10-08 1968-03-28 Bosch Gmbh Robert Gear pump or motor
US3196800A (en) * 1962-12-13 1965-07-27 Parker Hannifin Corp Gear pump
US3251309A (en) * 1963-04-12 1966-05-17 Parker Hannifin Corp Industrial gear pump
US3244110A (en) * 1965-01-15 1966-04-05 Planet Products Corp Pump
US3499390A (en) * 1968-04-11 1970-03-10 Parker Hannifin Corp Rotary pump
US5076770A (en) * 1990-04-13 1991-12-31 Allied-Signal Inc. Gear pump having improved low temperature operation
US20070098586A1 (en) * 2005-10-28 2007-05-03 Autotronic Controls Corporation Fuel pump
US9488171B2 (en) * 2014-06-06 2016-11-08 Hamilton Sundstrand Corporation Gear pump drive gear stationary bearing
US9488174B2 (en) * 2014-06-06 2016-11-08 Hamilton Sundstrand Corporation Gear pump driven gear stationary bearing
US20150354562A1 (en) * 2014-06-06 2015-12-10 Hamilton Sundstrand Corporation Gear pump driven gear stationary bearing
US20150354559A1 (en) * 2014-06-06 2015-12-10 Hamilton Sundstrand Corporation Gear pump driven gear pressure loaded bearing
US20150354561A1 (en) * 2014-06-06 2015-12-10 Hamilton Sundstrand Corporation Gear pump drive gear stationary bearing
US9488170B2 (en) * 2014-06-06 2016-11-08 Hamilton Sundstrand Corporation Gear pump driven gear pressure loaded bearing
US9453506B2 (en) * 2014-06-06 2016-09-27 Hamilton Sundstrand Corporation Gear pump drive gear pressure loaded bearing
US20150354560A1 (en) * 2014-06-06 2015-12-10 Hamilton Sundstrand Corporation Gear pump drive gear pressure loaded bearing
US20160032922A1 (en) * 2014-07-31 2016-02-04 Hamilton Sundstrand Corporation Gear pump drive gear stationary bearing
US9488173B2 (en) * 2014-07-31 2016-11-08 Hamilton Sundstrand Corporation Gear pump drive gear stationary bearing
US20160123390A1 (en) * 2014-11-03 2016-05-05 Hamilton Sundstrand Corporation Gear pump bearings with hybrid pads
US9890813B2 (en) * 2014-11-03 2018-02-13 Hamilton Sundstrand Corporation Gear pump bearings with hybrid pads
US11208998B2 (en) 2018-06-29 2021-12-28 Massachusetts Institute Of Technology Adaptive self-sealing microfluidic gear pump
US20230033416A1 (en) * 2021-07-27 2023-02-02 Eaton Intelligent Power Limited Controlling pressure on a journal bearing
US11905949B2 (en) * 2021-07-27 2024-02-20 Eaton Intelligent Power Limited Controlling pressure on a journal bearing

Similar Documents

Publication Publication Date Title
US2728301A (en) Gear pump
US2641192A (en) Gear pump
US2412588A (en) Gear divider with pressure loaded bushings
US2824522A (en) Pump, pressure loaded with offset loading
US3961872A (en) Gear machine with fluid-biased end face sealing elements
US2676548A (en) Pump
US2817297A (en) Pressure loaded pump or motor
US2816512A (en) Pressure loaded gear pump
US2884864A (en) Pressure loaded pump, trapping grooves
US20080107545A1 (en) Tandem Pump No-Load Operation Device
US2202913A (en) Gear pump
US3578888A (en) Fluid pump having internal rate of pressure gain limiting device
US2974605A (en) Pressure loaded hydraulic apparatus
US2134803A (en) Relief valve for power transmissions
US2470471A (en) Dual check valve
US3043230A (en) High pressure gear pump
US2600702A (en) Control valve
US2654325A (en) Gear type pump with pressure loaded bushing and wear insert element
US3083645A (en) Gear pump or the like
US2660958A (en) Pressure loaded gear pump
GB2168436A (en) Reversible hydraulic machine
US2915977A (en) Fixed flow pump
US3961870A (en) Gear pump or motor with radial balancing
US2793595A (en) Pressure loaded pump
US2751846A (en) Rotary pump or motor