US2727006A - Hydrocarbon oils - Google Patents

Hydrocarbon oils Download PDF

Info

Publication number
US2727006A
US2727006A US319420A US31942052A US2727006A US 2727006 A US2727006 A US 2727006A US 319420 A US319420 A US 319420A US 31942052 A US31942052 A US 31942052A US 2727006 A US2727006 A US 2727006A
Authority
US
United States
Prior art keywords
oils
oil
itaconate
foam
polymeric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US319420A
Inventor
Dazzi Joachim
Joseph E Fields
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Chemicals Ltd
Monsanto Chemical Co
Original Assignee
Monsanto Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Chemicals Ltd filed Critical Monsanto Chemicals Ltd
Priority to US319420A priority Critical patent/US2727006A/en
Application granted granted Critical
Publication of US2727006A publication Critical patent/US2727006A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention
    • B01D19/04Foam dispersion or prevention by addition of chemical substances
    • B01D19/0404Foam dispersion or prevention by addition of chemical substances characterised by the nature of the chemical substance

Definitions

  • This invention relates to antifoaming hydrocarbon oils and relates more particularly to hydrocarbon oils containing small amounts of polymeric itaconates as antifoaming agents.
  • foam inhibition is one of major importance to all industries employing hydrocarbon oils under foam-inducing conditions. While most oils will foam to some extent due to vigorous agitation and aeration in a running engine, foaming becomes a problem only when loss of oil occurs by foam seepage or when so many air bubbles are present in the oil that proper lubrication of bearing surfaces is impeded. Foaming is often experienced with dry sump engines in which there is employed a scavenger pump for collecting oil from various engine parts and returning it to the lubricant reservoir. Here air may be collected along with the oil and deposited in the reservoir. The design and operation of aircraft engines is such that foaming occurs more readily in this type of engine than it does in automotive engines.
  • Foam and froth in hydrocarbon oils is not due solely to engine design. Although location and design of the oil pump, oil sump and oil lines as well as modification of other mechanical features may retard foam development, when certain oils are employed with high speed engines, mechanical control, alone, does not sufilce.
  • the nature of the crankcase oil is often the prime factor in foaming difficulties. The heavier the grade of the oil or the higher the viscosity of the oil, the more difficult it is to avoid foaming. Heavy grade oils, such as those employed in high-speed diesel and spark ignition engines operating under severe conditions are particularly susceptible to foaming. The heavy oils hold bubbles very firmly so that when foam is formed, it is very persistent.
  • SAE grade oils are often non-foaming under the most severe conditions, when there are employed with these oils one or more additives such as viscosity index improvers, extreme pressure resisting improvers, pour-point depressors, etc., the resulting improved oils do not retain their non-foaming characteristics and are frequently even 2,727,006 Patented Dec. 13, 1955 more susceptible to foaming than are the heavy-grade oils.
  • antifoam additives i. e., antifoaming agents, foam depressing agents, foam depressants, antifrothers or foam suppressors
  • foam depressing agents foam depressants
  • antifrothers or foam suppressors are known; but in prior art their use has been attended with numerous diificulties.
  • disadvantages of such known additives are chemical reactivity with the lubricant or other oil additives, corrosive effect, susceptibility to decomposition upon heating, instability when exposed for long periods of time to ordinary atmospheric conditions, high cost, etc.
  • the present itaconate polymers possess very high antifoaming elficiency and may be employed in only very low proportions, i. e., in amounts generally less than 1.0 per cent by weight of the oil. From 10 to parts of the polymer per million parts of the oil is preferred, depending upon the nature of the oil. Heavy oils and oils containing foam-inducing adjuvants require more of the polymers. While the antifoaming efiect of the present itaconates is obtained when they are employed in small concentrations, the polymers may be incorporated into the hydrocarbon oil in amounts of, say, up to 50 per cent by weight to give concentrates.
  • Oils containing such high proportions of the polymers may be marketed for use as lubricant additives whereby addition of small amounts of the concentrate to hydrocarbon oils can be so regulated as to give to the consumer an oil containing quantities of up to only 0.1 per cent by weight of the itaconate polymers.
  • the antifoaming effect of the present polymers is not materially affected by the presence of other adjuvants in the oils.
  • the polymers are stable esters which can be hydrolyzed only with ditliculty and since they are present in the oils in only very small quantities, the use of even very acidic or very basic adjuvants in the oil has substantially no elfect on them.
  • Hydrocarbon oils containing the present antifoaming agents are stable when stored over long periods of time and also when subjected to heat and pressure conditions of engine and motor operation.
  • Hydrocarbon oils which are rendered substantially antifoaming by the present itaconate polymers are synthetic or petroleum stocks of varying viscosities such as lubricating oils for internal combustion engines and motors, diesel fuels and lubricants, and pressure transfer media, e. g., industrial lubricants, process oils, hydraulic oils, turbine oils, cutting oils, fluid greases, gear oils, shock absorber oils, spindle oils, journal bearing oils, pneumatic tool lubricants, etc. They may be synthetic or natural hydrocarbons or any type, i. e., paraffinic naphthenic or blended, and they may be compounded or uncompounded.
  • Example 1 This example describes preparation of polymeric di-nbutyl itaconate.
  • Example 2 The antifoaming properties of hydrocarbon oils may be determined according to the procedure generally described in Designation L-12445 of the Coordinating Lubricants Research Committee of the Coordinating Research Council, New York. Briefly this procedure involves bubbling air or an inert gas such as nitrogen through the hydrocarbon oil to be tested employing standard apparatus and standard conditions.
  • the oil was placed in a standard 100 cc. graduated cylinder in the top of which was inserted a two-hole rubber stopper. An air-inlet tube extended through this stopper, to the bottom of which was attached a gas difiuser stone sphere. The length of the inlet tube was adjusted so that when the apparatus was assembled, the sphere just touched the bottom of the cylinder.
  • Dry nitrogen was supplied at the rate of 0.2 cubic foot per hour, at room temperature. Thirty-seven cubic centimeters of a Champlin S. A. E. base oil was used for each test.
  • copolymers of two different alkyl itaconates present in such proportions and of such a nature as to give in the copolymer molecule an alkyl chain length of from 4 to 5 carbon atoms.
  • a substantially foam-resisting hydrocarbon oil composition containing up to 1.0 per cent by weight, based on the weight of the composition, of homo polymeric di-nbutyl itaconate.
  • a substantially foam resisting hydrocarbon oil lubricant composition containing a hydrocarbon oil, and up to 1.0 per cent by weight, based on the weight of the composition, of homo polymeric di-n-butyl itaconate.

Description

nrnnocannon one Joachim Dazzi and loseph E. Fields, Dayton, Ghio, as-
signors to Monsanto Chemical Qompany, St. Louis, Mo., a corporation of Delaware No Drawing. Application November 7, 1952, Serial No. 319,429
2 Claims. (Cl. 252-56) This invention relates to antifoaming hydrocarbon oils and relates more particularly to hydrocarbon oils containing small amounts of polymeric itaconates as antifoaming agents.
The problem of foam inhibition is one of major importance to all industries employing hydrocarbon oils under foam-inducing conditions. While most oils will foam to some extent due to vigorous agitation and aeration in a running engine, foaming becomes a problem only when loss of oil occurs by foam seepage or when so many air bubbles are present in the oil that proper lubrication of bearing surfaces is impeded. Foaming is often experienced with dry sump engines in which there is employed a scavenger pump for collecting oil from various engine parts and returning it to the lubricant reservoir. Here air may be collected along with the oil and deposited in the reservoir. The design and operation of aircraft engines is such that foaming occurs more readily in this type of engine than it does in automotive engines.
Foam and froth in hydrocarbon oils, however, is not due solely to engine design. Although location and design of the oil pump, oil sump and oil lines as well as modification of other mechanical features may retard foam development, when certain oils are employed with high speed engines, mechanical control, alone, does not sufilce. Here, the nature of the crankcase oil is often the prime factor in foaming difficulties. The heavier the grade of the oil or the higher the viscosity of the oil, the more difficult it is to avoid foaming. Heavy grade oils, such as those employed in high-speed diesel and spark ignition engines operating under severe conditions are particularly susceptible to foaming. The heavy oils hold bubbles very firmly so that when foam is formed, it is very persistent.
New developments in engine construction have constantly demanded lubricants having properties not possessed by refined hydrocarbon oils. Improved properties are now generally imparted to lubricants by the use of additives. For example, in order to satisfy the lubrication requirements of hypoid gears, materials which impart extreme-pressure lubricating properties are now generally added to gear lubricants. In most cases, however, the improvement attained in an oil by the use of additives is made only at the expense of increasing its susceptibility to foam. Thus, while the demands of modern engine design for extreme pressure lubricants, for anticorrosive lubricants, for lubricants of increased viscosity and low pour-point and good detersive properties have been met by the formulation and use of numerous chemicals which give these desirable properties to oils when admixed therewith, the use of such additives makes the treated oils particularly susceptible to foaming. While light-grade oils, e. g., SAE grade oils are often non-foaming under the most severe conditions, when there are employed with these oils one or more additives such as viscosity index improvers, extreme pressure resisting improvers, pour-point depressors, etc., the resulting improved oils do not retain their non-foaming characteristics and are frequently even 2,727,006 Patented Dec. 13, 1955 more susceptible to foaming than are the heavy-grade oils.
Hence, with the development of new high-speed engines and the provision of the new additive-type lubricants, the problem of foaming has assumed major importance. Attempts to solve the problem by defoaming existing oils, c. g., by submitting oils to heat-treatment, absorption processes, filtering steps, etc., have proved of but-little value. The most practical solution to this problem has been made by the use of antifoam additives.
Now we have found that foaming of hydrocarbon oils is effectively retarded and even completely inhibited when there is added to such oils a liquid polymer selected from the class consisting of polymeric dibutyl itaconate, polymeric diamyl itaconate and the copolymer of dibutyl itaconate with diamyl itaconate. Such itaconate polymers are readily obtainable by methods known to the art, e. g., by heating dibutyl itaconate or diamyl itaconate or diamyl itaconate or mixtures of the same in the presence of a peroxidic compound as catalyst until polymerization has taken place, and then, if necessary, separating the polymeric itaconate from any diluent, unreacted monomer or excess of catalyst by distillation.
A number of antifoam additives, i. e., antifoaming agents, foam depressing agents, foam depressants, antifrothers or foam suppressors, are known; but in prior art their use has been attended with numerous diificulties. Among disadvantages of such known additives are chemical reactivity with the lubricant or other oil additives, corrosive effect, susceptibility to decomposition upon heating, instability when exposed for long periods of time to ordinary atmospheric conditions, high cost, etc.
The present itaconate polymers possess very high antifoaming elficiency and may be employed in only very low proportions, i. e., in amounts generally less than 1.0 per cent by weight of the oil. From 10 to parts of the polymer per million parts of the oil is preferred, depending upon the nature of the oil. Heavy oils and oils containing foam-inducing adjuvants require more of the polymers. While the antifoaming efiect of the present itaconates is obtained when they are employed in small concentrations, the polymers may be incorporated into the hydrocarbon oil in amounts of, say, up to 50 per cent by weight to give concentrates. Oils containing such high proportions of the polymers may be marketed for use as lubricant additives whereby addition of small amounts of the concentrate to hydrocarbon oils can be so regulated as to give to the consumer an oil containing quantities of up to only 0.1 per cent by weight of the itaconate polymers.
The antifoaming effect of the present polymers is not materially affected by the presence of other adjuvants in the oils. The polymers are stable esters which can be hydrolyzed only with ditliculty and since they are present in the oils in only very small quantities, the use of even very acidic or very basic adjuvants in the oil has substantially no elfect on them. Hydrocarbon oils containing the present antifoaming agents are stable when stored over long periods of time and also when subjected to heat and pressure conditions of engine and motor operation.
Hydrocarbon oils which are rendered substantially antifoaming by the present itaconate polymers are synthetic or petroleum stocks of varying viscosities such as lubricating oils for internal combustion engines and motors, diesel fuels and lubricants, and pressure transfer media, e. g., industrial lubricants, process oils, hydraulic oils, turbine oils, cutting oils, fluid greases, gear oils, shock absorber oils, spindle oils, journal bearing oils, pneumatic tool lubricants, etc. They may be synthetic or natural hydrocarbons or any type, i. e., paraffinic naphthenic or blended, and they may be compounded or uncompounded.
This invention is further illustrated, but not limited, by the following examples:
Example 1 This example describes preparation of polymeric di-nbutyl itaconate.
A mixture consisting of 243 g. of di-n-butyl itaconate and 2.5 ml. of di-tert-butyl peroxide was heated, with stirring, in a nitrogen atmosphere to a temperature of 160 C. within minutes and then maintained at about this temperature for about 1.5 hours. An additional 2.5 ml. portion of the peroxide was then added, and heating was continued for another 3.75 hours. The resulting reaction mixture, n =1.4597, was submitted to distillation at a pressure of 1 mm. of mercury in a nitrogen atmosphere. Material boiling at below 230 C./1 mm. was removed and there was obtained as a residue 154.1 g. of polymeric di-n-butyl itaconate, a viscous, light amber material, n =1.465l.
Example 2 The antifoaming properties of hydrocarbon oils may be determined according to the procedure generally described in Designation L-12445 of the Coordinating Lubricants Research Committee of the Coordinating Research Council, New York. Briefly this procedure involves bubbling air or an inert gas such as nitrogen through the hydrocarbon oil to be tested employing standard apparatus and standard conditions.
The oil was placed in a standard 100 cc. graduated cylinder in the top of which was inserted a two-hole rubber stopper. An air-inlet tube extended through this stopper, to the bottom of which was attached a gas difiuser stone sphere. The length of the inlet tube was adjusted so that when the apparatus was assembled, the sphere just touched the bottom of the cylinder.
Dry nitrogen was supplied at the rate of 0.2 cubic foot per hour, at room temperature. Thirty-seven cubic centimeters of a Champlin S. A. E. base oil was used for each test.
With the nitrogen hose disconnected between the flowmeter and the delivery tube to the difiuser stone, the stone was allowed to soak in the oil for five minutes, at the end of which time nitrogen flow (0.2 cu. ft. per hour) was started through the stone. Zero time was noted when the air bubbles started to rise from the stone. Readings of the top and bottom foam levels were taken at the end of a 5-minute period. The volume of foam was calculated from the two readings.
Employing the testing procedure described above, there was determined the antifoaming efiect of the polymeric n-butyl itaconate of Example 1 when added to the Champlin S. A. E. 30 base oil at concentrations of from 33 to 1000 parts per million. The following results were ob- Inasmuch as polymeric butyl or amyl itaconates are extremely eflicient antifoaming agents, polymers prepared from these itaconates and small amounts, say, up to 20 per cent of other monomers copolymerizable therewith, may also be used for depressing the foam-susceptibility of hydrocarbon oil compositions. 150, instead of polymeric butyl itaconate or polymeric amyl itaconate, there may be employed as antifoamants copolymers of two different alkyl itaconates present in such proportions and of such a nature as to give in the copolymer molecule an alkyl chain length of from 4 to 5 carbon atoms.
What we claim is:
1. A substantially foam-resisting hydrocarbon oil composition containing up to 1.0 per cent by weight, based on the weight of the composition, of homo polymeric di-nbutyl itaconate.
2. A substantially foam resisting hydrocarbon oil lubricant composition containing a hydrocarbon oil, and up to 1.0 per cent by weight, based on the weight of the composition, of homo polymeric di-n-butyl itaconate.
References Cited in the file of this patent UNITED STATES PATENTS 2,279,881 DAlelio Apr. 14, 1942 2,616,849 Grammaria Nov. 4, 1952 2,637,698 Tutwiler May 5, 1953 FOREIGN PATENTS 666,990 Great Britain Feb. 20, 1952

Claims (1)

1. A SUBSTANTIALY FOAM-RESISTING HYDROCARBON OIL COMPOSITION CONTAINING UP TO 1.0 PER CENT BY WEIGHT, BASED ON THE WEIGHT OF THE COMPOSITION, OF HOMO POLYMERIC DI-N BUTYL ITACONATE.
US319420A 1952-11-07 1952-11-07 Hydrocarbon oils Expired - Lifetime US2727006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US319420A US2727006A (en) 1952-11-07 1952-11-07 Hydrocarbon oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US319420A US2727006A (en) 1952-11-07 1952-11-07 Hydrocarbon oils

Publications (1)

Publication Number Publication Date
US2727006A true US2727006A (en) 1955-12-13

Family

ID=23242168

Family Applications (1)

Application Number Title Priority Date Filing Date
US319420A Expired - Lifetime US2727006A (en) 1952-11-07 1952-11-07 Hydrocarbon oils

Country Status (1)

Country Link
US (1) US2727006A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2279881A (en) * 1939-09-12 1942-04-14 Gen Electric Interpolymer of di-(secondary butyl) itaconate and ethyl methacrylate
GB666990A (en) * 1948-11-08 1952-02-20 Standard Oil Dev Co Improved polymers and copolymers
US2616849A (en) * 1949-05-11 1952-11-04 Socony Vacuum Oil Co Inc Copolymers of maleic anhydride with esters of itaconic acid and salts thereof as viscosity index improvers and pour point depressants
US2637698A (en) * 1948-12-30 1953-05-05 Standard Oil Dev Co Mineral oil lubricating composition containing a copolymer of an alkyl ester of itaconic acid and an alkyl acrylate or methacrylate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2279881A (en) * 1939-09-12 1942-04-14 Gen Electric Interpolymer of di-(secondary butyl) itaconate and ethyl methacrylate
GB666990A (en) * 1948-11-08 1952-02-20 Standard Oil Dev Co Improved polymers and copolymers
US2637698A (en) * 1948-12-30 1953-05-05 Standard Oil Dev Co Mineral oil lubricating composition containing a copolymer of an alkyl ester of itaconic acid and an alkyl acrylate or methacrylate
US2616849A (en) * 1949-05-11 1952-11-04 Socony Vacuum Oil Co Inc Copolymers of maleic anhydride with esters of itaconic acid and salts thereof as viscosity index improvers and pour point depressants

Similar Documents

Publication Publication Date Title
US2411159A (en) Lubricant
US2841479A (en) Glycerol triether lubricant compositions
US2717242A (en) Polyoxyalkylene lubricant composition
US3211647A (en) Hypoid gear lubricants for slip-lock differentials
US3166508A (en) Hydrocarbon oils of reduced foaming properties
US2702793A (en) Foam-inhibiting and foam-inhibited compositions
US3598552A (en) Pour depressants for middle distillates
US2459717A (en) Organic lubricant composition
Obasi et al. Effect of additives on the performance of engine oil
US2838456A (en) Lubricating oil compositions
US2727006A (en) Hydrocarbon oils
US3238130A (en) Anti-chatter lubricant for limited slip differential
US2841558A (en) Hydrocarbon oil compositions
US2476271A (en) Lubricating oil additive
US2265799A (en) Soluble oil
US2696473A (en) Halogen containing extreme pressure lubricant stabilized with a polyalkylene polyamine
US3089854A (en) Oil-in-water emulsion lubricants
GB754773A (en) Organic oleaginous compositions
US2959915A (en) Fuel for and method of operating a jet engine
US2515115A (en) Nonfoaming compositions
US3236771A (en) Anti-chatter gear lubrication
US3089851A (en) Lubricant additive and composition containing same
US2653911A (en) Hydrocarbon oil compositions containing telomeric polyalkyl oxoesters as anti-foaming agents
US2524563A (en) Lubricant
US3565926A (en) Amine salts of perhalogenated monobasic carboxylic acids